
Distributed Context-aware Agent Architecture for Global
Service Discovery

Knarig Arabshian and Henning Schulzrinne1

Abstract. We present a novel distributed context-aware service
discovery system that is built on top of a global service discovery
architecture, GloServ. A context ontology maps context attributes
to service classes within GloServ. Context-aware agents are dis-
tributed globally and map combinations of context attributes to spe-
cific GloServ queries. These agents also record history of context
combinations in order to provide services to those users who can
specify their context, but are not aware of appropriate services within
their environment. We discuss the details of the architecture, the al-
gorithms for mapping context attributes to services, and the details
of the protocol.

Keywords: Context-aware computing; pervasive computing; ser-
vice discovery; ontologies

1 Introduction

In our previous work, we describe a novel global service discov-
ery architecture that is used as an underlying framework for ubiqui-
tous and pervasive computing environments, GloServ [4] [6] [7] [5].
GloServ operates on wide as well as local area networks and supports
a large range of services that are aggregated and classified in ontolo-
gies. A partial list of these services include: events-based, physical
location-based, communication, e-commerce or web services.

Currently, context-aware systems, such as, [11], [14], are limited
to local centralized networks which prevent global scaling. The goal
of these architectures is to aggregate context from different sources
within a local environment in order to determine the appropriate
service for the user. The goal of these architectures is to aggre-
gate context from different sources within a local environment in or-
der to determine the appropriate service for the user. Context-aware
systems, that are distributed, use simple attribute-value descriptions
of context and services, which results in only exact query matches
without considering related ones. We improve on current systems
by providing a distributed context-aware service discovery system
that receives context information from various sources and translates
them into specific GloServ queries. Additionally, we use the Web
Ontology Language (OWL) [1] to classify context and the services
within them resulting in richer semantic descriptions and query re-
sults that return not only exact information, but related information.
As a part of our ongoing work, we have added an agent architecture
on top of GloServ that classifies the services according to context.
These agents receive context information, map them to the appropri-
ate GloServ service classes, and translate them to GloServ queries.

There has been much work done in defining and categorizing con-
text [12] [3] [17] [8]. We adopt the definition and categorization of

1 Department of Computer Science, Columbia University, New York, NY
10027, USA, email:{knarig, hgs}@cs.columbia.edu

context specified in [12], which is defined as “any information that
can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interac-
tion between a user and an application, including the user and appli-
cations themselves.” Furthermore, it is categorized into three main
classes:

• Computing environment: available processors, devices accessible
for user input and display, network capacity, connectivity, and
costs of computing.

• User environment: location, collection of nearby people, and so-
cial situation.

• Physical environment: lighting and noise level.

We use a service context ontology that classifies GloServ service
classes according to their context attributes. Agents, distributed sim-
ilarly to GloServ and built on top of it, hold this context information.
The service context ontology has two main purposes: 1)it describes
the context attributes of each of the high-level service classes within
GloServ 2)it is used to map a distributed network topology.

The service context ontology classifies GloServ service classes
within the three main context classes defined above. GloServ ser-
vice classes are then categorized into these context classes. Although
many services can be classified into all three context categories, one
of the categories will be of highest priority. Service attributes are
ranked in a partial order within GloServ in order to prioritize the
importance of each attribute. The service class is categorized in the
context ontology according to these priorities.

To further motivate the necessity for a distributed context-aware
service discovery architecture, we look at the following scenarios
that use user-environment contexts. The first one is of a traveler who
already knows what type of services he wants based on his context.
Suppose he has a rule set up that when his context information con-
sists of time, location and activity:day time; Paris; tourismandwalk-
ing, then he must query for a Restaurant or Museum service. His de-
vice automatically sends this information to a context-aware agent,
along with his preferences, when the context conditions are satisfied.
The agent routes this information to the correct agent that handles
this service context class. That agent then stores the context infor-
mation, processes it, and presents the user with a specific GloServ
query. The traveler stores this query and the next time this context
condition is true, a direct query is issued to GloServ. The second
scenario is when the traveler does not know what service he needs
but knows his given context. In this case, it sends the context infor-
mation to the agent and the agent searches the context ontology and
matches the given context combination to a set of service contexts.
The user receives a list of possible services that are appropriate to his
situation and indicates which ones he is interested in, along with his

preferences, and the agent again provides him with specific GloServ
queries.

Since we expect that these users have thin clients, they have lim-
ited processing capability. Thus, holding large context ontologies on
their systems is not wise. Instead, a generic context ontology is dis-
tributed across context-aware agents that keep track of context his-
tory and find appropriate services for users. This asserts that dis-
tributing context is necessary.

