
GloServ: Global Service Discovery Architecture

Knarig Arabshian and Henning Schulzrinne
Department of Computer Science

Columbia University, New York, NY
{knarig,hgs}@cs.columbia.edu

Abstract

Due to the growth in ubiquitous computing technology in
the past few years, the need for context-aware service dis-
covery across wide area networks is becoming prevalent.
We propose GloServ, which is a global service discovery
architecture that locates services throughout wide and lo-
cal area networks. It supports services encompassing dif-
ferent domains such as events, people or places. Services
can be described semantically using the Resource Descrip-
tion Framework (RDF) and can be queried using the RDF
Query Language (RQL). GloServ hierarchically defines ser-
vices using RDF schemas and assigns each service a URI
according to its location within the hierarchy. The hierar-
chical architecture for GloServ is similar to how domain
names are categorized in DNS. Service discovery can either
be initiated by the user or by the system. For automated
service discovery, users are detected with sensors and are
presented with services available according to their prefer-
ences. Graphical user interfaces for querying data is dy-
namically generated through the processing of RDF data.

1 Introduction

GloServ is a global service discovery architecture that
addresses the need for wide area service discovery for ubiq-
uitous and pervasive computing. It operates on wide area as
well as local area networks. Any type of service is handled
which may include events, location-based services, commu-
nication or web services.

There are many different scenarios global service dis-
covery systems are useful in. Imagine an avid traveller who
is interested in different events or services that are taking
place in a particular city. A New Yorker visiting Paris, for
instance, wants to be notified of all the concerts taking place
in Paris. When he lands in the airport, his device will issue
a query pertaining to his preference, such as classical mu-
sic concerts, and then try to locate classical concerts in that
area. Another example would be of a doctor visiting another

hospital who wants to discover different medical services.
The doctor issues a query and obtains the types of services
she is interested in automatically.

A few characteristics of GloServ distinguish it from
other service discovery systems. It can apply to different
service contexts or networking environments because ser-
vices can be defined and described in a flexible hierarchical
ordering using the Resource Description Framework (RDF)
[5] [14]. The hierarchical architecture for GloServ is also
similar to how domain names are categorized in DNS [17].
This results in efficient administration and querying of ser-
vices as well as scalability. Additionally, GloServ provides
dynamically generated user interfaces for Service Agents
who want to register to the system as well as for users who
want to query events through automated processing of RDF
documents. Consequently, with this user interface, registra-
tion and querying is done with greater speed and accuracy.
Security is also taken into account as services providers are
verified by authoritative bodies.

Below we describe the different components of GloServ
in detail. Section 2 gives an overview of related service dis-
covery mechanisms. Context-aware service discovery using
RDF is discussed in Section 3. The proposed architecture
for GloServ is described in detail in Section 4. Finally, our
current implementation is discussed in Section 5.

2 Related Work

Service discovery protocols in use today include
SLP [13], standardized by the IETF, Sun Microsystem’s
Jini [16], and Microsoft’s UPnP (Universal Plug and Play)
[12]. Additionally, [19] describes an Internet telephony
gateway location protocol for voice over IP applications.
This protocol architecture called Brokered Multicast Adver-
tisments (BMA) addresses the problem of an IP host finding
the IP address of the appropriate gateway in order for a call
to be made to a user on the PSTN. These service discovery
protocols have various similarities and differences. We will
look at a few of these protocols briefly in this section.

SLP has three main components:User Agents (UA)

1

which perform service discovery on behalf of a client,Ser-
vice Agents (SA)which advertise location and characteris-
tics of the service on behalf of the service, andDirectory
Agents (DA), which are optional, record available services
and also respond to service requests from UAs. In SLP,
there are two modes of operation which depend on the exis-
tence of the DA. If a DA exists, it records all the information
which is advertised by the SAs. UAs then learn of services
available by unicasting their requests to the DA. However,
in the case where a DA does not exist, UAs repeatedly mul-
ticast the same request that they would have unicast to the
DAs. SAs listen to these multicast requests and send unicast
responses to the UA in case of a service match. The pres-
ence of a DA allows for fewer or no multicast messages uses
of less bandwidth. The UAs also receive faster responses
and thus DAs are usually used in larger networks. Services
are advertised and registered using a service URL and a list
of service attributes.

