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What is an OS?

 “A program that acts as an intermediary
between a user of a computer and the
computer hardware.”

User

App

“stuff between”
0S

HW
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Two popular definitions

* Bottom-up perspective: resource manager/
coordinator, manage your computer’s
resources

* Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use
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 Architecture review

e OS evolution

e Modern OS structures

e Modern OS abstractions
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What does hardware provide?

Seen a glimpse of the functions OS provides

But what hardware does it have to work with
to provide those functions?

Lets take a high level overview of how a
typical computer system looks inside

Different platforms have different chips:
phone, PC, your DVD player, etc.

But major concepts are the same
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The x86 Platform
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Many processor architectures: Intel x86, ARM, Oracle
Sparc, IBM Power, etc.

We’'ll use x86 as an exemplar
— Our Android emulator uses an x86 Atom image
— Familiarity. Lots of online resources.

Applies to most other architectures as well (with
small differences)

Besides, most of the OS code we will encounter is
architecture agnostic
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Ever assembled a PC?

* One or more CPUs, memory, and device
controllers connected through system bus

e S

Pentium 130MHz
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Computer organization

mouse keyboard  printer  monitor

S o mm = [

AN

graphics
USB controller adapter

disk

CPU controller

MMU | Cache

Bus

memory
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Abstract model

Input
and Output

“ Processing

Central

Unit

I

=

* |/O: communicating data to and from devices

e CPU: digital logic for doing computation

* Memory: N words of B bits
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The stored program computer

Main Memory
CPU

for(;;) {
fetch next instruction
run next instruction

o

Often called the “Von Neumann” architecture
Memory holds both instructions and data
CPU interprets instructions

Instructions read/write data
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x86 implementation

31

Instruction Pointer 0

EIP
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On boot-up, EIP points to OxFFFFFFFO

Generally, BIOS (firmware) is mapped to that region
EIP incremented after each instruction

Variable length instructions

EIP modified by CALL, RET, JMP, conditional JMP
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Registers: work space

General-Purpose Registers

31 1615 8 7 0 16-bit 32-bit
AH AL AX  EAX
BH BL BX  EBX
CH CL CX  ECX
DH DL DX  EDX
BP EBP
SI ESI
DI EDI
SP ESP
1 8, 16, and 32 bit versions EEI;: stack pointer
: frame base pointer
[ Example: ADD EAX, 10 ol soi indexp
= More:SUB, AND, etc EDI: destination index
By convention some for special
purposes
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Memory: more work space

movl %eax, %edx  edx = eax; register mode
movl $0x123, %edx edx = 0x123; immediate
movl 0x123, %edx edx = *(int32_t*)0x123; direct

movl (%ebx), %eedx edx = *(int32_t*)ebx; indirect
movl 4(%ebx), %edx edx = *(int32_t*)(ebx+4); displaced

* Memory instructions: MOV, PUSH, POP, etc
* Most instructions can take a memory address
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Memory access

CPU puts:
Memory Inputand 111 = Address on address bus

Output (I/O)
# 2. Data on data bus
. Memr Wri md on

CPU

(ALU,
Registers,
d Control)

System Bus

ata Bus

Address Bus

ontrol Bus

* Memory accesses are synchronous
* |nstruction stalls while memory is fetched
e Caches are used to reduce the performance hit
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The Stack

STACK
28 ORIGIN

nacve N-3
Example instruction What it does
subl $4, %esp nacTie N-2

pushl oeax  J 0N R o) =
movl (%esp), %oeax e N-1
popl %eax addl $4, %esp
pushl %eip ) ACTIVE |
call 0x12345 movl $0x12345, %eip ) 0 emex
ret popl %eip ) ;T

* For implementing function calls

* Temporary storage area
— Saved register values, local variables, parameters

e Stack grows “down” on x86
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Instruction classes

* |nstruction classes
— Data movement: MOV, PUSH, POP, ...
— Arithmetic: TEST, SHL, ADD, AND, ...
—1/0: IN, OUT, ...
— Control: JMP, JZ, INZ, CALL, RET
— String: MOVSB, REP, ...
— System: INT, IRET
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/O space and instructions

#define DATA PORT 0x378
#define STATUS PORT 0x379
#define  BUSY 0x80
#define CONTROL_PORT 0x37A
#define  STROBE 0x01

void

lpt putc(int c)