Below we describe the architecture and algorithms that allow these
types of service requests to be issued. Section 2 gives background in-
formation on GloServ. The distributed context-aware agent architec-
ture and the mechanisms for context attribute matching to services is
described in Sections 3 and 4. Section 5 describes related work in the
area and we conclude in Section 6.

2 Overview of GloServ

GloServ classifies services in an OWL DL ontology. This classifica-
tion defines service classes and their relationships with other services
and properties. Scaling is achieved by mapping the ontology onto a
hierarchical peer-to-peer network of services. This network exploits
the knowledge obtained by the service classification ontology as well
as the content of specific service registrations. The hierarchical net-
work is formed by connecting the nodes between the high-level, dis-
joint services within the service classification. The peer-to-peer net-
work is formed between equivalent or related services via a Content
Addressable Network (CAN) [16].

GloServ servers (GloServers) have three types of information: a
service classification ontology, a thesaurus ontology and if part of
a peer-to-peer network, a CAN lookup table. The high-level service
classification ontology is not prone to frequent changes and thus can
be distributed and cached across the GloServ hierarchical network.
Each high-level service will have a set of properties that are inherited
by all of its children. As the subclasses are constructed, the prop-
erties become specific to the particular service type. The thesaurus
ontology maps synonymous terms of each service to the actual ser-
vice term within the system. We employ methods described in [2]
for creating the thesaurus ontologies using OWL. Figure 1 gives an
overview of how servers are found in GloServ.

BostonRestaurantNYCRestaurant

RestaurantTravel

Service

CommunicationMedical

1)Query for "cafe" comes in

ontology

Network
P2P

AmericanNYCRestaurant
FineDiningNYCRestaurant

that is known.
closest high−level server
4)Send the query to the

3)Lookup the domain
of the equivalent server

in the primitive skeleton
or closely related server

AmericanNYCRestaurant

Service

BostonRestaurant

SFRestaurant

ItalianNYCRestaurant

ChineseNYCRestaurant

NYCRestaurant

Restaurant Medical Communication

diner cafe bar coffe shop eatery

Restaurant

2)map the word "cafe" to "Restaurant"

domain:AmericanNYCRestaurant.NYCRestaurant.Restaurant.service

Figure 1. Finding servers in GloServ

Services are represented as instances of the service classes and
usually reside in the more specific, lower levels of the ontology. At
the lower levels, maintaining a purely hierarchical ontology struc-
ture becomes difficult as there are many overlaps between classes.
Thus in order to efficiently distribute service instances according to
similar content, servers that hold information on similar classes are
distributed in a peer-to-peer network. We employ a Content Address-
able Network peer-to-peer architecture to distribute classes with sim-
ilar content. The CAN architecture is generated as a network ofn-
level overlays, wheren is the number of subclasses nested within
the main class. An example of an ontology classification using the
Restaurantclass and the CAN overlay network generated is seen in
Figure 2. The first CAN overlay is ad-dimensional network which
has the first level of subclasses of theRestaurantclass. The num-
ber of dimensions is determined by the number of nodes contained
within the CAN.

Boston

Restaurant

CAN

CAN

hasRating

hasPriceRange

hasPriceRange

NYC
Restaurant

Downtown

CAN TopRated

NYC
Restaurant

Destination

hasCuisine

hasPriceRange

CANhasRating

Restaurant

hasC
uisine

Italian

Restaurant

NYC
Restaurant

Restaurant
Chicago

SF

NYC
Restaurant

FineDining
NYC

Figure 2. CAN overlay network

Due to using ontologies and mapping these to a hierarchical peer-
to-peer network, services are described with richer semantics and
distributed efficiently. This results in automated and intelligent reg-
istration and querying of services in a global environment.

3 Context-aware Agent Architecture

3.1 Context Ontology

The context-aware agent architecture is based on an OWL context
ontology classification. The context ontology represents service con-
text and is formed with the three categorizations defined above:com-
puting environment, user environment, physical environment. Fur-
thermore, context attributes are defined for each of these classes.
For example, theuser environmentclass has a subset of attributes
such aslocation, activity, time. The attributes are OWL object data
type properties, which have as their range a set of OWL classes.
The location attribute maps to theLocation class which classifies
global regions into country-state/county-city, zip code, or longitude-
latitude coordinates. TheComputingEnvironmentContextclass may
also have these context attributes, but it will have a higher rank for
attributesnetworkCapacity andconnectivity. TheTelecommunica-
tion service class within the GloServ service classification ontology,

ranks its properties in a full or partial order. It hasnetworkCapacity,
connectivity and may also havelocation properties, among others.
The properties are ranked during the construction of the ontology.
A telecommunication service relies heavily on the network capac-
ity and thus this property is ranked highest. It is then matched to
all the properties within the service context ontology and grouped
within the class that has this property as the highest rank. Since the
highest ranking properties for theComputingEnvironmentContextare
networkCapacity andconnectivity, the telecommunication service
context is classified under this context class.

