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Abstract—Cloud providers sell identically configured virtual
machines (VMs) for the same price. Customers purchasing
these VMs expect that they perform similarly and are allocated
the same amount of virtual resources.

In practice, however, the real performance of identically
provisioned VMs depends on the underlying hardware, i.e., how
the hardware is configured, and how much shared resources
are consumed by co-located VMs. As workloads often have
different resource requirements (e.g., CPU or disk I/O bound),
a physical machine can be a better host to one VM than
another, and swapping the locations of the two VMs can
improve the performance (or any other metrics) of both VMs.
However, cloud providers are unlikely to offer a VM swapping
service since it is a tacit admission of providing different quality
of services while charging the same rate.

We propose, VBoom, a cloud provider-agnostic system in
which VMs can dynamically relocate themselves (via location
swapping) in a cloud environment if the new location better
serves the needs of the VM. We discuss technical and business
benefits and challenges in building such a system. When
location matters, we believe that through VBoom, real estate
of virtual machines can be established in a completely market-
driven fashion.

I. INTRODUCTION

In the Infrastructure-as-a-Service (IaaS) cloud service
model, users can obtain on-demand resources by rapid pro-
visioning of virtual machines. VMs of one user are typically
co-located with VMs of other users on a physical host,
especially in a public cloud. Each identically configured
VM (e.g., medium EC2 instance [5]) is expected to achieve
similar performance for CPU, memory, disk and network
I/O irrespective of its location within the cloud, i.e., the
physical machine where the VM is provisioned. However,
a cursory look at the SLAs of cloud providers such as
Amazon [5], Rackspace [6] and Azure [7] indicates that
they do not provide any performance guarantees. Further,
there are several experimental studies which indicate that
the performance of identically provisioned VMs varies in
EC2. Barker et al. [8], [12] showed variations in CPU, disk,
and network performance of a single instance in EC2 over a
period of several days which they attributed to failure of per-
formance isolation. Dittrich et al. [12] observed performance
differences across availability zones and sites1 in EC2 and

1A site is a physical location containing availability zones which are
supposed to be isolated from each other.

point the underlying hardware differences as the root cause.
In addition, they also observed performance differences
across similar instances within the same availability zone.

In this paper, our goal is to leverage the performance
difference among identically provisioned VMs, that can be
hosted either by the same cloud provider or by different
cloud providers, to their advantage in a provider agnostic
manner. The key observation is that since workloads are
different, their resource needs may also be different and
vary with time. For example, some workloads may be
CPU-intensive while others may be more network or disk
intensive. The difference in resource requirements of VMs
due to their myriad workloads imply that, at any moment
in time, a ‘bad location’ (i.e., a physical host) for one VM
might be a good location for another VM. Consequently, the
performance (or other metrics) of both VMs can be improved
by swapping the physical hosts of two VMs.

We propose a system called VBoom, which allows VMs
to take advantage of performance differences within the
same or different clouds in a provider-agnostic manner.
Our system comprises distributed Agents and a centralized
Broker. The agents run on VMs interested in participating
in location optimization. The centralized broker is used by
agents to discover other participating VMs, verify infor-
mation reported by agents, facilitate negotiations between
agents, and if agreed by both parties, securely swap VMs.

The rest of the paper is organized as follows. Sections
2 discusses the pros and cons of VM relocation methods,
including provider-assisted migration and swapping. Section
3 describes the design and implementation of VBoom,
and Section 4 shows our experimental results. Section 5
discusses the economics and ownership issues in VBoom.
Related work is described in Section 6.

II. MOVING VIRTUAL MACHINES ACROSS PHYSICAL
HOSTS

There are multiple ways of moving virtual machines
across physical hosts. We discuss these options and their
pros and cons in the following sections. Even though we
advocate for a provider-agnostic approach, VM relocation is
relatively ‘easier’ with provider assistance.



A. Provider Assisted Migration

The most obvious approach of moving across physical
hosts is to perform live or offline migration of VMs with
the assistance of cloud providers, using technologies such
as VMotion [4]. However, this mechanism requires expos-
ing the underlying physical infrastructure and a (partial)
hypervisor-level control to the customer, which is not de-
sirable from the cloud provider’s perspective. Moreover, it
may not be possible to move VMs across cloud providers as
not all providers may expose this functionality. Nevertheless,
this approach is the least disruptive and the cleanest way to
move virtual machines.

B. Few From Many Provisioning

One can resort to a brute force approach by provisioning
a large number of virtual machines, measuring their perfor-
mance, picking the best performing ones, and decommis-
sioning the rest. This approach has several problems: i) the
result is largely dependent on where new virtual machines
are provisioned (lack of randomness in the placement al-
gorithm can yield poor result), ii) the cost of provisioning
a large number of virtual machines can be prohibitive, iii)
in a highly utilized environment, location of the newly
provisioned virtual machines can be severely constrained,
and iv) the performance of VMs may vary as the workload
running in the co-located VMs changes.