Jini is built on top of the Java object and RMI system.
Service registries, similar to SLP’s DAs, are used to register
service proxy objects and act as lookup services. Through a
discovery process, a client downloads the service proxy and
invokes it to access the service. The Java class hierarchy
defines services and their attributes.

UPnP differs from SLP and Jini in that it doesn’t have
a central service registry but services just multicast their
announcements to control points that are listening to these
messages. Control points can also multicast discovery mes-
sages and search for devices within the system. XML de-
scribes the services in greater detail.

SLP and Jini can cover small networks as well as larger
enterprise networks whereas UPnP is appropriate for home
or small office networks. The query languages for SLP
and Java are simple text-based attribute-value pairs. UPnP
provides more descriptive queries through XML. The main
drawback to these systems is that they do not cover a wide
area network that spans the whole Internet, but rather they
are limited to a certain vicinity such as home or enter-
prise networks. SLP and Jini also provide simpler query-
ing mechanism which do not give enough flexibility to the
system. GloServ addresses these issues by functioning in
both the wide area as well as detailed querying. For ex-
ample, users can search for museums that exhibit Vermeer
paintings in New York City.

3 Context-aware Service Discovery using
RDF and RQL

Currently, in service discovery systems, attributes are
represented as simple name-value pairs. This limits the abil-
ity of the user to search according to its current context by
issuing a descriptive query. With the use of RDF, services
can be categorized hierarchically where the attributes are

described in detail and defined flexibly with RDF schemas.

3.1 RDF

RDF, developed by the World Wide Web Consortium
(W3C), is a language for representing information about re-
sources in the World Wide Web. It is based on URI [7]
and XML [8] technologies. It was designed to represent
metadata about Web resources, such as title or author of a
Web page. However, the concept of a “Web resource” has
been generalized to include any type of information that can
be identified on the Web. RDF is used in situations where
information about Web resources needs to be processed by
applications. Because of its uniformity, applications can de-
ploy RDF parsers and processing tools in order to exchange
this information between applications.

RDF is based on the idea of identifying things using
URIs and describing resources in terms of simple properties
and property values. RDF is represented in triplets: (subject
predicate object). Figure 1 drawn from [15] describes
an RDF code and its corresponding graph. One triplet
is: (<http://www.www.w3.org/TR/rdf-syntax-grammar>
<http://purl.org/dc/elements/1.1/title> “RDF/XML Syntax
Specification(Revised)”). The other triplet illustrates a
graph that has no URIref and is a blank node which
constructs a hierarchy of different levels. A blank node
represents something that does not have a URIref, but can
be described in terms of other information. In this case,
the blank node represents a person, the editor of the doc-
ument, and the person is described by his name and home
page. The semantics of the following graph is as follows,
“the document ’http://www.www.w3.org/TR/rdf-syntax-
grammar’ has a title ’RDF/XML Syntax Specification
(Revised)’ and has an editor, the editor has a name ’Dave
Beckett’ and a home page ’http://purl.org/net/dajobe/’ ”.
Thus, RDF represents the semantics of different URIs on
the Web in a flexible yet descriptive manner.

3.2 RDF Schema

The RDF schema [9] is RDF’s vocabulary description
language that provides a type system for RDF. This is sim-
ilar in some ways to type systems of object-oriented pro-
gramming languages such as Java. For example, as in Java,
RDF schema allow resources to be defined as instances of
one or more classes which contain properties. Properties
can define the domain and range of classes. The domain of
a property is the class that the property belongs to and the
range is the type of values the property can take on.

