Ontology-based User-defined Rules and
Context-aware Service Composition System

Victoria Beltran', Knarig Arabshian?, and Henning Schulzrinne?
! Dept of Telematics, Universitat Politécnica de Catalonia/Fundacié 12Cat,
Barcelona, Spain
2 Alcatel-Lucent Bell Labs, New Jersey, USA
3 Dept of Computer Science, Columbia University, New York, USA

Abstract. The World Wide Web is becoming increasingly personalized
as users provide more of their information on the Web. Thus, Web ser-
vice functionality is becoming reliant on user profile information and
context in order to provide user-specific data. In this paper, we discuss
enhancements to SECE (Sense Everything, Control Everything), a plat-
form for context-aware service composition based on user-defined rules.
We have enhanced SECE to interpret ontology descriptions of services.
With this enhancement, SECE can now create user-defined rules based
on the ontology description of the service and interoperate within any
service domain that has an ontology description. Additionally, it can use
an ontology-based service discovery system like GloServ as its service
discovery back-end in order to issue more complex queries for service
discovery and composition. This paper discusses the design and imple-
mentation of these improvements.

Keywords: context-aware systems, ontologies, semantic web, rule-based
systems, service discovery, service composition, web services

1 Introduction

In recent years, the World Wide Web has been advancing towards greater person-
alization. Services on the Web such as, social networking, e-commerce or search
sites, store user information in order to profile the user and target specific prod-
ucts or ads of interest. Since web service functionality is increasingly relying on
user information, a user’s context is becoming more crucial towards creating a
personalized set of services within the Web.

As these types of services proliferate, a framework is needed where multiple
services can be discovered and composed for a particular user within a cer-
tain context. With this in mind, we have developed SECE (Sense Everything,
Control Everything), a platform for context-aware service composition based on
user-defined rules. The contributions to SECE are two-fold: a user-friendly rule
language and the design and implementation of a context-aware service compo-
sition framework.

SECE differs from other rule-based systems in that it provides an interface for
creating rules in natural English-like language commands. The main drawback

2 V. Beltran, K. Arabshian and H. Schulzrinne

of rule-based systems is that the rule languages involve complex formulaic or
XML descriptions. Lay people are not as inclined to use these systems as the
learning curve for these languages may be steep. Thus, we have defined a formal
rule language which resembles English. With a simplified English-like interface
to creating rules, users will be more prone to incorporate rule-based systems into
their lives, making context-aware computing a seamless part of everyday life.

Additionally, SECE provides a platform for context-aware service composi-
tion for a number of services, such as, presence, telecommunication, sensors and
location-aware services. Users can subscribe to various services by formulating
simple rules that create a composition of services. The rules trigger event-based
service discovery and composition depending on the user’s context, such as her
location, time, and communication requests. Traditional rule-based systems are
mostly designed to handle a single service domain. SECE, on the other hand,
interacts with a few service domains. For more information on the SECE ar-
chitecture and rule language, we encourage the readers to refer to the following

paper [].

In this paper, we discuss enhancements to both aspects of SECE: its rule lan-
guage and back-end architecture. Whereas previously SECE had a hard-coded
rule language for a limited number of event-based service domains, we have now
improved SECE to use the Web Ontology Language (OWL) description of a ser-
vice domain to dynamically create a rule language for that service domain. Ad-
ditionally, SECE’s architectural platform has been modified to integrate with a
back-end ontology-based global service discovery system, GloServ, to access any
type of service domain within the GloServ directory. GloServ classifies services
in an ontology and provides ontology descriptions of different service domains. It
also has an ontology-based query interface for service discovery and composition.

With these improvements, SECE can now be generalized to include all types
of service domains, described in an ontology, as well as issue more complex
ontology-based queries for service discovery and composition. Having the ability
to adapt a rule language to new service domains makes SECE into a powerful
front-end context-aware system. Additionally, by using GloServ as its back-end,
SECE can now interoperate with any type of service that has an OWL descrip-
tion, broadening its scope drastically. We envision that SECE will enable services
to seamlessly integrate into people’s lives. A person can now create rules with
ease and be notified of services at the right time and place. This will create a
profound impact in how people interact with services. There will now be a closer
connection between a person and services availalbe, establishing a personalized
network of services.

The organization of this paper is as follows: Section 2 describes current work
in the field of context-aware computing and service composition; Sections 77
gives an overview of the original SECE architecture and functionality; we discuss
the enhancements to SECE and its implementation in Sections 7?7 and 4.1;
finally, Section 7 summarizes the main contributions of this paper.

