LexOnt: A Semi-automatic Ontology Creation Tool for Programmable Web

Knarig Arabshian
Bell Labs, Alcatel-Lucent
Murray Hill, NJ

Abstract

We propose LexOnt, a semi-automatic ontology cre-
ation tool for a high-level service classification ontol-
ogy. LexOnt uses the Programmable Web directory as
the corpus, although it can evolve to use other cor-
pora as well. The main contribution of LexOnt is its
novel algorithm which generates and ranks frequent
terms and significant phrases within a PW category by
comparing them to external domain knowledge such as
Wikipedia, Wordnet and the current state of the ontol-
ogy. First it matches terms to the Wikipedia page de-
scription of the category and ranks them higher, since
these indicate domain descriptive words. Synonymous
words from Wordnet are then matched and ranked. In
a semi-automated process, the user chooses the terms it
wants to add to the ontology and indicates the properties
to assign these values to and the ontology is automati-
cally generated. In the next iteration, terms within the
current state of the ontology are compared to terms in
the other categories and automatic property assignments
are made for these API instances as well.

Introduction

In recent years, the availability of services on the World
Wide Web has surged. In order to make good use of
these services, both human and software consumers require
knowledge about existing services. Thus, the need for auto-
matic service discovery and composition is critical. A cur-
rent technological trend is creating web service mashups.
The concept of a mashup is to allow users to create their
own content from different types of sources such as web-
sites, RSS Feeds!, or Flickr2. A user is able to filter tailored
information on a personal page to view and share with oth-
ers. It is not necessary for a user to know how to create
websites, but can do so simply by bringing different com-
ponents together via a simplified user interface. For exam-
ple, the Google Maps API? is often used in conjunction with
location-based web services.

Copyright (©) 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'RSS Feeds: http://www.rssboard.org/rss-specification (ac-
cessed Jan 24, 2012)

2Flickr: http://www.flickr.com (accessed Jan 24, 2012)

3Google Maps API: http://code.google.com/apis/maps/index.html

(accessed Jan 24, 2012)

Peter Danielsen
Bell Labs, Alcatel-Lucent
Naperville, IL

Sadia Afroz
Drexel University
Philadelphia, PA

Currently, there are a number of web services in various
domains, such as social media or mapping services that offer
their APIs to be used in mashup applications. Programmable
Web* is one such directory that offers a listing of Web ser-
vice APIs. Programmable Web classifies APIs in a flat cat-
egorization where each API is manually classified within a
single service category. Search is limited to attributes such
as protocol or messaging type and is not related to seman-
tic attributes of the service category. Thus, service discovery
and composition within the ProgrammableWeb directory is
a challenging process, since it requires considerable manual
effort to locate services, understand their capabilities and
compose mashup applications. Furthermore, every site has
its databases modeled in a specific way, causing semanti-
cally equivalent properties to be defined differently, since
data is not easily shared across different domains in the In-
ternet.

We enhance the service descriptions by using an ontology
to describe each service category. The main benefits in using
an ontology to describe services are that it provides struc-
ture and semantics to service metadata which allows it to be
easily classified and shared. With automated classification,
service discovery becomes seamless even as more services
are added or the ontology changes. Also, services can be
discovered according to specific attributes, which is useful
when composing services in mashup applications. Further-
more, service metadata can be shared across different do-
mains. If a service description for a “Travel” or “Mapping”
service is stored in a generic ontology repository, a mashup
application can easily compose these types of services by
finding its description within a repository. Thus, with an on-
tology description, an API can be automatically classified
and queried by its attributes resulting in automated service
discovery and composition.

One of the difficulties in using ontologies for describ-
ing a service domain is in creating a generic classification
that describes the service class and its high-level properties.
Currently, most of the semi-automated ontology generation
tools either have an established taxonomy or a structured
corpus, such as in the fields of biology and medicine which
aid domain experts in creating ontologies. Furthermore, the

“Programmable Web: http://www.programmableweb.com (ac-
cessed Jan 24, 2012)

tools that analyze generic text to semi-automatically create
an ontology, create taxonomic hierarchies but do not indi-
cate property descriptions of the classes. We discuss this in
the related works section. As we have indicated above, there
is a need for high-level classification ontologies of different
service classes or domains and their high-level properties but
the current state of the art does not accomplish this. Thus, in
order to make the use of ontologies for web service descrip-
tions prevalent, a tool is required that will allow anyone to
create a high-level ontology description of a domain given a
corpus of data.