The three context environment classes are disjoint from each other
because they each have different priority orders assigned to each of
the context attributes. Even if they share a certain attribute, they will
not share the priority level of that attribute. This way, when a combi-
nation of contexts is classified, the priorities are taken into consider-
ation and this causes it to be classified under one of the three context
classes.

Figure 3. Context Ontology of GloServ Services

3.2 Agent Architecture

The context-aware agent architecture sits on top of the GloServ ar-
chitecture. It consists of context-aware user agents co-located with
GloServers. Since each agent handles a specific service class, it is
aware of the GloServer hosts that handle those services. In case a
GloServer goes down the agents find the new one by querying for the
service class once again. Figure 4 gives an overview of the context-
aware agent architecture.

GloServ initially classifies high-level services in a hierarchical
primitive ontology where subclasses of a given class are disjoint
from each other. Two classes are disjoint when the intersection of
their instances is the empty set. These service classes establish the
main service classification. As the ontology is formed further down
in the hierarchy, classes become more specific and are not strictly
disjoint from their siblings. However, for the case of classifying ser-
vices within a context ontology, working with the high-level services
is sufficient. The main purpose of this ontology is to map various
context attributes to service classes. GloServ already has a robust hi-
erarchical peer-to-peer network architecture which handles service
classification of both high-level services as well as similar services.
Thus, it performs querying for a service by returning both exact and
related matches. Matching is done by creating a temporary query
subclass that contains the query restriction and classifying it. Classes
that are equivalent or subclasses of the query subclass have exact
matches. Classes that are siblings and share property values are re-
lated matches. [5] gives more detail on the query matching algo-
rithm. Since GloServ already handles intelligent querying of related
services, it is not necessary to replicate this within the context-aware
agent architecture. Therefore, the context-aware agent architecture is
a purely hierarchical structure and is created for the purpose of map-
ping context attributes to high-level service classes within GloServ.

Figure 4. Context-Aware Agent Architecture on top of GloServ

Each agent holds context ontologies of its parent and children in
order to navigate the requests to the appropriate agent. It also con-
tains two types of thesaurus ontologies: one mapping synonymous
service names to the actual service classes within the context on-
tology; the other mapping synonymous attributes to actual attributes
within the context ontology. So the words ”cafe” and ”diner” map to
theRestaurantContextservice class; the words ”place” and ”street”
map to thelocation attribute.

Bootstrapping agents into the context-aware agent architecture is
also done similarly to GloServ as seen in Figure 1, except it uses
the context ontology for determining the host. Each agent represents
a context service class and its hostname is determined by looking
at the primitive skeleton ontology. Hostnames will follow the hi-
erarchical format. For instance, as seen in the context ontology in
Figure 3 theRestaurantclass’s http URL will beRestaurantCon-
text.UserEnvironmentContext.Context.As an agent is assigned to
a hierarchical network, it updates the ontology to include its host in-
formation. Users access a well-known URI which maps to a certain
number of random high-level context-aware user agents. If the user
knows the service classes it is looking for, the agent matches the
service class names, using a thesaurus ontology, to the actual class
names within the context ontology. The initial agent contacted will
forward the user’s request to the agent that handles the service con-
text class the user is looking for. Thus, if initially theTelecommunica-
tionContextclass is contacted, and the user is searching for a ”cafe”,
the agent maps the word ”cafe” to theRestaurantContextclass and
checks to see if it knows the hostname of the agent handling that
class. If it does not know this, it finds the nearest ancestor to the
RestaurantContextclass that it does know the hostname of and for-
wards the user’s request to that agent. This continues until the correct
agent is contacted.

4 Mapping Context Attributes to Specific GloServ
Queries

We describe different protocols on how various users can connect
to the context-aware agents and search for services. There are two
different context-aware query cases, as we mentioned in Section 1.
In the first case, the user has a set of rules which translate to a set
of services. When the rule conditions are met, it sends this rule to
the context-aware agent and after a few more message exchanges,
receives a specific GloServ query. The second case assumes that the
user has context information but does not know what type of ser-

vice it needs. The context-aware agents must reason what the best
service for this user is by matching the user’s context attributes to
the service context attributes within the context ontology. Below we
discuss these two cases.