Ontology-based User-defined Rules and Context-aware Service Composition 3

2 Related Work

Several solutions for user created services have been proposed; some of these
solutions are compared to SECE in Figure 1. CPL [1], LESS [2], SPL [3], Visu-
Com [4] and DiaSpec [5] are attempts to allow end users to create services, but
they are all limited to controlling call routing. Also, CPL and LESS use XML
and, hence, even simple services require long programs. Moreover, XML-based
languages are difficult to read and write for non-technical end-users. DiaSpec is
very low level. Writing a specification in DiaSpec and then developing a service
using the generated framework is definitely not suitable for non-technical end
users. The authors of DiaSpec extended [6] their initial work to support services
beyond telephony, which include sensors and actuators. However, it is still only
suitable for advanced developers. SPL is a scripting language which is suitable
for end-users but only for telephony events. VisuCom has the same functionality
as SPL, but allows users to create services visually via GUI components.

MNL-like rules Tel seripts Call, email, IM User & buddies Rich v
CPL XML tree Fixed XML actions Call x x x x x x
LESS XML tree XML actions Call v » Basic x »® X10, ver
SPL seript Signaling actions Call x x x ® x x
VisuCorm Graphieal Ul Signaling actions Call x x x x 3 x
CybreMinder Form based Reminder x v v x v x x
Task.fm Time rule Reminder x v ® x x ® x
DiaSpec Java Java v x xv e xv x xe

Fig. 1. Comparison to related work

CybreMinder [7] is a context-aware tool which allows users to setup email,
SMS, print out and on-screen reminders based not only on time but also loca-
tion and presence status of other users. It uses local sensors to detect a user’s
location. It does not take any actions, but rather displays reminders to the end
user. Also it is not as powerful as scripting-based systems due to its form-based
nature. Task.fm [8] is a similar SMS and email remainder system which uses
natural language to describe time instants when email or SMS reminders will
be sent. However, Task.fm only supports time-based rules and does not include
information from sensors. This tool does not take actions other than reminding
users via SMS, email or phone call.

Regarding composition of web services, SWORD [9] was one of the first
prototypes. However, this offers a quite limited composition that is not automatic
and its scripting language is targeted at developers. Ezweb [10] is a graphical
tool by which users can connect web services manually. However, this does not
provide automatic web service discovery or a language for composing services.
Moreover, service composition is not context-aware and proactive. Yahoo Pipes

4 V. Beltran, K. Arabshian and H. Schulzrinne

[11] is other graphical tool for web service composition. However, it presents the
same limitations as Ezweb and its graphical interface is not really easy-to-use
and intuitive, which makes it very difficult for non-technical users. We only found
a prototype described in a research paper [12] that offers event-based web service
composition. This means that service composition is triggered by events, such
as changes in the user’s context, instead of end users. However, this work does
not provide any language or tool for specifying the web service compositions and
events that trigger them. The authors seem to implement low-level compositions
that may be personalized according to user preferences. Thus, this does not offer
end users control of service composition. Moreover, this prototype seems not to
be available in the Internet.

To the best of our knowledge, there is no implemented platform for allowing
end users to compose services of different kind based on events. The current
solutions are not proactive because the end-user is who triggers the composite
services or only provides template-based compositions (i.e., the user is not who
defines the compositions). There is neither a platform for event-based web ser-
vice discovery. The composition tools that take user context into account, only
consider a limited set of context. The graphical interfaces of the studied tools are
quite limited and not flexible for non-technical users. The scripting languages
provided by some tools are neither suitable for non-technical users and only sup-
port a limited set of context information. Moreover, none of the studied tools
proactively discover web services based on the user preferences.

3 SECE

SECE is a rule-based context-aware system that connects services, that may
have otherwise been disconnected, in order to create a personalized environment
of services for a user. It has two fully-integrated components: user-defined rules
in a natural English-like formal language and a supporting software architec-
ture. Users are not required to continually interact with the system in order to
query for or compose a set of services. They need to only define rules of what
they want to accomplish and SECE does the rest by keeping track of the user’s
context, as well as information from external entities such as sensors, buddies, or
social events in order to notify the user about a service. It accomplishes this by
communicating with several third party applications and web services such as
Google services (e.g., GMail, GContacts and GCalendar), Social Media services
(e.g., Facebook or Twitter), VoIP proxy servers, presence servers, sensors and
actuators. Figure 2 gives an overview of the overall SECE architecture and how
it interacts with its environment. We will discuss these two components of SECE
in this section.

3.1 SECE Architecture

As mentioned above and as Figure 2 depicts, SECE is connected to a number
of external services. The Presence Server (PS), which is based on SIMPLE [13],

Ontology-based User-defined Rules and Context-aware Service Composition 5

%

geocoding
travel time

(T e |
W@ 9

TESEFICE

update SMs, , email...
Server

,
; maonitor energy
Fi usage

L - |
ountr.ul applianc?

Fig. 2. SECE and its external components

plays a key role in collecting context from different sources. The PS receives
presence publications from context sources that contain the latest information
about a user and, in turn, notifies SECE of the context changes. In the SECE
framework, context sources include user devices’ presence applications and gate-
ways that control sensor networks, energy consumption and user location via
RFID.