The mapping of the RDF schema to the RDF document
is as follows: Classes are mapped to the “subject” and Prop-
erties to the “predicate”. Although this is not mandatory,
it helps to understand the concept of how RDF schemas

2

http://www.example.org/terms/fullNamehttp://www.example.org/terms/homePage

http://purl.org/dc/elements/1.1/titlehttp://www.example.org/terms/editor

Dave Becketthttp://purl.org/net/dajobe

RDF/XML/Syntax Specification (Revised)

http://www.w3.org/TR/rdf−syntax−grammar

Figure 1. Example of RDF message and cor-
responding graph

work with RDF documents. Figure 2 shows an example
of how an RDF schema relates to an RDF document. The
class “Restaurant” has properties “Rating” and “Cuisine”
and in the RDF document, “Restaurant” is the subject while
“Cuisine” and “Rating” are the predicates. The proper-
ties “Cuisine” and “Rating” have their domains set to the
class “Restaurant” while their range is of type “Literal”.
This means that these properties can be applied to the class
“Restaurant” and their values will be of type “Literal”. A
property can have more than one domain defined within it
which makes the class-property relationship many to many.
In this respect, RDF classes and properties differ from pro-
gramming language types.

3.3 RQL

Various query languages have been developed to query
RDF. These are similar to a database query and extract rel-
evant information of a particular RDF message. Two such
languages are RDF Query Language (RQL) [21] and RDF
Data Query Language (RDQL)) [22]. RQL is a typed func-
tional language, whereas RDQL is an implementation of an
SQL-like query language for RDF.

The main feature of RQL that sets it apart from other
RDF query languages is that it has richer capabilities such
as allowing schemas to be discovered. It can find the de-
scription of resources such as the classes under which the
resource URL is classified. This gives greater automa-
tion for semantic processing and querying. If a user wants
to know what class of services a certain URL belongs to,
GloServ can present it to the user with a specific query in
RQL. It can also perform direct querying of triples of RDF
where given either two of the subject, predicate or object
values, the third one is returned

Figure 3 shows how a basic RQL query is formed. The

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#">

 <rdfs:comment>"A dining establishment"</rdfs:comment>
 <rdfs:label>Restaurant</rdfs:label>

 </rdfs:Class>

<rdfs:Class rdf:ID="Restaurant">

<rdf:Property rdf:ID="Rating">

 </rdf:Property>
 <rdfs:range rdf:resource="#Literal" />
<rdfs:domain rdf:resource="#Restaurant"/>

<rdf:Property rdf:ID="Cuisine">
 </rdf:Property>

 <rdfs:range rdf:resource="#Literal" />
<rdfs:domain rdf:resource="#Restaurant"/>

<?xml version="1.0" ?>

 </rdf:RDF>

<rest:Restaurant rdf:about="http://restaurant.service.ny.ny.us/PatsPizza.html">

 </rest:Restaurant>

xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#">
xmlns:rest="http://gloserv.com/restaurantSchema#">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
<?xml version="1.0" ?>

 </rdf:RDF>

 </rest:Restaurant>

<rest:Restaurant rdf:about="http://restaurant.service.ny.ny.us/Chinese.html">
 <rest:Cuisine>Chinese</rest:Cuisine>

 <rest:Rating>6</rest:Rating>
 <rest:Cuisine>Italian</rest:Cuisine>

Figure 2. Example of RDF Schemas applied
to RDF document

first query is searching for the rating of the PatsPizza restau-
rant. RQL queries can go down many levels of the hierar-
chy. In our example, we only show one level. Further exam-
ples of querying Classes and Properties are seen in the sec-
ond and third queires. The second query, determines which
classes appear as the domain and range of property “Rat-
ing”. The results show that the domain is “Restaurant” and
the range is “Literal”. The third query finds all the proper-
ties that are defined on class “Restaurant”. That query re-
turns “Rating” and “Cuisine”. Class and Property variables
are represented with $ and @ signs respectively.

The Lightweight Directory Access Protocol (LDAP)
[24], which is used to search directories, may be used for
structuring services and querying for them. The main dif-
ference between LDAP and RDF/RQL is that RQL gives
the ability to query schemas whereas in LDAP this is not
possible. Also, the tree structure is not mandatory in RDF
whereas in LDAP it is.