4.1 Creating GloServ Queries With Known
Services

In the first case, the user is aware of the services it needs and wants
to set up a set of rules to initiate the service requests. In order to do
this, a user contacts a context-aware agent and downloads the context
attributes of the service class it wants to set rules for.

To illustrate this with a concrete example, we continue with the
tourism example. If the tourist already knows that it wants to be
notified ofRestaurant,Museum or Boutique services while on
vacation, it first contacts a context-aware agent and submits these
service classes to it in the following message:

SERVICE
Restaurant
Museum
Boutique

The first agent contacted finds the appropriate agents that handle
these service contexts with the methods mentioned in section 3.2.
The agents handling the services restaurant, museum and boutique,
collect the context information from the user. They also query
GloServ for the actual service attributes. Thus if the user submits
the serviceRestaurant, the agent handling the restaurant service will
find the following attributes:
Context Attributes : location, time, activity
Service Attributes : hasCuisine, hasLocation, hasRating
The agents then present the user with a form that allows him to fill
out the appropriate values of each set of attributes.

The agent receives this information, creates a restricted subclass
with the specified context attributes and classifies this within its on-
tology. This allows the agent to keep track of context history of a
particular service class since its restricted subclasses represent con-
text combinations that future users can benefit from. The agent then
creates a GloServ query with the restrictions specified by the user,
instantiates it within the restricted subclass created, and returns the
query to the user. The restricted subclass is formed in OWL as fol-
lows:

<owl:Class rdf:ID="contextClass1">
<rdfs:subClassOf rdf:resource="#RestaurantContext"/>
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#activity"/>
<owl:someValuesFrom>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Vacation"/>
<owl:Class rdf:about="#Walking"/>

</owl:intersectionOf>
</owl:Class>

</owl:someValuesFrom>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#location"/>
<owl:someValuesFrom rdf:resource="#NewYorkCity"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#time"/>
<owl:someValuesFrom rdf:resource="#OneAM"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

The user then modifies his rule so that when his context conditions
are met, a query is sent directly to GloServ. We represent the rule in
a generic form which represents a case-based reasoning:

location(?x, ?y) ∧ time(?x, day) ∧ activity(?x,walking) ∧
activity(?x, tourism)
⇒ Query(Restaurant,“(hasCuisine some Italian) ∧
(hasLocation some ?y)′′)
location(?x, ?y) ∧ time(?x, day) ∧ activity(?x,walking) ∧
activity(?x, tourism)
⇒ Query(Museum,“(hasStyle some Art) ∧ (hasLocation
some ?y)′′)
location(?x, ?y) ∧ time(?x, day) ∧ activity(?x,walking) ∧
activity(?x, tourism)
⇒ Query(Boutique, “(hasItems some Clothing) ∧
(hasLocation some ?y)′′)

Figure 5 illustrates the exchange of messages between the user
and the agent.

Figure 5. One scenario of context-aware service discovery

4.2 Creating GloServ Queries With Unknown
Services

As the agents instantiate restricted context classes, it collects past
user experiences for future users who do not know what services
to search for but know their context information. In the case of the
tourist, he may not know what type of services are available to him,
but he is aware of certain context conditions and wants to know the
service classes pertaining to him.

The user sends the agent a message similar to the one above, ex-
cept instead of putting in service classes, it specifies a list of con-
text conditions such as:city=Paris, weather=warm, time=noon,
and ranks these attributes by ordering them. The agent uses the at-
tribute thesaurus ontology to match these context attributes to the
actual ones in the system. The agent then creates a restricted sub-
class and since the first level in the ontology is restricted by the rank
of each attribute, the restricted class gets classified under one of the
three subclasses of theContextclass. The agent then sends the user’s
information to these agents and the message continues propagating
to the agents below until there is a hit. A hit occurs within an agent
when the restricted class is classified as either an equivalent class or
superclass of one or more of the classes within the agent’s ontology;
this signifies that there is a context combination that is a subclass or

equivalent class to the user’s context combination. Once a hit occurs,
the agent knows the class of services that the user may be interested
in and responds to the user with a query form specific to the service
class. The steps following are similar to the previous scenario’s.

5 Related Work

Current work done in context-aware service discovery concentrates
either on local area networks or uses simple representations of con-
text and services. Cobra [11] uses OWL to represent context and col-
lects context from different sources and reasons with rules and poli-
cies for user preferences. However, it is not a distributed system and
the example scenarios are for home environments.