/* wait for printer to consume previous byte */
while( (inb(STATUS PORT) & BUSY) == 0)

r

/* put the byte on the parallel lines */
outb(DATA PORT, c);

/* tell the printer to look at the data */

outb (CONTROL PORT, STROBE);
outb (CONTROL PORT, 0);

}

8086: 1024 ports, later processors, 16 bit
addresses (65536 ports)
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Input and
Registers, Output (I/O)

and Control)

System Bus

/O Access

CPU puts:

. I/OR

ata Bus

Address Bus

ontrol Bus

* Similar to memory access

* Except different control signals, so |/O devices
know to respond (rather than memory)

* IN, OUT instructions are also synchronous
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1. Address on address bus
2. Data on data bus




Memory-mapped I/O

 Use normal addresses for /O

— No special instructions
— No 65536 limit
— Hardware routes to device

* Works like “magic” memory
— 1/0O device addressed and accessed like memory
— However, reads and writes have “side effects”
— Read result can change due to external events
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Interrupts

* |/O instructions synchronous, but hardware devices can be slow
— Reading from disk (milliseconds), waiting for a keystroke (hours?)
— Should CPU stay idle when waiting for device?
— Interrupts allow CPU to multitask while waiting
— Allows I/0 to be asynchronous

— Programmable Interrupt Controller (PIC) allows more than one device to
interrupt CPU

for(;;) {
if (interrupt) {
n = get interrupt number
call interrupt handler n
¥
IRQ fetch next instruction
run next instruction

_

Address System Bus
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Direct Memory Access (DMA)

CPU:
CPU Program DMA controller by setting
Input and
Rﬁgiﬁg;s, Memory om’,iﬂi (1/0) mem addres.s, Iength_
and Control) Program I/O device to initiate transfer

DMA Controller:
for (length) {
addr on address bus
ontrol Bus data on data bus
mem read/write on control bus

ata Bus

Address Bus

System Bus

I DMA Controller I by
Interrupt CPU when done

* DMA allows CPU to do useful work while transferring
data between disk and memory

* CPU programs DMA controller (or device directly)
* DMA controller gets ownership of the bus
 DMA controller produces mem read/write bus signals
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System Bus

Symmetric Multiprocessors (SMP)

CPU

(ALU,
Registers,

and Control)

Memory

Input and
Output (I/O)

CPU CPU CPU
(ALU, (ALU, (ALU,
Registers, Registers, Registers,
and Control) and Control) and Control)
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ata Bus

Address Bus

Initially, one CPU starts
executing instructions to
initialize system

Thereafter, each CPU
executes independently

Only sharing is through
common memory (data
structures)

Each CPU receives
interrupts independently
through an APIC
(Advanced PIC)
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e OS evolution

e Modern OS structures

e Modern OS abstractions
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OS evolution

* Many outside factors affect OS

* User needs + technology changes =2 OS must
evolve

— New/better abstractions to users
— New/better algorithms to implement abstractions

— New/better low-level implementations (hw
change)

* Current OS: evolution of these things
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The Simplest OS

* If we're running only one program and we don’t
care about maximizing hardware utilization

— Single purpose system
— Don’t need much of an OS
— Program executes instructions, wait for all I/O

* Running multiple programs, still one at a time
— General purpose computers
— OS provides facilities to load programs
— Provides library of commonly used subroutines
— So that everyone doesn’t need to rewrite
— Earliest OS (monitors) were exactly like this
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50-60s: Early mainframes

 Hardware:
— Huge, SSS, slow
— 10: punch card, line printer

* OS (Monitors)
— simple library of device drivers (no resource coordination)

— Human = 0S: single programmer/operator programs, runs,
debugs

— One job at a time

* Problem: poor performance (utilization / throughput)

Machine $SS, but idle most of the time because programmer
slow
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Batch Processing

Batch: submit group of jobs together to machine
— Operator collects, orders, runs (resource coordinator)

 Why good? can better optimize given more jobs
— Cover setup overhead
— Operator quite skilled at using machine
— Machine busy more (programmers debugging offline)

 Why bad?
— Must wait for results for long time

Result: utilization increases, interactivity drops
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Spooling
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Problem: slow I/O ties up fast CPU
— Input =2 Compute =» Output
— Slow punch card reader and line printer