It can be seen from the examples provided that RQL pro-
vides a rich set of querying techniques. There are many
other different forms of querying in RQL that are beyond
the scope of this paper.

3

=>Result Y=6

where X = "http://restaurant.service.ny.ny.us/PatsPizza"
from {X}rating{Y}
select Y

=>Result: Rating, Cuisine
where domain(P) = Restaurant
from Property{P}

select @P from {;Restaurant}@P

select P
OR

OR

=> Result: $X= Restaurant, $Y = Literal
select X, Y from Class{X}, Class{Y}, {;X}Rating{;Y}

select $X, $Y from {$X}Rating{$Y}

Figure 3. Example of RQL queries

4 GloServ Architecture

4.1 Service Hierarchy

The GloServ architecture is similar to DNS in that it con-
tains root name servers and authoritative name servers that
manage the information of services. We envision that a sep-
arate classification system similar to North American Indus-
try Classification System (NAICS) [1] classifies the hierar-
chy of services and establishes RDF schemas that describe
each type of service. An authority such as ICANN [2] dele-
gates the top level services and events to individual root and
authoritative Name Servers. The service categorization is
similar to yellow pages directory. Although the categories
may change from time to time, they are not expected to
change drastically or frequently, which gives us the ability
to pre-define the service hierarchy and implement caching
in local user agents.

Possible high-level categories for name servers are:
events, services, people, or places. The hierarchy goes
down all the way to the leaves, which represent the Service
Agents. Service Agents (SAs) provide the particular ser-
vices by registering with GloServ and being inserted into
a particular point in the hierarchy as described in the next
section.

We have chosen to use URNs (Uniform Resource
Names) to reference services in GloServ. One reason for
this is that services registered in GloServ may support dif-
ferent types of protocols such as HTTP [11], SIP [20] or

others. Therefore, it makes sense to label a service with a
name and let each service itself handle the type of proto-
col mechanism. There can be a general resolution service
that maps each service to a list of protocols. The mapping
of protocols to services has not been fully researched as of
yet.

The URN of a name server is formed according to the hi-
erarchy of the service. We assume that GloServ constructs
a hierarchy of services either by location, category, or both.
Location-based services have their civil geographical loca-
tion within the URN to indicate where the particular service
is taking place. However, there may very well be services
or events that are virtual and not based on a particular lo-
cation such as in calendar events, which are based on time.
We assume both type of hierarchies can exist due to ad-
ministration and management issues. It is highly unlikely
that the maintenance and breakdown of location-based ser-
vices in the United States, such as restaurants or concerts,
will be the same as that in Italy. To have a generic URN
such asurn:gloserv:concert.eventfor concert events which
is managed by one type of global organization, will be too
complicated and hence unrealistic in a real-world scenario.
Therefore, we assume that both types of hierarchies can ex-
ist and we leave the administration aspect to the various or-
ganizations within that country.

The hierarchy of location-based services can be con-
structed either by specifying the service first or the lo-
cation. For example, classical music concert servers
located in New York City can be specified either by:
urn:gloserv:classical.concert.event.newyork.ny.us or by
urn:gloserv:newyork.ny.us.classical.concert.event. The
gloserv URN Namespace Identifier (NID) is registered with
IANA and specifies global services. The remaining Names-
pace Specific String (NSS) demonstrates the hierarchy of
the service where the top-level name server is either .event
or .us. Figure 4 illustrates the hierarchy of GloServ.

The hierarchy of the services is defined with RDF
schemas as we discussed in Section 3 for every level within
the hierarchy. Every name server within the hierarchy will
have its own RDF schema store which describes all the ser-
vices of its children. Name servers also manage generic
registration where new Service Agents can register to and
be added to GloServ. GloServ differs from DNS in this
respect because instead of having zone files, it uses RDF
which not only maps a service to a URN, but also describes
each service’s properties in greater detail. The addition of
services and how RDF stores are managed is described in
greater detail below.