Another external server that plays a key role in SECE is the SIP Express
Router (SER) [14], which handles SIP communication. SER informs SECE of
incoming and outgoing communication notifications, such as a call or IM. The
notification that matches a user-defined rule invokes an action to either forward,
reject, or modify the call. An initial prototype of SECE has already been devel-
oped as a web service and is being tested by members of the Internet Real Time
(IRT) group at Columbia University. For a more detailed description of SECE,
we refer the readers to the following paper [15].

SECE. how does this system boot up? the part where it says it is connected to a
number of external services—how are these found and connected. one paragraph
or a few sentence description is necessary)

3.2 SECE rules

A SECE rule is divided into two parts: event description (condition???) and
actions. The event description defines the conditions that need to be satisfied to
execute the actions. The SECE language is a formal language similar to English
that has been designed to be easy to use and remember by end-users. This

6 V. Beltran, K. Arabshian and H. Schulzrinne

language is only intended to define events in the first SECE prototype although
it could be extended in the future. The SECE interface provides documentation
which give examples on how to create rules for specific events. Users learn the
rules and create rules accordingly.

The SECE language supports five types of rules. As a formal language, It
states the valid combinations of keywords and variables for each kind of event
and provides a set of commands, such as ”sms”, ”email”, ”tweet” or "call”. Some
commands are for a particular set of events. For example, ”accept” and "reject”
commands are only used in request-based rules.

We use the Tcl language [16] as the syntax for the rule actions. This choice
is due to Tcl’s extensibility that allows adding new commands to its core in an
easy and convenient way. (a bit more description on how this is done-one or two
sentences 7777) Moreover, SECE (event language???) is not coupled with the
action language and, hence, other scripting languages, such as Ruby or Python,
may be added in the future.

Below, we list the five types of rules supported by the SECE language. In
order to clearly display the structure of the rule language, the variables that are
set by the user are highlighted in bold and the keywords of the rule language
are italicized.

Time-based rules: These support single and recurring time events and are
fully-compliant with the Internet Calendar (ICal) standard [17]. Two exam-
ples are:

” Anne’s birthday, 2010” how does SECE know what this is? what is it looking
for and where? the term ” Anne’s birthday” in the 2010 calendar that the
user registered, such as his google calendar?

there is no indication of how the event description verses the action rule is
constructed. how do i know what to construct? you’re not indicating which
part of the actions are keywords verses user-defined. is ”sms” a keyword? do
you know that after the word ”"sms” you are expecting a user name? where
will it find Anne? does it go to the contacts? some explanation is necessary.
this is very very vague..

i suggest you take ONE type of rule and give a complete description of it
1) key words of event description verses action. what’s the separation? how
do users know they are supposed to write these words. since the rule is
the biggest selling point of SECE you have to make these things very clear
2)describe end to end flow of logic. how is rule getting parsed? for the time
rule below, what is happening?

when it sees the word "on” it knows it’s a time rule? or is the user setting
this as a time rule somewhere before even defining it?

after the word “on” it expects a variable. variable says ” Anne’s birthday
2010”. what is it looking at in this sentence? is this user-defined variable
have some kind of structure specified by SECE? [user|[event][time] OR is
it just a string ”Anne’s brithday 2010”7 how is this variable processed by
SECE? then it encounters ”at” so now it’s expecting a time? is it in hours

Ontology-based User-defined Rules and Context-aware Service Composition 7

or a date? then it encounters ”in” so after that it is expecting a location
?Zurich”. then it sees the braces and knows that the action rule is going to
start. how is the action rule language processed?

all of this needs to be clearly specified. are you using a bnf grammar? it
might help to do it in some kind of grammar to show how the language is
being parsed.

also we need to discuss how a user starts using the system? logs in? where?
the startup of this system is not described at all. all of a sudden we’re
jumping from describing SECE’s overall architecture to specific rules for a
user. how did we get here?

then indicate specifically where the user is setting things up. for example, it
will have to set up a calendar/contacts and specify which calendar to use,
etc. how does it do this? where is this set up done?

then give two or three sentence description on how the rule is executed. i
know this is in the reference paper but you need to give an overview here bc
it’s really confusing. so a brief description i think is necessary.)

on Anne’s birthday, 2010 at 12:00 in Europe/Zurich {
sms Anne ”Happy Birthday!!! John”;
}

every week on WE at 6:00 PM from 1/1/10 until May 10, 2010
except 3rd WE of Feb including first day of June, 2010 {

email irt-list “reminder: weekly meeting today at 6:00 PM”;
}

Calendar-based rules: These rules specify events that are defined in the user’s
calendar. These can be triggered some time before or after these events occur,
as well as when they begin or finish. An example is:
when 30 minutes before ” weekly meeting” {

email [event participants] ” The weekly meeting will start in 30 minutes”;
if {me not within 3 miles of campus } {

email [status bob.email] ”I'm away” ”Please, head the conference room and
prepare everything for the weekly meeting. Not sure if I will be on time.”;

}

Location-based rules: These define location events about the user and his
or her friends. Five types of location information are supported: geospatial
coordinates, civic information, well-known places, user-specified places and
user locations. Different location-related operators can be used, such as near,
within, in, outside of and moved. Below we show a location-based rule using
the near operator.

mean for something to be "near”? 2 miles away? does the user define what
these operators are and if so where do they do that?)