 Edawd A

| EL - > Bl _——— 1=J

card reader line printer

|dea: overlap one job’s |10 with other jobs’ compute

disk

OS functionality [_ j

— buffering, DMA, interrupts — ) ‘L A=,

Good: better utilization/throughput
Bad: still not interactive
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Multiprogramming
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Spooling =» multiple jobs

Multiprogramming 0
— keep multiple jobs in memory, OS
chooses which to run

— When job waits for |/O, switch

OS functionality
— job scheduling, mechanism/policies
— Memory management/protection

Good: better throughput 5 1oM

operating system

job 1

job 2

job 3

job 4

Bad: still not interactive
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Late 60s, early 70s: Timesharing

Many tasks needed better interactivity, short response time

Concept: timesharing
— Fast switch between jobs to give impression of dedicated machine

— Compatible Time-Sharing System (CTSS) was the first time-sharing
system prototype (1966)

— Project MAC followed with MULTICS
— UNIX followed shortly thereafter (1969-74). Still widely used.

OS functionality:
— More complex scheduling, memory management
— Concurrency control, synchronization

Good: immediate feedback to users
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The 80s and 90s PC: turning back time

* Cheap personal computers
 Goal: ease of use, limited hardware
Do not need a lot of stuff

free memory

 Example: DOS
— No time-sharing,

free memory

multiprogramming, process
protection, VM
— Onejob atatime —— :
. . . I comman
— OS is subroutine again interpreter ot
kernel kernel

»

@ (b)
Users + Hardware =» OS functionality
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2000s: PCs come back to the future

1/30/13

PC hardware gets more powerful and users expect more
sophistication

— Want to do many things at once (email, chat, browsing)

— Don’t want bad programs to crash system

— Want to support multiple family members to use (access control)

Windows 95 and variants (Win 98, ME)

— First Windows to use memory protection, poor local protection
Windows 2000, XP, OS X

— More robust isolation mechanisms

— Return to local security

— Multiple users, authentication, access control

Relearn same lessons in the mobile world

— Initially, poor security, no multitasking, no multiple users

— Today, full fledged UNIX variant on most mobile devices
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Operating System Range

Mainframes — vast I/O bandwidth (Unix, VM/CMS)
Clusters — extreme parallelism (Linux, AlIX, Windows)
Servers — utilization (Solaris, Linux, Windows Server)

Desktops — premium on interaction: mouse, graphics
(Windows, Linux, OS X)

Mobile — premium on energy management,
interactivity (i0S, Android)

Embedded systems — sometimes lack memory
protection (VxWorks, Symbian, QNX, Linux)
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Major trends in History

 Hardware: cheaper and cheaper
 Computers/user: increases
* Functionality, capability/size: increases

* Timeline
— 70s: mainframe, 1 / organization
— 80s: minicomputer, 1 / group
—90s: PC, 1 / user
— 00s: mobile, many / user
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Current trends?

 Even larger systems
— Can’t make CPUs any faster (physics)
— Make more of them in the same space
— Multicore (100s of cores)
— How to use efficiently?

* Even smaller systems: e.g. handheld, embedded devices
— New, limited user interfaces
— More sensors
— Energy, battery life

* Reliability, Security
— More features, more devices
— Few errors in code, can recover from failures
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e Modern OS structures

e Modern OS abstractions
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Two popular definitions

* Bottom-up perspective: resource manager/
coordinator, manage your computer’s
resources

* Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use
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OS = resource manager/coordinator

 Computer has resources, OS must manage.

— Resource = CPU, Memory, disk, device,
bandwidth, ...

System Call

o - - -
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OS = resource manager/coordinator (cont.)

* Why good?

— Sharing/Multiplexing: more than 1 app/user to use
resource

— Protection: protect apps from each other, OS from

app
 Who gets what when

— Performance: efficient/fair access to resources

 Why hard? Mechanisms vs. policies
— Mechanism: how to do things
— Policy: what will be done

— ldeal: general mechanisms, flexible policies
* Difficult to design right
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X86 Privileged Instructions

e Examples
— IN, OUT: I/O instructions to protected ports
— STI, CLI: enable, disable interrupts
— SGDT, SLDT: change memory protection tables
— LIDT: change interrupt handler table
— Memory access to protected memory regions
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Privileged Mode Operation

user process
user mode
user process executing —» calls system call return from system call (mode bit = 1)
\ /
A 7
3 V4
kernel trap return
o mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

* Privileged mode can do everything
 User mode is restricted

— 1/0 operations, changing CPU configuration tables,
restricted memory access

* Privileged mode must delegate or implement functions
on behalf of user mode
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OS structure

e OS structure: what goes into the kernel?