We propose LexOnt, a semi-automatic ontology creation
tool that suggests high-level property terms for a given ser-
vice class which distinguish it from the rest of the cate-
gories. Although we have tested this tool using the PW ser-
vice directory, we anticipate that LexOnt can be applied to
all types of unstructured text corpora describing a certain
domain. The main contribution of LexOnt is its novel algo-
rithm which takes as its input unstructured text of a given do-
main and generates and ranks frequent terms and significant
phrases within a PW category as candidate object property
assignments by comparing them to external domain knowl-
edge within Wikipedia®, Wordnet® and the current state of
the ontology. LexOnt can thus be used to semi-automatically
create ontologies even if the ontology engineer is not nec-
essarily an expert of a certain domain, since the terms and
phrases it suggests to the user are those that are common
within the corpus and the domain.

LexOnt accomplishes this by initially generating a list
of terms and phrases obtained by well-known NLP algo-
rithms such as TF-IDF (Salton and Buckley 1988) and sig-
nificant phrase generation. It then matches these terms to
the Wikipedia page description of the category and Word-
net synonyms and ranks them higher, since these indicate
domain descriptive words. In a semi-automated process, the
user chooses the terms it wants to add to the ontology and
indicates the properties to assign these values to and LexOnt
generates the appropriate ontology entities. In the next itera-
tion, terms within the current state of the ontology are com-
pared to terms in the other categories and automatic property
assignments are made for these API instances as well. We
describe the details of LexOnt’s algorithm, implementation
and results in this paper.

Related Work

Most of the related work closest to our work involves semi-
automated ontology creation for taxonomic hierarchies or
domains that already have some kind of structural descrip-
tion. Machine learning and NLP techniques are used on
text corpora alongside an already existing ontological de-
scription of the domain to generate an ontology for that
specific dataset. There is work that uses clustering for
semi-automatic construction of ontologies from parsed text
corpora (Bisson, Nedellec, and Canamero 2000), (Rein-
berger and Spyns 2004), for creating taxonomic hierar-
chies (P. Cimiano 2004) and for generating topic ontolo-

SWikipedia: http://www.wikipedia.org (accessed Jan 24, 2012)
SWordnet: http://wordnet.princeton.edu (accessed Jan 24, 2012)

gies (B. Fortuna 2007). The work closest to ours are those
that involve finding property relationships between concepts
or use external knowledge bases. A few systems which
do either have been proposed: TextToOnto (Maedche and
S. Staab 2000), OntoLT (Buitelaar and Olejnik 2004), and
Ontolearn (Navigli and P. Velardi 2003).

Text20nto creates an ontology from annotated texts. This
system incorporates probabilistic ontology models (POMs).
It shows a user different models ranked according to the cer-
tainty ranking and does linguistic preprocessing of the data.
It also finds properties that distinguish a class from another.
The main difference with LexOnt is that Text2Onto uses
an annotated corpus for term generation. OntoLT allows a
user to define mapping rules which provides a precondition
language that annotates the corpus. Preconditions are imple-
mented using XPATH expressions and consist of terms and
functions. According to the preconditions that are satisfied,
candidate classes and properties are generated. Again, On-
toLT uses pre-defined rules to find these relationships. On-
toLearn, like LexOnt, uses an unstructured corpus and exter-
nal knowledge of natural language definitions and synonyms
to generate terms. However, the ontology that is generated is
a hierarchical classification and does not involve property
assertions.

Thus, the main difference between LexOnt and these sys-
tems is that they either start off with some kind of anno-
tated description in addition to the text corpora or they pro-
duce a pure hierarchical ontological description and exclude
high-level property descriptions within the service domain.
LexOnt, on the other hand, starts with unstructured text of
a given service domain and uses external knowledge from
online sources such as Wikipedia and Wordnet to generate
terms. It then uses the terms from the constructed ontol-
ogy to influence the generation of future terms. Also, in our
work, we are concentrating mainly on describing service do-
mains. Although our techniques may be applied to all types
of domains, it works best for describing high-level service
domains where generic properties are shared across the sin-
gle domain.