Bob near ” Columbia University” {
if{ my status is idle } { call bob; }
}

Context-based rules: These specify the action to execute when some context
information changes, such as presence or sensor state.

8 V. Beltran, K. Arabshian and H. Schulzrinne

if Bob’s status is available { alarm me; }

Request-based rules: These specify the actions to execute in response to (1)
incoming calls, IMs, emails, SMSs or voicemails, (2) outgoing calls or IMs,
and (3) missed calls. All these events can be filtered by the user destination
and origin. The following rule is an example of incoming call handling.

incoming call to me.phone.work {
if { [my location is not office] } {
autoanswer audio no_office.au;
email me ”[incoming caller| tried to reach you on your work phone at
[incoming time]”;

4 Ontology-based User-defined Rules for Automatic Web
Service Discovery

As Section 7?7 described, SECE enables end users to compose various services.
However, the services that SECE currently interacts with are hard-coded and,
therefore, extensible only if a developer reprograms it. As it stands, SECE has no
way of automatically discovering new types of service, generating a rule language
for it and incorporating it in its system.

We enhanced SECE to support automatic service discovery through service
rules. This new kind of rule allows users to define web service events and the
actions that are triggered when these events occur. With this enhancement,
SECE users are capable to specify the kinds of service that they are looking
for and the conditions that these services must satisfy in a natural-English-like
language. When a web service that satisfies a web service rule’s constrains is
discovered (i.e., a web service event occurs), the rule’s actions are taken. Web
service rules constitute subscriptions to web service events and, therefore, provide
a push approach for web service discovery. Below, a simple web service rule is
shown. In this example, whenever a flight that satisfies the given constrains is
found, an email and SMS are sent to the user.

Any domestic flight that is cheaper than 200$ and whose date is after June 1, 2011 {
email me “new plan found” “Details: $p $r”;
sms me “New Plan discovered. See email inbox for details!”;

Web service events are defined in the SECE sublanguage for web services
that is described by Section 4.2. This ontology-based language can express any
ontology’s class as a set of constrains on its properties. Therefore, this is not
bound up with any particular web service’s ontology description. This decou-
ples web service rules from service specifications and, hence, allows integrating
new services transparently. Section 4.1 explains how we implemented web service
rules into SECE. Although these rules are currently working into SECE, to make
them useful, three crucial tasks are necessary. First, SECE has to be provided

Ontology-based User-defined Rules and Context-aware Service Composition 9

somehow with the OWL-S specifications of the services about which end users
can type rules. Second, the users have to be aware of these services’ descriptions.
Third, the users have to learn how to define web service rules. Regarding the
first task, SECE has to interact with an ontology-based service discovery system
that provides it with the ontology descriptions. At this point, we use GloServ as
discovery system and manually configure the ontology descriptions that GloServ
handles. However, in the future, it will be desirable to update the set of discov-
erable services dynamically. For instance, it could be achieved by implementing
a subscription mechanism between SECE and GloServ. Regarding the second
task, if SECE is used stand-alone, it should show the set of discoverable services
and their descriptions on its graphical interface. If SECE is used by a front-end
application (see Section 5), SECE should provide this application with the dis-
coverable services’ description and the application should let users know about
these services somehow. Regarding the third task, to date, there is a manual
for users to learn about the SECE language. As Section 5 describes, the use of
front-end applications brings out several advantages that, among other things,
pave the way for dynamic suggestion systems. This would very much ease the
learning curve of SECE and its language.

4.1 Implementation of Web Service Rules

SECE stores the OWL-S specifications of web services in an ontology database
that is built upon the Jena Framework [18]. When a web service rule is en-
tered into SECE, it basically has to 1) parse the rule (i.e., syntactic checking),
2) verify that the described kind of web service exists (i.e., semantic checking),
3) subscribe to the described web service event and 4) take the rule’s actions
whenever this event occurs. Figure 3 outlines the main interactions for creating
a web service subscription. The SECE core coordinates the software components
in SECE. First, the SECE parser checks that the input rule is consistent with
the SECE language, which is generated by an ANTLR grammar [19]. As a re-
sult, the parser creates a WSRule object that encapsulates information about
the rule, namely a web service event and the actions that will be taken if this
event occurs. The web service event is defined by the service name and option-
ally a set of property constrains in the form of (propertyName, operator, value),
as it can be seen in the example rule above. If the rule parsing is successful,
the SECE core verifies that the rule’s web service description corresponds to a
web service’s ontology. To do it, this interacts with the SECE Ontology Model
(i.e., SECEOntModel in Figure 3). The SECE Ontology Model encapsulates
the Jena database that contains the web services’ ontologies and provides con-
venient functions for searching and retrieving information about them. A web
service description is semantically correct if there exists a web service’s ontology
that describes a service that is named as the described web service and can be
associated with the described properties and constrains. Thus, SECE will ask
the SECE Ontology Model for the namespace URI of the web service and its
properties. If either the web service’s or any of its properties’ namespace can not
be returned (i.e., its value is null), this means that some semantic checking failed