— Kernel: most interesting part of OS
* Privileged; can do everything = must be careful
 Manages other parts of OS

e Different structures lead to different

— Performance, functionality, ease of use, security,
reliability, portability, extensibility, cost, ...

* Tradeoffs depend on technology and
workload
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Monolithic

* Most traditional functionality in kernel

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

— signals terminal file system CPU scheduling
g ) handling swapping block I/O  page replacement
2 character I/O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Unix System Architecture
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Modular kernels

* Can dynamically add/change functionality

scheduling
device and classes
bus drivers

core Solaris
miscellaneous kernel
modules
STREAMS executable
modules formats

Solaris modules. Linux also supports kernel modules.

loadable
system calls
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Microkernel

* Move functionality out of kernel

Application File Device user
Program System Driver mode

messages h ' messages

CPU
scheduling

memory
managment

kernel
mode

Interprocess
Communication

. microkernel 4

hardware

Microkernel handles interrupts, processing, scheduling, IPC
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Virtual machine

* Export a fake hardware interface so that
multiple OS can run on top

processes

processes

processes processes

programming/ i i i

‘ ' interface kernel kernel kernel

VM1 VM2 VM3

virtual-machine
implementation

hardware

kernel

hardware

(@) (b)

Non-virtual Machine Virtual Machine
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Outline

e Modern OS abstractions
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Two popular definitions

* Top-down perspective: hardware abstraction
layer, turn hardware into something that
applications can use
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OS = hardware abstraction layer

e “standard library” “OS as virtual machine”
— E.g. printf(“hello world”), shows up on screen
— App issue system calls to use OS abstractions

* Why good?
— Ease of use: higher level, easier to program

— Reusability: provide common functionality for reuse
* E.g. each app doesn’t have to write a graphics driver

— Portability / Uniformity: stable, consistent interface,
different OS/ver/hw look same

* E.g. scsi/ide/flash disks

 Why hard?
— What are the right abstractions ?
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OS abstraction: process

* Running program, stream of running
instructions + process state

— A key OS abstraction: the applications you use are
built of processes
* Shell, powerpoint, gcc, browser, ...

* Easy to use

— Processes are protected from each other
* process = address space

— Hide details of CPU, when&where to run
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OS abstraction: address space

e Contiguous array of bytes
— Abstraction for RAM, not persistent across reboot
— Easy way to store and access temporary data
— Hide details of architecture, e.g., caches
— Hide details of who else is sharing memory

* Everybody gets the same layout
— Same code in same position in memory

— Makes it easy to share library code
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OS abstraction: file

* Array of bytes, persistent across reboot

— Nice, clean way to read and write data

— Hide the details of disk devices (hard disk,
CDROM, flash ...)

* Related abstraction: directory, collection of
file entries
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Process communication: pipe

* int pipe(int fds[2])
— Creates a one way communication channel
— fds[2] is used to return two file descriptors
— Bytes written to fds[1] will be read from fds|0]

e Often used together with fork() to create a
channel between parent and child
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OS abstraction: thread

“miniprocesses,” stream of instructions +
thread state

— Convenient abstraction to express concurrency in
program execution and exploit parallel hardware

for(;;) {
int fd = accept_client();
create_thread(process_request, fd);

)

— More efficient communication than processes
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Implementing abstractions

* |Indirection
— Don’t access resource directly, but through a pointer
— Can change pointer to point to a different resource
— Can access only those things to which we have a pointer

— E.g., address space translates to physical memory through
a set of mapping “page” tables

— May need hardware support for performance

* Resource management — managing pointers
— If we can change resources that pointer points to...
— Need to decide who gets what resource (allocators)
— Need to track who has what resource (accounting)
— Need to make pointer dereferencing efficient (e.g., caches)
— This is where most of the complexity is
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Next Class

e Qur first OS abstraction
— The process
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