We have adopted a similar scheme to DNS in construct-
ing our architecture because it provides scalability. Descrip-
tive URNs of name servers, allow User Agents to perform
service querying with greater speed and efficiency. The
UAs will be aware of the different levels of the hierarchy

4

medical.event restaurant.service

classical.concert.event jazz.concert.event

concert.event

event service

Figure 4. Example of a GloServ hierarchy of
Name Servers

of and query directly for a service.

4.2 Service Registration

GloServ has a Services Registry that records all the ser-
vices in an RDF schema hierarchically and multiple Reg-
istrars that handle registration for different service types.
There are various options for running registrars in GloServ.
There may be a single authoritative registrar for one type
of service such as “restaurant” or multiple competing reg-
istrars. Registration can either be free, require a fee, by
membership in some organization, or by a government li-
cense. Free registrations will probably be issued in smaller
networks where the registrar is controlled by a network ad-
ministrator and all services are pretty much trustworthy. On
the global scale, however, registration can be more complex.
Registrars will most probably require a fee for commercial
service providers. This makes sense as service providers
will have no incentive to lie about the type of service they
provide if they are paying for the service. There may also
be multiple registrars for a particular service where regis-
trars compete with one another to store services informa-
tion and provide different rates, similar to how Internet Ser-
vice Providers work today. Certain service providers may
need government licenses such as doctors, emergency ser-
vices or plumbers. Service providers will also be verified by
Verification Servers, which take in digital signatures of po-
tential registrants and verify that they are legitimate service
providers. A Verification Server will have a list of certified
digital signatures for every service type. If the registrant’s
digital signature hashes to the digital signature of its pro-
posed service, then it will be verified, otherwise it will be
rejected.

A similar protocol to IRIS (The Internet Registry Infor-
mation Service) [18] can be adopted for registrars. IRIS is

an application layer client-server protocol that establishes a
framework for representing the query and result operations
of the information services of Internet registries. It specifies
this information using XML schemas. Since GloServ will
have many different type of Registrars and possibly differ-
ent methods of registrations, incorporating a protocol simi-
lar to IRIS where every registrar can specify its registration
mechanism using a schema will be helpful. This is currently
an area of research we are looking into.

We have chosen a web interface for service registration.
However, we have separated our architecture so that the user
interface can be independent of the backend architecture.
The registration web form consists of three main parts. The
first part displays the hierarchy of the services. The SA
administrator checks the place within the hierarchy that it
wants to register in. The second part is the security section
where the SA enters its digital signature that verifies that it
really does provide the service it claims to. Digital signa-
tures are given out by the Verifying Authority Servers that
authenticate service providers. These servers may be han-
dled by governmental or private administrative bodies. The
registration server verifies the SA by first authenticating it
with a verifying authority server. The third part of the form
is where the SA’s RDF data is entered. Once the registrar
verifies the SA, it sends the RDF data to the name server
that manages that type of service. The name server stores
the RDF data of that SA in its database.

For example, a classical concert event Service
Agent in New York City would register with GloServ
by specifying that it wants to be inserted under the
urn:gloserv:classical.concert.event.newyork.ny.us
authoritative name server. The
urn:gloserv:classical.concert.event.newyork.ny.us name
server adds the RDF data to its RDF store. The Service
Agent will have its own RDF store describing all the
services that it provides.