10 V. Beltran, K. Arabshian and H. Schulzrinne

and the described web service does not correspond to any ontology. Otherwise,
the rule’s web service event is semantically correct and the SECE core proceeds
to create the corresponding subscription (i.e., WSSubs in Figure 3). The SECE
core retrieves an event monitor from the Event Monitor Broker (OntEM and
EMBroker in Figure 3). An event monitor is the agent that watches a particular
service and generates an event whenever a new instance of this service is dis-
covered. The Event Monitor Broker maintains a list of the event monitors that
are actually monitoring a web service. Thus, if an event monitor for the web
service event already exists, the Event Monitor Broker returns it. Otherwise,
the Event Monitor Broker creates a new one, appends it to the list of monitors
and returns it. Then, the SECE core associates the event subscription with the
event monitor and starts the subscription. Starting and pausing an event sub-
scription makes it subscribe and unsubscribe to the associated event monitor,
respectively. When an event monitor receives a subscription request and there
are not other subscribers, it creates the corresponding SPARQL [20] query that
describes the web service event. This also starts up a recursive timer to query
the GloServ Context Mediator (i.e., GloServCM in Figure 3) at fixed intervals
with the SPARQL query. If this query results in any matched service, the event
monitor creates an OntEvent object that describes the discovered service and
notifies the subscriber of this event. Note that the outbound messages between
GloServCM and GloServ are omitted in Figure 3 because of lack of space. When
an event monitor is associated with more than one subscriber, the SPARQL
query represents the least restrictive subscription. When a web service matches
this subscription, the event monitor checks out whether the service matches any
of the other subscriptions. Figure 3 only shows this check on the web service sub-
scription wss through the matchedServ method. Furthermore, the event monitor
maintains a cache of discovered events. When a new subscription is created, this
cache is checked out and the matching web services are notified.

4.2 SECE Sublanguage for Defining Web Service Events

SECE provides a simple and generic ontology-based language for end-users to
define web service rules. In line with SECE’s philosophy, this language looks
like natural English and is easy to learn. Its basic structure is “any service
whose prop rel value” given that service is a web service class, prop is one
of this service class’ properties and rel and wvalue represent a restriction on
the property. Rel is a relational operator that depends on the property’s type:
contains and is for strings and =, <, >, < and > for numbers. Multiple property
constrains can be added by the and and or boolean operators as for example “any
shopping offer whose type contains “ski boots” and whose price is cheaper than
150%”. Equality on numeric properties can be expressed by the verb has followed
by a number and the property name as in “any happy hour and inexpensive
bar that has 20 free seats”. Users can place property values before the class
name when the property works as adjective. In the previous example, the bar
class has the boolean properties happyHour and inexpensive. Boolean constrains
can also be expressed by the operators that has (no) and that is (not) as in

Ontology-based User-defined Rules and Context-aware Service Composition 11

e W e e N e e e | e]
| parseR“uIe(J

newiserviceMame) i

addConstrain(name.op.value)
|

T
|
|
|
|
|
|
|
|
_______ e —— getSenviceUris(wsr)
i Larts’

|
| [urist=null|canstrains=uriCans{uris wsr)
el | |
| new(constrains) | |
|
|

]
I
I
I
I
getEventProducenconsiraing) I
|

|
: | checkOEM(zontrains)
| |
|
|

SR I, P e SIS A S S

unsubscribe(this)

|
_b [subServmas{FUlslon‘ﬁmer{]
| |

|
| |
| |
| |
| |
| |
| |
| |
| |
I 1
1
| | | [loem]new)
| | oem -
| | _——————- ————— |
: } seltEvsntProduoar(an) : :
: } : stanSanvice() I;:l : :
| | F————— subserbethis, consirains)
: : T '
| I
| | | | | I sQuery=bulldSPARQL(constrains)
| I | | | | | |
| | | | | | | |
| | | | | | startTimer() I
I						
I I		i D s=checkeutCachal}				
I						
I I I	I		new(s) I			
I				; t »		
				notify{eventy		
I	K si e e sl					
		! ! I I !				
: } : Loop [timeaut=true] :] qury[sQuery}i i						
	I		I			
[[[l 1 servs I					
	I		I ottty			
	I		I			
	I		I s=matchedServ(constrains, servs)			
	I		I			
	I] [s'=nulljrew	(s)		
	I		I			
	I		if I			
i \ I — — — o M	i					
	I t t t					
:	pmasacn	! :				

[“m i

Fig. 3. Sequence diagram from entering a web service rule to querying GloServ

“any restaurant that has delivery”, “any restaurant that is open 24 hours” and
“any cultural exhibition that is free and is not crowded”. Boolean constrains
can be applied to class properties or types, which depends on the ontology’s
structure and is transparent for end-users. An example of boolean property is
the above-mentioned delivery property whose domain is the restaurant class.
Boolean constrains on class types restrict inherited types as for example “any
restaurant that is southamerican” subscribes to restaurants that are subclasses
of the southamericanRestaurant class.