Programmable Web Overview

Currently ProgrammableWeb maintains a collection of over
5000 APIs divided into 56 high-level categories. The API
categories are service classes such as: Advertising, An-
swers, Blog Search, Blogging, Bookmarks, Calendar, Chat,
Database, Dating, Dictionary, Email, Photo, Real Estate, So-
cial, Travel, Utility, Video, Weather, etc. A PW user registers
its service by submitting a registration form. The form con-
tains, among other things, URLSs for the provider and sample
links.. After reviewing the API, the PW team manually as-
signs it to a single category.

PW generates two HTML pages, given an API registra-
tion: provider.html is the front page of the provider’s URL
and sampleUrl.html is an HTML page published in the PW
website which has specific information for the API itself.
Throughout the paper, we denote the textual corpus as the
“API description”. The API descriptions is natural language
text without any fixed structure, since we used the text data
stripped from the HTML pages of an APL

In order to search the directory, a user can either enter
tags or search via a form. The form provides a drop-down
menu to choose the category and properties such as key-
words, data format, company, protocols. These properties,
although helpful in somewhat filtering out APIs, do not re-
ally help in searching for a service based on its semantic de-
scription. Figure 1 gives an overview of the PW search site.
The search results are usually a long list of links to possible
API matches and a brief description of each API. If the user
has a specific service in mind or wants to create a mashup
of a few services, he will have to browse through the API
site to understand what the API is about before he even be-
gins to read through the documentation to start coding. Thus,
merely the discovery process can be quite lengthy.

— -

Hot APIs » Twitter YouTube Facebook Google Maps Flickr Linkedin More » Latest |

Home APl News API Directory Mashups Community How-to Contests

Dashboard Directory Newest Most Popular By Category APl Scorecard Add AP|
Web Services Directory [Subscribs to get the latast APIs

sortby: [[IIE) Date Popularity Category

Hide Filters @
Keywords Company Protocols / Styles
| b | =l
Data Format ::::'f"‘ﬁ Managed By
=l Isearch Filter This List
Security
Shipping
Viewing 1 to 3000 of 3301 A
b Shoppin: 2 tex
APT Bipons Category Updated
OneLogin gSpreadsheet Security 2010-03-13
Storage
#blue Tiragging lservice Messaging 2011-04-23
tel ATelephony Internet 2010-04-30
Tools
10x10 PTravel T|| service Photos 2010-12-08
235 tility s i ;
123 Shaop Pro a | fware Shoppin: 2010-11-03
o Video il i
12seconds.tv Lweather | Video 2008-08-21
Web Search - -
proof -01-
140 Prool TWquElS g =2 Advertising 2011-01-12
18amail Ewiki Email 2010-01-18B

1 Nansl atar

Fucinacs avnanca tracking tonl

) M Match case

Entarnrica

201 NN7.07

Figure 1: Programmable Web Directory Search

LexOnt: A Semi-automatic Ontology Creation
Tool for Programmable Web

Motivation

The goal of LexOnt is to find high-level properties of a class
that distinguish it from other classes. Specifically, we are us-
ing the LexOnt tool to determine generic properties of ser-
vice classes in the Programmable Web directory such that
they can be categorized and searched for automatically us-
ing an ontology classification. The service classification can
be likened to the profile section of an OWL-S (OWL for
Services) (owl) ontology where a service’s semantics is de-
scribed in a high-level ontology. For future work, we will
look at describing the full service functionality of the PW
services.

To illustrate, take the Travel and Social service categories.
A typical web service that offers travel information may
have features to book flights, hotels, or cars. Other travel
sites may provide tourism advice or aggregate travel data
and compare prices. Social networking services typically

have user profiles, friend lists and some kind of sharing at-
tribute. There are many social networking services available
on the Internet today and these are distinguished by what is
being shared: photos, videos, tags, reviews, etc. Thus, the
goal of LexOnt is to enable a user to distinguish common
terms within a category such that these terms can be applied
as distinguishing features of a service domain. Once these
terms are chosen, they are added as "hasFeature” properties
to the ontology.

It is unrealistic to assume that an ontology can be created
in a purely automated fashion. Ontologies are often subjec-
tive descriptions of a given domain which require human
evaluation. However, we can semi-automate this process by
analyzing a corpus of data within a domain and aiding a
user who may not be completely familiar with a domain to
choose terms that may describe this domain, and then au-
tomating attribute creation. Furthermore, as the ontology is
being created for a domain, the information within it can
also be used to give higher weights for the terms within the
corpus that match the terms that have been instantiated in
the ontology.