Distributed context-aware systems developed recently, such as
[15] and [10], lack in semantically rich representation of data. [15]
describes a scalable system that collects context information from
different sources. However, it does not describe the distributed nature
of the architecture in much detail. It also uses object oriented or an
attribute-value model for service description rather than ontologies.
[10] collects context information in a distributed environment using
INS [9] as its service discovery architecture. However, the INS sys-
tem also uses simple attribute-value representation of services using
XML. The context-aware discovery system presented in this paper
differs from all of these in that it both distributes context data glob-
ally as well as classifies them using ontologies. It also uses GloServ
for service discovery which also uses ontologies to describe services
and is distributed globally.

6 Conclusion and Future Work

In conclusion, we have presented a distributed context-aware agent
architecture for global service discovery. Unique characteristics of
this architecture is that it aggregates context data in a distributed sys-
tem using the OWL ontology for richer semantics, in order to learn
context history over time. It also uses GloServ to map context at-
tributes to services classes so that users can issue specific context-
aware queries.

The design of the distributed context-aware agent architecture is
part of our ongoing work. We have implemented the hierarchical
peer-to-peer GloServ architecture using OWL and are evaluating the
querying mechanism. The context-aware agents will be built on top
of GloServ and will use a subset of the GloServ API. GloServ uses
the Protege [13] API to process OWL files.

For future work, we will look into saving specific user or group
profiles. Currently, the information held in the agent architecture is
generic context provisioning information of GloServ services. Imple-
menting user profiles will require that the context-aware agent archi-
tecture be more robust and fault-tolerant and will thus be improved
to also have a peer-to-peer distribution. We also plan on including
not only context-aware searches for structured data, as in GloServ,
but also unstructured Google-type data searches.

7 Acknowledgement

This work is supported by a grant from Nokia Research Center. We
would also like to acknowledge the contributions of Dirk Trossen and
Dana Pavel from Nokia Research.

REFERENCES
[1] Owl web ontology language.

[2] Quick guide to publishing a thesaurus on the semantic web. W3C Work-
ing Draft, May 2005.

[3] G.D. Abowd A.K. Dey and D. Salber. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions. InHuman-Computer Interaction, 16(2-4):97-166, 2001.

[4] Knarig Arabshian and Henning Schulzrinne. Gloserv: Global service
discovery architecture. InFirst Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services (Mobiqui-
tous), August 2004.

[5] Knarig Arabshian and Henning Schulzrinne. Hybrid hierarchical and
peer-to-peer ontology-based global service discovery system. Technical
Report CUCS-016-05, Columbia University, April 2005.

[6] Knarig Arabshian and Henning Schulzrinne. An ontology-based hier-
archical peer-to-peer global service discovery system.Journal of Ubiq-
uitous Computing and Intelligence (JUCI), 2006.

[7] Knarig Arabshian, Henning Schulzrinne, Dirk Trossen, and Dana Pavel.
Gloserv: Global service discovery using the OWL web ontology lan-
guage. InIEE International Workshop on Intelligent Environments
(IE05). IEE, June 2005.

[8] M. Theimer B. Schilit. Disseminating active map information to mobile
hosts.

[9] Magdalena Balazinska, Hari Balakrishnan, and David Karger.
Ins/twine: A scalable peer-to-peer architecture for intentional resource
discovery, 2002.

[10] G. Chen and D. Kotz. Context-sensitive resource discovery, 2003.
[11] Harry Chen, Tim Finin, and Anupam Joshi. Semantic Web in in the

Context Broker Architecture. InProceedings of the Second Annual
IEEE International Conference on Pervasive Computer and Communi-
cations. IEEE Computer Society, March 2004.

[12] A. Dey. Understanding and using context.Personal and Ubiquitous
Computing, Vol. 5, No. 1, 2001.

[13] J. Gennari, Mark A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubzy,
H. Eriksson, N. F. Noy, and S.-C. Tu. Evolution of protg: An envi-
ronment for knowledge-based systems development. Technical report,
Stanford University, 2002.

[14] Masanori Hattori, Kenta Cho, Akihiko Ohsuga, Masao Isshiki, and
Shinichi Honiden. Context-aware agent platform in ubiquitous envi-
ronments and its verification tests.Systems and Computers in Japan,
35(7):13–23, 2004.

[15] N. Honle U. Kappeler D. Nicklas T. Schwarz M. Grossmann, M. Bauer.
Efficiently managing context information for large-scale scenarios. In
Third IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2005.

[16] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content addressable network. InProceed-
ings of ACM SIGCOMM, 2001.

[17] T.Winograd. Architectures for context. InHuman-Computer Interac-
tion 16(2-4):401-419, 2001.