12 V. Beltran, K. Arabshian and H. Schulzrinne

5 Event-Based Context-aware Web Service Composition
System

Integrating web service rules into SECE brings out exciting possibilities in the
Semantic Web. This permits end-users to define and personalize context-aware
web service discovery, invocation and composition based on a variety of events.
SECE provides a set of actions for users to build up compositions. Some ac-
tions interact with web services, such as tweet, publish and email; other actions
send protocol-specific requests, such as call (i.e., SIP INVITE); and others are
supportive routines. The set of web services with which SECE communicate is
static and the communication is hard-coded. Therefore, SECE compositions are
static in the sense that, once a composition is created, it will not change. We are
planning to incorporate dynamic compositions to SECE through automatic web
service discovery and composition. Two new SECE actions will add this func-
tionality: find and plan for discovery and composition, respectively. An example
rule is shown below, in which the plan and find commands are pseudo-code be-
cause they have not been implemented yet. In this example, whenever a new
flight is found, other web services are discovered (i.e., hostels, car rentals and
restaurants) and composed (i.e., trip planning). Note that the plan action could
invoke find to discovery web services that are necessary for the composition. As
the discovered web services and the communication with them can be different
each time the composition is executed, we say that this composition is dynamic.

Any domestic flight that is cheaper than 2008 and whose date is after June 1, 2011 {
p=plan flight with hostel and car rental;
r=find good restaurants according to $p;
email me “new plan found” “Details: $p $r”;
sms me “New Plan discovered. See email inbox for details!”;

With these two new actions, SECE could perform semantic web service dis-
covery and composition that does not need user interaction to be executed; it is
automatically triggered by events. In addition, this would also allow combining
static and dynamic composition. For example, the rule above provides dynamic
composition through the plan and find actions and static composition through
the email and sms actions. As the Semantic Web is not widely adopted yet,
hybrids platforms like SECE are necessary to offer users flexible and powerful
composition tools. Table 1 indicates the types of composition that SECE already
supports (white column) and will support in the future (gray columns). Rows
define the events that trigger the compositions and columns the types of web
service communication in the compositions.

For dynamic compositions, SECE will interact with web services automat-
ically, by retrieving their models and, according to their WSDL specifications,
constructing HTTP requests. Figure 4 outlines the main interactions between
SECE, GloServ, front-end applications and web services. We assume that end
users are connected to front-end applications, which detaches users from SECE
and offers more flexibility. Front-end applications retrieves user data from SECE
and allows users to create their rules probably by means of more fancy graphical

Ontology-based User-defined Rules and Context-aware Service Composition 13

Table 1. Types of SECE composition

Semantic service
communication

Hard-coded service
communication

Both kinds of com-
munication

Web service

Dynamic composition

Static composition

Mixed composition

real-world events

events (typical SECE

events triggered by discov-||triggered by discovered||triggered by discovered
ered web services web services (current||web services
contribution)
Other Dynamic composi-||Static composition |[Mixed composition
events tion triggered by||triggered by real-world||triggered by real-world

events

composition)

interfaces, suggestions and user preferences, for example. From the moment at
which a web service rule is entered in SECE on, SECE will periodically com-
municate with GloServ for discovering the web services that match the rule. In
this frame, GloServ is the discovery agency and SECE is the service consumer in
Figure ?77. A GloServ request specifies the web service of interest as a SPARQL
query and matched services’ profiles, if any, are sent to SECE into a GloServ
response. If a new web service matches a rule, SECE executes the rule’s body.
Section 4.1 describes in more detail how we implement web service rules and
events. Section 6 describes the SECE architecture and the necessary extensions

to implement the described system.

Automatic service
invocation

Automatic service

discovery HTTP request/

response

7 Service model
(WsDL)

GloServ response

GloServ (Service profile)