4.3 Querying with local User Agents

This brings us to the querying portion of GloServ.
Queries are issued by local User Agents (UAs). These UAs
hold a copy of the hierarchy of Service Agents in their
RDF store similar to the registration servers. This infor-
mation is cached and periodically renewed to update any
changes within the hierarchy. When a user issues a query,
it is automatically connected to a local user agent. The lo-
cal UA, like the registrar, has a cached copy of the hierar-
chy of services in an RDF store, which it periodically re-
news. The main function of the local UA is to query for
services on behalf of the user. When a user enters into
a room equipped with the GloServ system, it is presented
with a form which displays all the categories of services
offered. Information about the services is generated from

5

the cached RDF data. Once the user chooses what type of
service it wants, the UA connects to that name server and
queries for the service. The UA finds the name server sim-
ilar to the way the SA finds it. It can either directly query
for it in the Services Registry or generate a URN and try
out first the generic URN for services not based on location
and then the concatenated URN of a service and the current
location. If a user wants to query for restaurants in New
York City, the UA can obtain the registration information
of restaurants from the Services Registry and realize that it
is a location-based service. However, it can also choose
to issue a query to both:urn:gloserv:restaurant.service
andurn:gloserv:restaurant.service.newyork.ny.us. One of
these servers will respond and the UA establishes contact
with the correct name server. The UA then obtains from
the name server RDF metadata that describes the various
parameters that the user has to fill out in order to form
an RQL query to search the database of that particular
SA. This metadata is generated into a form. The meta-
data is a set of RDF files that describes the user interface
of the various properties that can be queried. This is illus-
trated in the scenario where a user is searching for Italian
restaurants in New York City. The local UA connects to
the urn:gloserv:restaurant.registrar.service.newyork.ny.us
server and obtains metadata, generates the GUI and formu-
lates the query for the particular restaurant. The user enters
the information it wants to query for by filling out the form.
The local UA formulates an RQL query automatically and
sends it to thegloserv:restaurant.service.newyork.ny.us
server. When a user queries for events, the local UA can
also subscribe the user to the particular event in which case
the user will then receive notifications from the event agent.
However, for the purpose of this paper, the event subscrip-
tion is not discussed.

4.3.1 Context-aware Querying

There may be additional functionality added on to devices
where a device may recognize the GloServ system and au-
tomatically issue a query pertaining to a user’s preference.
For instance, a traveler entering into an airport is interested
in different touristic events taking place in that city. He may
want to have his preferences stored in the device he is us-
ing so that the an automatic query can be issued without the
user continually entering information about his preferences.
The device will first have to recognize that the user is in an
airport setting and once it knows that the context of the user
is “travel” it will issue the queries that pertain to his travel
preferences. Different devices, such as, IR/RF badges or
Pocket PCs, can be used to store user information and to
query for services.

This functionality can either be part of GloServ or it can
be integrated within another context-aware system. Since

GloServ is a service discovery architecture, it is better
to separate this functionality and let another system han-
dle the automated issuing of queries. [6] describes a
ubiquitous computing system using SIP. It builds on CIN-
EMA (Columbia InterNet Extensible Multimedia Architec-
ture) [23] infrastructure and uses SLP for service discovery.
This system can be integrated with GloServ where instead
of issuing SLP queries, it can issue GloServ queries and
provide the user with a context-aware environment.

5 Implementation and Future Work

We are currently implementing a prototype version of
GloServ. We have chosen to use Sesame [10] for creating
and storing RDF records. Sesame is an experimental RDF
store which implements different protocols in its queries,
such as HTTP, Java RMI and SOAP. Other protocol han-
dlers can also be added quite easily. Sesame also provides a
Java API for RDF parsing and database management. It also
provides a web interface to manually update RDF stores by
adding, deleting or editing RDF entries.

In our previous work, we created a generic event noti-
fication system using the Session Initiation Protocol (SIP)
and XML messages [4]. XML schemas that describe the
parameters of an event were processed to automatically gen-
erate graphical user interfaces for the subscriber to input his
information.

We are adopting a similar method in our implementation
for GloServ. We use the RDF schemas to generate the user
interface for registration and querying. Currently, we are
implementing the registration functionality of GloServ. We
are also looking into using OWL [3] for automated registra-
tion and service discovery. OWL and RDF are much of the
same thing, but OWL is a stronger language with greater
machine interpretability than RDF. OWL also comes with a
larger vocabulary and stronger syntax than RDF which may
be useful for describing services within a hierarchy.