Algorithms

The novelty in LexOnt’s algorithm is twofold: 1) use infor-
mation from HTML text describing service APIs, Wikipedia
articles describing that service domain and Wordnet for syn-
onymous terms as our corpus for generating a top-N list of
words and phrases that may be used toward assigning distin-
guishing service features 2) semi-automate the construction
of the ontology by labeling terms that have been assigned
manually to the ontology based on the term generation and
then creating or asserting property assignments within the
ontology for subsequent iterations. Thus, we incorporate the
current state of the ontology into the corpus of data itself to
assign higher weights or labels to those terms which are al-
ready assigned in the ontology and then regenerate a list of
terms from the text data given the current ontological terms.

Term Extraction with TF-IDF and Significant Phrases
Initially, LexOnt uses well-established NLP techniques to
extract terms from the API text descriptions that may be
used as distinguishing features of the service. Two lists are
generated: a top N list of TF-IDF ranked terms and a list of
two-termed significant phrases.

TF-IDF: Text frequency- inverse document frequency
(TF-IDF) score of a word in a corpus shows how important
the word is in the corpus. Importance of a word in a particu-
lar document depends on how frequently the word has been
used in the document and how common the word is in all the
documents in the corpus.

Significant Phrases: A signficant phrase consists of two
or more words. We chose to generate a list of these phrases,
in addition to single term TF-IDF ranked words, because we
determined in our tests that some of these phrases gave a
very good indication of high-level property descriptions. For
example, in the Advertising service class, significant terms
generated were things like: “mobile advertising,” “facebook
advertising” or “campaign advertising.” This immediately
gave a synopsis of what the API was about. Significant

phrase generation is a two-phase process. First, collocations,
terms that appear together, are determined. Then, from this
list, unique collocations are filtered out.

The Chi-square test calculates the significance of the col-
located words. It measures how often the words in a phrase
are seen together and how often they are seen alone. For
example, if in a description the word “social” appears 8
times, “stream’ appears 8 times and “social stream” appears
8 times, then “social stream” is considered as a significant
phrase as there is a high correlation of these words to be
appeared together as a phrase. To calculate chi-square prob-
ability of an n length phrase, a n-by-n table is constructed.
The x? sums the differences between observed and expected
values in all squares of the table.

Once the collocations are determined, we filter this list
and find the unique phrases to determine the distinct prop-
erties. This helps to prune out irrelevant word collocations
such as: “sign in,” “api usage,” “log out” that appear in al-
most all the API descriptions and are not important for our
purpose. We perform the following steps to find distinctive
phrases of an API:

1. Create testing sets and training sets. The testing set is gen-
erated via the API being processed. The training sets, on
the other hand, are generated using all the APIs that do not
have the same category as the API being processed. For
example, if the API being processed belongs to the Ad-
vertising category, choose APIs which are not from the
Advertising category.

2. Find frequencies of n-grams in the training set.
3. Find frequencies of n-grams in the testing set.

4. N-grams in the testing set are sorted according to their
significant score. The significant score is the z score for
binomial distribution’.

Use of external knowledge-base: Wikipedia, Wordnet
and Constructed Ontology Given the categories of an
API, external resources, like Wikipedia, Wordnet and the
constructed ontology can be used to leverage the underly-
ing concepts and properties of an API. For example, top 20
words from the Advertising Wikipedia page are: advertising,
marketing, brand, television, semiotics, advertisement, bill-
board, radio, product, bowl, sponsor, consumer, advertise,
placement, super, logo, commercial, infomercial, message,
promotion. LexOnt uses these words to rank the top terms.
For each of these terms, it then looks for synonymous terms
that may be related to it. It uses Wordnet to find synonyms
of the top-N words that are being used. Finally, it searches
through the ontology to see if there are matching terms and
if there are, labels or ranks these terms to indicate that they
have already been created. Below, we illustrate the step-by-
step algorithm for using the external knowledgebase. Table 1
also shows an example of generated terms for one of the
APIs in the Advertising category.