GloServ request

(SPARQL) context

Fig. 4. SECE, GloServ, front-ends applications and web services

User g

14 V. Beltran, K. Arabshian and H. Schulzrinne

5.1 Architecture

SECE has a layered architecture as Figure 5 shows. SECE is being developed
in Java due to its extensive libraries and support for all operating systems. The
network layer contains the communication protocols. The Java runtime envi-
ronment and the Java libraries layers constitute the platform on which all of
the components rely. Figure 5 only shows some relevant Java libraries such as
ANTLR, which is used by the language compiler, JACL [21] that is a Tcl imple-
mentation in Java, JAINSIP for SIP signaling and GDATA to access the Google’s
web services. The Service Agent Layer contains the agents that accomplish con-
venient functions by communicating with external web services. For instance,
the Gmail agent send emails and the GMaps agent performs direct and reverse
geo-coding. The Context Mediator Layer monitors changes in web services and
accordingly generate SECE events. The SECE Core Layer provides all the logic
for handling and executing SECE rules. This offers APIs to obtain user context,
subscribe to events, execute actions and call service agents. The Jena Ontology
Model is a database that contains all the ontology schemes, which relies on the
Jena Framework [18]. The Actions Interpreter executes rule actions. The rule
event broker receives event subscriptions from rules and redirects them to the
CM orchestror. The CM orchestror is an intermediate point between the context
mediators, which generate events, and the SECE Core Layer. Based on the kind
of event, this requests a proper Context Mediator to monitor the event. When a
subscribed event occurs, the CM orchestror is notified from the responsible Con-
text Mediator and it, in turn, notifies the Rule Event Broker, which eventually
lets the subscribed rules know about the new event. Rules can retrieve user con-
text (such as personal data, presence and friends) and request the SA orchestror
to perform some functions on their behalf (e.g., geo-coding). The SA orchestror
coordinates the service agents to accomplish tasks. The Plugin Enabler com-
ponent will be responsible for extending SECE dynamically in the future. The
Rules Layer contains the rule instances that are subscribed to SECE events.

The new components that have been added to the SECE architecture in the
presented proposal are: The WBRL rule, which implements the web service rule
described previously, the Jena Ontology Model, which contains the necessary
ontologies’ schemes, the GloServ Service Agent, which is in charge of one-time
service discovery and composition, and the GloServ Context Mediator, which
periodically pulls GloServ for checking out new web services of interest. The
GloServ Service Agent and Context Mediator translate SECE events as SPARQL
queries which they send to GloServ.

6 Future Work

To this point, the architecture described in Section is partially implemented. We
have already integrated the Jena ontology database into SECE, which stores the
web service ontologies that GloServ provides. The GloServ Context Mediator has
already been developed and is working in SECE. The generic SECE sublanguage
for web service events has been implemented and tested. Apart from web services,

Ontology-based User-defined Rules and Context-aware Service Composition 15

ACTIONS JENA ONTOLOGY RULE EVENT
INTERFRETER MODEL BROKER "

5A ORCHESTROR PLUGIN ENAELER CM ORCHESTROR
W

GMAIL || GMAPS FACEBOOK | | GLOSERV,

GVOICE TWEETER GCAL MOBICENTS

A

JAINSIP . ANTLR . GDATA . JACL
L R IE [RONMENT
SIP . S]MPLE‘ HTTP

Fig. 5. SECE architecture

this language permits to define events about any entity defined by an ontology
in SECE. There are still many tasks to tackle for implementing our proposal.
Let us summarize the main next steps:

Subscription-based communication between SECE and GloServ: For the
sake of scalability, GloServ should be extended to support web service sub-
scription requests and so to avoid SECE sending periodic pull requests.

Implementation of service composition logic: SECE will be capable to com-
pose web services automatically, given certain service capabilities or proper-
ties.

Implementation of find and plan commands: The syntax of these actions
need to be defined and the actions themselves have to be integrated into
the Actions Interpreter. The logic of one-time web service discovery is al-
ready implemented for the find command. However, the logic of web service
composition needs to be implemented.

Implementation of the communication between SECE and front-ends:
Front-ends will need to be able to retrieve user context from SECE, such as
personal data, buddy lists and presence. As well, Front-ends will need to
send SECE the rules that users enter into the system. SECE will, in turn,
parse the rules and reply to the front-end with a success or fail response.

Mechanism for plugging new rules into SECE dynamically: Although SECE
offers a set of in-built rules, front-ends may want to offer more sophisticated
rules, for example, by combining multiple kinds of events. To allow front-ends
to add new rules dynamically, SECE would have to provide proper interfaces
to subscribe to events, obtain user context and interact with SECE core
functions. Although this is a tricky issue that requires an extensive study,
we envision the use of ontology schemes and semantic paths for providing a
high-level interface to SECE data that is independent from any underlying
document structure.

16 V. Beltran, K. Arabshian and H. Schulzrinne

Mechanism for dynamic suggestions and learning of SECE rules: SECE
could provide front-ends with rules’ ontological models that let them reason
about rule semantics. Thus, front-ends could learn new SECE rules auto-
matically and offer end users suggestions and support in rule construction.