6 Conclusion

We have described GloServ, a global service discovery
architecture that functions both on an wide area as well as
a local area network. GloServ applies to a broad range of
services since services are defined flexibly with the use of
RDF schemas. It also administers automatic and sophisti-
cated querying using RDF and RQL. Querying can either
be done manually or automatically using sensor technology
which results in a seamless discovery of services.

7 Acknowledgement

This work is supported by a grant from Nokia Research.
We would also like to acknowledge the contributions of

6

Dirk Trossen and Dana Pavel from Nokia Research.

References

[1] North American Industry Classification System
http://www.naics.com.

[2] Internet Corporation for Assigned Names and Num-
bers http://www.icann.org.

[3] OWL http://www.w3.org/2004/OWL/.

[4] K. Arabshian and H. Schulzrinne. A generic event
notification system using XML and SIP. InNew York
Metro Area Networking Workshop 2003, Sept. 2003.

[5] D. J. Beckett and B. McBride. RDF/XML syntax
specification (revised). W3c proposed recommenda-
tion, World Wide Web Consortium, Dec. 2003.

[6] S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu.
Ubiquitous computing using SIP. InACM NOSSDAV
2003, June 2003.

[7] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifiers (URI): generic syntax. RFC 2396,
Internet Engineering Task Force, Aug. 1998.

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and
E. Maler. Extensible markup language (XML) 1.0
(second edition). Technical report, Oct. 2000.

[9] D. Brickly and R. Guha. Rdf vocabulary description
language 1.0: Rdf schema. W3c proposed recommen-
dation, World Wide Web Consortium, Feb. 2004.

[10] J. Broekstra and A. Kampman. Sesame: A generic
architecture for storing and querying RDF and RDF
schema. Technical report, Aidministrator Nederland,
Oct. 2001.

[11] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk,
L. Masinter, P. J. Leach, and T. Berners-Lee. Hyper-
text transfer protocol – HTTP/1.1. RFC 2616, Internet
Engineering Task Force, June 1999.

[12] U. Forum. UPnP device architecture 1.0. Technical
report, Dec. 2003.

[13] E. Guttman, C. E. Perkins, J. Veizades, and M. Day.
Service location protocol, version 2. RFC 2608, Inter-
net Engineering Task Force, June 1999.

[14] O. Lassila and R. R. Swick. Resource description
framework (RDF) model and syntax specification.
W3c recommendation, World Wide Web Consortium,
Feb. 1999.

[15] F. Manola, E. Miller, and B. McBride. RDF primer.
W3c proposed recommendation, World Wide Web
Consortium, Dec. 2003.

[16] S. Microsystems. Jini architectural overview. Techni-
cal report, 1999.

[17] P. V. Mockapetris. Domain names: Concepts and fa-
cilities. RFC 882, Internet Engineering Task Force,
Nov. 1983.

[18] A. Newton. IRIS - the Internet registry information
service (IRIS) core protocol. Internet Draft draft-ietf-
crisp-iris-core-04, Internet Engineering Task Force,
Oct. 2003. Work in progress.

[19] J. Rosenberg and H. Schulzrinne. Internet tele-
phony gateway location. InProceedings of the
Conference on Computer Communications (IEEE In-
focom), pages 488–496, San Francisco, California,
March/April 1998.

[20] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R.
Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: session initiation protocol. RFC
3261, Internet Engineering Task Force, June 2002.

[21] M. Scholl, editor. RQL: A Declarative Query Lan-
guage for RDF. WWW, May 2002.

[22] A. Seaborne. JENA tutorial a programmer’s introduc-
tion to RDQL. Apr. 2002.

[23] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and
H. Schulzrinne. CINEMA: columbia internet exten-
sible multimedia architecture. technical report CUCS-
011-02, Department of Computer Science, Columbia
University, New York, New York, May 2002.

[24] M. Wahl, T. Howes, and S. E. Kille. Lightweight di-
rectory access protocol (v3). RFC 2251, Internet En-
gineering Task Force, Dec. 1997.

7