1. Extract Wikipedia page for each category.

7z-score for binomial distribution: http://alias-
i.com/lingpipe/docs/api/com/aliasi/stats/BinomialDistribution.html
(accessed Jan 24, 2012)

Table 1: Example of property selection: 140 Proof
Top N TF- | Advertising, marketing, brand,
IDF from | television, semiotics, advertise-
Wiki ment, billboard, radio, product,
bowl, sponsor, consumer, ad-
vertise, placement, super, logo,
commercial, infomercial

Top N TF- | ad, advertisement, advertizement,
IDF from | advertising, advertizing, advert,
Wordnet promotion, direct_mail, preview,
advertorial, mailer, newspaper_ad,
commercial, circular, teaser,
top_billing

Top N TF- | proof, Persona, Stream, Replies,
IDF from | Authors, Say, hello, Ad, Brands, so-
PW Cate- | cial, Consumers, Advertisers, Audi-
gory ence, Ads

Top N TF- | Advertisers (wiki), Consumers
IDF Ranked | (wiki), Social (wiki), Brands
based on ex- | (wiki), Ads (related), Ad (related),

ternal kb proof, Persona, Stream, Replies,
Authors, Say, Hello, Audience
Top N Signif- | stream advertising (wiki), social

icant Phrases | stream (wiki), say hello, author,
ranked based | replies, google groups, ober,
on external | michaels, proof, erik michaels,
kb persona targeting

2. Find top words based on TF-IDF ranking.
3. If a word or phrase in the API contains any of the top

Wikipedia words, rank it higher than the others.

4. Find synonymous or related terms to the list of generated

terms using Wordnet

5. If a word or phrase in the API contains any of the related

terms, rank and label these

6. If any of the generated terms lexically match terms in the

ontology, label these as well.

Semi-automatic ontology creation process LexOnt is
implemented as a Protege plugin to provide a user-friendly
interface during the interactive process of creating and edit-
ing an ontology. Thus, the user installs the LexOnt tab in
the Protege editor and can seamlessly switch to the ontology
editor tab within the Protege application.

The diagram in Figure 2 illustrates the process of ontol-
ogy creation with LexOnt. It starts with a set of PW service
categories, generates a top-N list of terms and phrases, given
the initial corpus of data and creates a list of ontology classes
based on the PW service categories. The user then creates a
few high-level object properties. In our case, we have cho-
sen an object property that indicates distinguishing features
of a service. Thus, we have created a Feature class and its
corresponding hasFeature property, which points to this
class.

The PW classes and their APIs are displayed in a list on
the side bar. When the user clicks on an API, top-N terms

and phrases appear. The user can then choose relevant terms
and enter it into the system as property-value assignments.
We have built the interface in such a way that when the user
right clicks on a term, he can either search for it in the orig-
inal corpus to see how it is used or assign it as a possible
property value in the ontology. For example, if the user sees
that the phrase “mobile advertising” is relevant, it can right
click on the term, choose the appropriate property to as-
sign this term to, which is hasFeature and then click on
the ”Find” button. This displays all the locations in the API
which have this term in it. The user can also do a search for
this term in all the other APIs within a category.

Matches within all the APIs are displayed in a table that
can be edited by the user. Once the user chooses the terms
that best describe the APIs and edits it, it clicks on the ”Cre-
ate” button which automatically creates instances of APIs
within that category and assigns the relevant terms chosen
to the hasFeature property.

3) Lexont LexOnt Protege Plugin programmal mu%
automatically creates 4) LexOnt uses the constructed PW API
ontology entities ontology, API corpus and Description
external knowledge to
further refine the terms J

1) LexOnt
generates top
N words and

significant

) phrases from

corpus and
external

knowledge

base

2) User selects
terms as
properties and
edits in the
creation view
editor.

External Knowledge

Figure 2: Ontology Creation Process with LexOnt

Example An example of property assignments for the
140Proof API instance is illustrated in the snapshot in
Figure 3. The figure shows that the /40Proof API in-
stance belongs to the Advertising_Service class and has fea-
tures from the Social_Stream_Advertising_Feature and Per-
sona_Targeting_Advertising_Feature classes which are both
subclasses of the Feature class.

This example not only shows how the instances are be-
ing assigned, but how the Advertising_Feature class has
been constructed. As terms are chosen from the corpus
and assigned as properties to individuals, the Advertis-
ing_Feature class is constructed automatically as well. Thus,
it can be seen that LexOnt has determined that the Advertis-
ing_Service class can have advertising features such as ban-
ner, campaign, cloud, contextual, facebook, etc.