7 Conclusions

The Semantic Web is investing much effort in developing standards for provid-
ing automatic web service discovery and composition. Although many authors
have been interested in this exciting topic in the last decade, there is not any
complete solution yet. Most of authors describe or propose theoretical works.
The few works that present real implementations are partial solutions, domain-
specific or lack of some desired features such as the following ones. There is
a strong need of general-purpose platforms for automatic web service discov-
ery and composition. Such platforms should provide intuitive and user-friendly
interfaces that do not require engineering or technical skills. Besides template-
based composition, end users should be able to orchestrate service composition.
Service discovery and composition should be user-centric, context-aware and
proactive (i.e., without human interaction). To face all these needs, we present a
context-aware, event-based platform for service discovery and composition. This
platform results from integrating two existing solutions: SECE and GloServ.
SECE is a user-centric, context-aware platform for service composition that pro-
vides a natural-English-like language for creating event-based rules. GloServ is a
scalable network for web service discovery. We implemented the communication
between GloServ and SECE. We extended SECE with an ontology database that
stores the web services’ schemes that come from GloServ. We developed a SECE
sublanguage to subscribe to web services. This is independent from specific web
services and therefore new kinds of service can be added transparently. We de-
scribed the whole platform and the advantages it can bring to the Semantic
Web. This allows subscribing to web service discovery events by creating rules
in a user-friendly language that looks like natural English. This makes SECE
suitable for non-technical users. SECE also allows creating service compositions
that can be triggered by discovered web services and real-world events such as
context changes, location, time, etc. SECE makes the current and future seman-
tic web meet by mixing typical and semantic web services. This fact along with
the integration of real-life events with web service discovery and composition
is a key step to incorporate the Semantic Web into users’ life. Moreover, the
synergistic combination of SECE and GloServ paves the way for future exten-
sions. SECE can be decoupled from front-end applications so that more fancy
graphical interfaces can be built on top of it. Modeling SECE rules ontologically
can provide front-ends with the means of understanding and learning new SECE
rules automatically.

Ontology-based User-defined Rules and Context-aware Service Composition 17

References

1.

2.

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony
services,” Internet Computing, IEEE, vol. 3, pp. 63-72, May/Jun 1999.

Xijaotao Wu and Henning Schulzrinne, “Programmable End System Services Us-
ing SIP,” Conference Record of the International Conference on Communications
(ICC), May 2003.

L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, and L. Reveillere, “Language
Technology for Internet-Telephony Service Creation,” in Communications, 2006.
ICC ’06. IEEE International Conference on, vol. 4, pp. 1795-1800, June 2006.

F. Latry, J. Mercadal, and C. Consel, “Staging telephony service creation: a lan-
guage approach,” in IPTComm ’07: Proceedings of the 1st international conference
on principles, systems and applications of IP telecommunications, (New York, NY,
USA), pp. 99-110, ACM, 2007.

W. Jouve, N. Palix, C. Consel, and P. Kadionik, “A SIP-Based Programming
Framework for Advanced Telephony Applications,” in IPTComm (H. Schulzrinne,
R. State, and S. Niccolini, eds.), vol. 5310 of Lecture Notes in Computer Science,
pp- 1-20, Springer, 2008.

D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A generative programming
approach to developing pervasive computing systems,” in GPCE ’09: Proceedings
of the eighth international conference on Generative programming and component
engineering, (New York, NY, USA), pp. 137-146, ACM, 2009.

A. K. Dey and G. D. Abowd, “CybreMinder: A Context-Aware System for Sup-
porting Reminders,” in HUC ’00: Proceedings of the 2nd international symposium
on Handheld and Ubiquitous Computing, (London, UK), pp. 172-186, Springer-
Verlag, 2000.

“task.fm Free SMS and Email Reminders.” http://task.fm.

S. Ponnekanti and A. Fox, “Sword: A developer toolkit for web service composi-
tion,” in Proc. of the Eleventh International World Wide Web Conference, Hon-
olulu, HI, 2002.

J. Soriano, D. Lizcano, J. Hierro, M. Reyes, C. Schroth, and T. Janner, “Enhanc-
ing user-service interaction through a global user-centric approach to SOA,” in
Networking and Services, 2008. ICNS 2008. Fourth International Conference on,
pp- 194203, IEEE, 2008.

“Yahoo pipes.” http://pipes.yahoo.com/pipes/.

R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore, and M. Wagner, “Having Ser-
vices ” YourWay!”: Towards User-Centric Composition of Mobile Services,” Lecture
Notes in Computer Science, vol. 5468/2009, pp. 94-106, 2009.

“SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE).” http:
//datatracker.ietf.org/wg/simple/charter/.

“About SIP Express Router.” http://www.iptel.org/ser/.

O. Boyaci, V. Beltran, and H. Schulzrinne, “Bridging communications and the
physical world: Sense everything, control everything,” in Proceedings on the IEEE
Globecom (UbiCoNet Workshop), December 2010.

J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit. Upper Saddle River, NJ:
Addison-Wesley, 2nd ed., 2009.

B. Desruisseaux, “Internet Calendaring and Scheduling Core Object Specification
(iCalendar).” RFC 5545 (Proposed Standard), Sept. 2009. Updated by RFC 5546.
“Jena - A Semantic Web Framework for Java.” Website. http://jena.
sourceforge.net/index.html.

18

19.

20.

21.

V. Beltran, K. Arabshian and H. Schulzrinne

T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Bookshelf, 2007.

W3C, “SPARQL Query Language for RDF.” Website, January 2008. http://www.
w3.org/TR/rdf-sparql-query/.

I. K. Lam and B. Smith, “Jacl: a Tcl implementation in Java,” in TCLTK’97:
Proceedings of the 5th conference on Annual Tcl/Tk Workshop 1997, (Berkeley,
CA, USA), pp. 4-4, USENIX Association, 1997.

