What is an OS?

Software that converts this: into this:

From Computer Desktop Encyclopedia
© 2001 The Computer Language Co. Inc.
What does an OS do?

• Government
 – Always running
 – Does the things programs can’t do for themselves
• Traffic cop
 – Arbitrate resource usage between competing interests
• Security guard
 – Prevents bad actors from harming others
• Assistant
 – Provides services and abstractions to hide complexity and make programmer’s life easier
• The face of the machine
 – Facilitates interface to the user
What does an OS do?

• Support multiprogramming
• Resource allocation
• Isolation
• Abstraction
• Shared facilities and libraries
Resources

• An OS usually multiplexes at-least the following resources
 – CPU
 – Memory
 – Disk space
 – I/O bandwidth
 – Network bandwidth
 – Access to devices
 • Display, Keyboard, Audio

• In this class, we will learn how
Resource Allocation

• We will learn how access to resources is arbitrated through the following OS functions
 – CPU scheduling
 – Memory management
 – Disk scheduling
 – I/O scheduling

• Strive to share fairly among multiple users
 – But what’s a user?
 – And what’s fair?
Isolation

• Prevent one user from interfering with another user’s data
 – Other users’ files
 – Other users’ traffic
 – Other users’ private data structures

• Prevent users from monopolizing resources
 – Starve other users from CPU or bandwidth
 – Denial of service

• Protect the OS itself
 – From attempts to subvert its isolation mechanisms
And finally, we will learn about the following OS abstractions:

- Processes
- Virtual memory
- Threads
- Locks
- File systems
- Communication channels
That’s it? What about xxx?

• Modern OSes are big. They provide many services. E.g., a window manager, compilers, media players, browsers

• But what’s really part of the OS?
 – No single answer, even in the same OS family
 – Okay, then what’s the minimal common subset?

• The kernel
 – Core piece that runs with special privileges
 – Enables higher level services
 – We’ll focus on that in this course
How will we learn about OSes?

• General concepts
 – OS principles from the textbook
 – Evaluated through homeworks and quizzes

• Hands on experience
 – Android Mobile OS
 – Based on the Linux kernel
 – Code that runs on 100s of millions of phones
 – We’ll run it in a full system emulator
 – Programming assignments change the kernel
 – Add new functionality
About me

• Dr. Kaustubh Joshi (KJ)
 – Pronounced “cow” + “stub”
 – Forget the ‘h’!
• I’m an adjunct professor
 – Which means I have a day job
 – My availability in the department is extremely limited
 – Office hours only
• Principal researcher at AT&T Shannon Labs
 – Florham Park, NJ and downtown NYC
 – Work on dependable large scale distributed systems
 – Data centers, the phone network
 – Currently, work on future cellular network architectures
 – How phone OSes and networks can co-operate better
Caveat Emptor!

• I don’t know the usual workload of your other classes
 – Tried to keep the structure similar to previous years

• This class is intense
 – You will be doing a lot of coding
 – Working on kernels is hard and time consuming
 – Do not take it if you aren’t really interested
 – I’ve been told there are alternatives

• But ... hopefully rewarding
 – Real kernel hacking
 – Work with Android
 – A feeling of accomplishment
 – Valuable job skills
Prerequisites

• W3827: Computer Architecture
• W3137: Data structures and algorithms
• Unix toolchains: diff, make, gcc, etc.
• Can program in C, shell scripts
• Aren’t intimidated by a lot of (others) code
• We’re working with the Linux kernel
• No Java, Python, etc.
• If you don’t know C, don’t take the class
• Finally, lots of time
Logistics

• Class website
 - Website is your first stop for everything
 - Will be using Courseworks only for grades and possibly coordinating demos

• Class Forum
 - Through Piazza
 - https://piazza.com/class#spring2013/comsw4118
 - If you haven’t been signed up already, do so now
 - All questions should be directed through the forum
 - Use forum to self-organize into project groups (later)
Personnel