EEE

FrrzEEii

=hasApiName *140 ProofAtstring

@

Figure 3: Ontology snapshot for the 140 Proof API Instance

Implementation and Evaluation

LexOnt was implemented using three different Java APIs.
The Lingpipe API® was used for the NLP algorithms
to generate TF-IDF terms and Significant Phrases. The
Protege plugin GUI was implemented using the Protege
API (Knublauch et al. 2004). Finally, the ontology genera-
tion code was implemented using the latest version of the
OWL-API (Bechhofer, Volz, and Lord 2003) which also
handles the next generation of OWL 2 (Grau et al. 2008).
As a future paper, we will discuss the contributions we have
made in creating a user-friendly interface for semi-automatic
ontology creation. Currently, only OntoLT has been imple-
mented as a Protege plugin, but is now incompatible with
the current version of Protege. Since Protege is a robust on-
tology editor, having LexOnt as a Protege plugin tab has sig-
nificantly improved the ontology creation process.

We tested for three things when evaluating LexOnt: the
precision/recall of the TF-IDF term and Significant Phrase
generation; how helpful the external knowledge base was
when choosing terms; and whether or not the terms were
used in their exact form, similar form or different forms. The
results are seen in tables 2, 3, 4 respectively.

The categories that were used to generate the terms were
chosen according to specificity, number of APIs and a priori
knowledge of the domain. The Advertising and Real Estate
service categories each had a manageable number of APIs,
on average around 40 APIs. These categories are also specif-
ically defined domains that had comprehensive Wikipedia
pages. Additionally, the co-author who created the ontology
for these categories did not have much knowledge about ei-
ther of these domains. We then chose two categories that
the ontology creator was familiar with: Travel and Social.
The former had around 75 APIs and the latter had over 200
APIs. Finally, we chose a generic Utility category which had
65 APIs and had a hodgepodge of various services with no
corresponding Wikipedia page.

8 Alias-i. 2008. LingPipe 4.1.0. http://alias-i.com/lingpipe (ac-
cessed Jan 24, 2012

Table 2: Precision/Recall Stats

Category Sig. TF- Recall
Phrase | IDF

Advertising 398% | 2.77% | 43.88%

Real Estate 1.02% | .92% 9.57%

Social 321% | 2.8% 20.19%

Travel 1.96% | 2.4% 30.91%

Utility 9.58% | 3.83% | 34.91%

Table 3: Percentage of terms used from KB

Category Sig. TF-
Phrase | IDF
Advertising 41.38% | 52.73%
Real Estate 100% 100%
Social 31.90% | 11.38%
Travel 82.26% | 72.73%
Utility 0% 0%

Table 2 showed that on average, the precision of gener-
ated terms was around 4% for Significant Phrases and 3%
for TF-IDF terms. The recall for both was around 28%. Al-
though these numbers are not very promising in and of them-
selves, when looking at Tabel 3 to see how these match to
the external knowledge base, the results are quite promis-
ing. For the categories with external KBs, the percentage of
terms matching KB terms were between 30 and 100 per-
cent for Significant Phrases and 11 and 100 percent for
TF-IDF terms. We also determined that for the categories
with a smaller API set and well-defined Wikipedia pages,
these numbers were quite high. Thus, it was quite feasible to
quickly assess distinguishing features of a category just by
looking at the generated terms and how well they matched
the external KB.

For the Social category, the percentage of terms used from
a KB was not as high because there was a lot of variance
within this cateogry. Social APIs varied widely between
what was shared. Aside from the usual friends, blogs, sta-
tuses, tags, photos and videos, there were APIs that shared
other types of items such as wine lists, books, courses or
fashion. The Utility category didn’t have a corresponding
Wikipedia page and thus we relied heavily on the TF-IDF
and Significant phrase generation and finding these terms
within the original corpus via the LexOnt interface in order
to determine what the API features were.

Finally, we tested to see how these terms were actu-
ally assigned within the instances. Thus, we checked to see
whether these matches were exact, similar or completely dif-
ferent. For example, if LexOnt produced a term “mobile”
but the actual ontology assignment was “mobile advertis-
ing,” this would count as a similar match. From our results,
we saw that the percentage of equal and similar matches for
individuals were quite high for all the categories. However,
the percentage of different matches varied. Again, we can
see that for a category that has a wide variety of data, such
as in Social, the percentage of differing terms ranked higher
than the others.