• Instructor:
 – Office hours: Mon 4-5pm, Adjunct office CS457
 – Contact information on class site
 – Talk to TAs first, get in touch with me after

• TAs:
 – Angela Wei, acw2163
 – Jiao Li, jl3931
 – More coming soon...
 – Check website for office hours
Required Textbooks

 – Both books available via Amazon
 – Rental or sale. Kindle editions are also available
 – Make sure you have the right edition
 – Written homeworks will reference problems from the Concepts book
 – Older book with some kernel details out of date
 – But, a lot more detail than LKD
Lectures

• Course outline and reading assignments from Concepts and LKD are on the course website.
• Will upload slides to course website after class
 – I don’t want laptops and distractions
 – I don’t want peeking
 – I realize you may want to take notes on slides
 – This may change depending on class dynamics…
• Reading assignments and topic ordering may change. Check website often.
Grading

- 50% Assignments
- 20% Midterm
- 30% Final
- I have no idea what to expect
- So, you should expect a curve
- It’s a intense course – I won’t be brutal
- Regrading requests to TAs within two weeks of grade being made available. Contact me only if you can’t resolve the matter with the TA.
Homework

• Lots of it…
• 5 assignments
• Count for 50% of your grades
• Each assignment will have a written and a programming part
• All assignments count towards grade
Written Assignments

• Usually count for 40% of each homework
• To be done individually
• Submit electronically by 12:01 AM the day of the due date, i.e., midnight before class day
• Homework received later that day loses 10% credit, thereafter zero credit
• No exceptions other than a letter from dean or a doctor’s note
Programming Assignments

• Each homework will have a programming assignment
• Usually worth 60% of the grade
• First assignment is individual
• Thereafter, in groups of 3
• Form your groups by Feb 4 using the
• Thereafter, I will fill in the blanks
• You will need a CLIC account
• First assignment to be done on Unix environment
• Subsequent assignments involve modifying the Android kernel
• Testing will be done using the Android emulator
• We will provide environment with the appropriate tools
• Grading will be done on CLIC machines
• If your code doesn’t compile or run there, expect a zero
• You can also use your own laptops – your own on your own if you run into trouble, but we will provide pointers to help you get started
• Working with kernels is hard
• Long code/test cycle. Have to wait to boot. Android emulator is especially slow
• Hard to debug
• May feel like pulling your hair out at times...
• ...remember, it doesn’t grow back
• Compile incrementally
• printk is your friend
• Using the emulator helps
The Android Emulator

• We’ll run it in a virtual machine
• The emulator itself implements the entire processor in software using qemu
• This means you can use GDB
Unsupported but recommended

• If you feel adventurous...

• Get an Android Nexus tablet!
 • http://www.google.com/nexus/7/
 • Reasonably priced - $199 onwards
 • Put your code on it. You’ll learn a lot
Exams

• Both exams will be closed book, laptop, phone, tablet, etc.
• Old fashioned calculators are okay
• No calculator apps
Honesty

• Read the class website honesty policy
 – You know all this already
• General discussion (through forum) is good
• Your work must be your own, or your group’s, in the case of group assignments
 – Don’t use answers or code you got from your friends or found on the internet
 – Explicitly cite all your sources
• There will be zero tolerance for cheating
 – First offense gets a significant grade downgrade
 – Repeaters or egregious offenses will fail the class and be reported for further disciplinary action
Expectations

• You’re all adults
 – We’ll make the homeworks as detailed as possible
 – But we won’t spell out all the details
 – You’ll need to fill in the blanks
 – And make sound engineering decisions
 – You’ll be evaluated on that

• I’m new at this
 – If something is missing I won’t know unless you tell me
 – If you notice any mistakes, speak up
 – If you have any suggestions or feedback about what would make the class better, get in touch
• Homework #1 out on website today
• You’ll be programming in a Unix environment
• You’ll be writing a simple shell
• We’ll be testing your programming skills
• Get a CS account (http://crf.cs.columbia.edu) ASAP if you don’t have one already
• Not having an account isn’t an excuse for late submission
• Have fun…