Table 4: Term Usage

Category Equal | Similar | Different

Terms | Terms | Terms
Advertising 85.71% | 100% | 65.71%
Real Estate 16.67% | 91.67% | 66.67%
Social 1.73% | 86.9% | 79.1%
Travel 6.25% | 100% 2.3%
Utility 5% 60% 50%

Discussion

LexOnt has shown to be an effective tool for semi-automated
ontology creation. From our initial results, we have deter-
mined that using an external knowledge base to filter out
generated terms and phrases greatly increases the accuracy
of the feature selection. It also helps in understanding the
common terms within a corpus. We will continue to test Lex-
Ont for the other categories and compare results.

Future Work and Conclusion

For future work, we would like to test LexOnt on other types
of corpora besides the PW directory to see how well it works
within other domains such as in medicine or biology. We
also want improve the seamless integration of LexOnt’s au-
tomated ontology creation mechanism with the user’s inter-
action. For example, when a user is in the process of creat-
ing an ontology, he should be able to save the current state
of the LexOnt tool and the tool should be aware of all the
instances created, and store information not only about gen-
erated terms that were accepted but those that were rejected
as well. This way, LexOnt will avoid false positives within
the generated terms.

Additionally, once we have a complete ontology, we will
build a querying interface to Programmable Web and test to
see how service discovery has improved with the new ontol-
ogy. Eventually, we would like to describe services not just
on a high-level but in its functional details. Allowing stan-
dard descriptions of a service’s inputs, outputs, pre and post
conditions will aid in autmomatic service composition. Once
we have the high-level discovery phase automated with this
ontology, we plan on continuing this work to see how we
can generate an ontology description of the service which
include its functional details.

In conclusion, we have presented LexOnt, a semi-
automatmic ontology generator that aids in the ontology
creation of a high-level service ontology. It uses the Pro-
grammable Web directory of services, Wikipedia, Wordnet
and the current state of the generated ontology to suggest
relevant terms that may be incorporated within the ontology.
LexOnt builds the ontology iteratively, by interacting with
the user, taking in terms that the user has chosen, adding
these to the ontology and ranking terms according to the ex-
ternal knowledge base. From our initial findings, we have
determined that LexOnt is a useful tool to generate a high-
level ontology description of a domain, specifically for users
who are not domain experts.

References

B. Fortuna, M. Grobelnik, D. M. 2007. Ontogen: Semi-
automatic ontology editor. In Human Interface, Part II, HCII
2007.

Bechhofer, S.; Volz, R.; and Lord, P. 2003. Cooking the
semantic web with the owl api. The Semantic Web-ISWC
2003 659-675.

Bisson, G.; Nedellec, C.; and Canamero, L. 2000. Designing
clustering methods for ontology building: The mok work-
bench. In Ontology Learning Workshop, The 14th European
Conference on Artificial Inteligence (ECAI).

Buitelaar, S., and Olejnik, D. 2004. A protege plug-in for
ontology extraction from text based on linguistic analysis.
Grau, B.; Horrocks, I.; Motik, B.; Parsia, B.; Patel-
Schneider, P.; and Sattler, U. 2008. Owl 2: The next step
for owl. Web Semantics: Science, Services and Agents on
the World Wide Web 6(4):309-322.

Knublauch, H.; Fergerson, R.; Noy, N.; and Musen, M.
2004. The protégé owl plugin: An open development envi-
ronment for semantic web applications. The Semantic Web—
ISWC 2004 229-243.

Maedche, A., and S. Staab, S. 2000. Semi-automatic engi-
neering of ontologies from text. In /2th International Con-
ference on Software Engineering and Knowledge Engineer-
ing.

Navigli, R., and P. Velardi, A. G. 2003. Ontology learning
and its application to automated terminology translation. In
IEEE Intelligent Systems, vol. 18:1.

Owl-s (semantic markup for web services).

P. Cimiano, A. Pivk, L. S.-T. S. S. 2004. Learningtaxonomi-
crelations from heterogeneous evidence. In Ontology Learn-
ing and Population Workshop The 16th European Confer-
ence on Artificial Inteligence (ECAI).

Reinberger, M., and Spyns, P. 2004. Discovering knowl-
edge in texts for the learning of dogma-inspired ontologies.
In In Proceedings of the Ontology Learning and Population
Workshop, The 16th European Conference on Artificial In-
teligence (ECAI).

Salton, G., and Buckley, C. 1988. Term-weighting ap-

proaches in automatic text retrieval. Information processing
& management 24(5):513-523.