The most obvious problem with this approach is its high
cost. Even though most clouds use the pay-as-you-go model,
users are commonly charged at an hourly granularity. For
example, if a user creates 100 VMs for only a minute to
run some benchmarks before decommissioning them, he will
still be charged 100 hours of VM usage. Nevertheless, this
approach is provider-agnostic and can be a feasible solution
in determining the initial workload placement. However,
if the workload of the co-located VMs change, then the
performance of VMs may be affected. A strategy in which
few VMs are periodically selected from a large number of
provisioned VMs will likely be cost prohibitive.

C. Swapping

The third approach is to swap the locations of two
consenting virtual machines after incentives have been ne-
gotiated and accepted by both. Unlike the ’few from many’
approach, finding a better location for a virtual machine
no longer depends on the randomness of the initial virtual
machine placement, but rather on finding a cooperating
virtual machine that occupies a better location and can be
persuaded to trade its location.

Similar to migration, swapping two virtual machines
can be easily done if hypervisor-level control is acquired.
Luckily, “live swapping” is not difficult to emulate without
it, which is the focus of this paper.

Swapping two virtual machines’ locations (VM1 and
VM2) is essentially the same as swapping their persistent
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Figure 1. Swapping two virtual machines.

storage, i.e., when VM1 boots from a disk partition that
contains VM2’s data and vice versa, VM1 and VM2 for all
practical purposes have exchanged locations2. Swapping two
disk images can be done through a temporary storage, e.g.,
(tmp = Disk1, Disk1 = Disk2, Disk2 = tmp). Swapping
two virtual machines via a temporary storage is illustrated
in Figure 1, and the steps in this process is listed below.

0. Reboot VM1 and VM2 to a stateless mode
1. Read data from virtual disk 1 (VD1)
2. Write VD1 content to the temporary storage
3. Read data from virtual disk 2 (VD2)
4. Send VD2 content from VM2 to VM1
5. Write VD2 content to VM1’s persistent storage
6. Read VD1 content from the temporary storage
7. Write VD1 content to VM2’s persistent storage

To maintain disk image fidelity, file system level copy is
not sufficient. One would need to perform block level copy
to preserve disk meta-data and data layout. Additionally,
before a disk partition can be copied, it needs to be in
a quiescent state, i.e., not mounted. We achieve this by
rebooting its virtual machine in a stateless mode from a
RAM disk (initrd). An agent within the RAM disk can
then copy the content from the unmounted disk partition
to the designated temporary storage via either IP network or
SAN. When the two virtual machines restart, their original
workload will now run in new locations. However, the VMs
running in the new location must use the IP addresses
of VMs that were running previously; otherwise, network
connectivity will no longer work. If those VMs were located
at the same subnet, IP addresses would be preserved without
further steps. However, if the VMs were located in different
subnets, additional steps to change IP addresses would be
required. As there are works in network virtualization area

2We assume only similarly configured and sized virtual machines can be
swapped, i.e., a small virtual machine instance cannot be swapped with a
large instance and can only swap with other small instances.



Figure 2. VBoom architecture

to address exactly this problem, we focus more on VM
swapping mechanisms in this paper.

When VMs are swapped, their ownership must also be
exchanged so that users cannot inadvertently access each
other’s VMs. Moreover, as this provider-agnostic swapping
mechanism requires a reboot, it will not be suitable for all
applications, especially those that cannot tolerate even a brief
service interruption, e.g., those in the financial sector. On
the other hand, workloads that tend to be non-interactive,
run in batch mode, and/or stateless (e.g., MapReduce tasks)
are good candidates to receive the full benefit of performing
continuous location optimization.

We discuss VBoom architecture and these issues in the
next two sections.

III. VBOOM ARCHITECTURE

In this section, we describe the architecture of our system
that is composed of distributed agents and a centralized
broker. Then, we describe the design of trustable micro-
benchmarks.

A. Broker and Agents

To enable VMs to swap their locations without provider
assistance, we suggest a framework that assists VMs to
exchange their performance information and swap their
contents. The framework includes a broker service, which
is a central server trusted by VMs, that maintains the list of
all agents participating in the VBoom network.

In order to participate in the VBoom network, an agent
running on each VM first registers itself with the broker,
and stores its network address, instance specification, i.e.,
provisioned CPU, memory, disk, network, and usage of
above resources (e.g., CPU utilization, disk throughput).
The broker stores this information in an internal database
and provides it when agents query for matching VMs. The
broker service can be compared to a real estate broker
in the real world, who maintains a list of real estate and

recommends the appropriate properties to the customers. As
an example, consider a VM that is experiencing good CPU
performance but mediocre disk and network performance.
The VM queries the broker for VMs with good disk and
network performance and advertises itself as having decent
CPU performance. The broker then finds a list of suitable
candidate VMs and returns them to the querying VM. The
broker can either return the complete set of VMs matching
the query if it is not too large or a subset based on a suitable
criteria (e.g., fairness, load distribution).

However, a broker is simply not sufficient to provide the
most accurate data of VM performance for two reasons.
First, the information can be stale because the performance
of each VM changes over time. Second, workloads running
on a VM may have specific performance requirements that
can only be determined by running an application specific
micro-benchmark. Therefore, the agents that are recom-
mended by the broker need to run an application-specific
micro-benchmark to precisely gauge their performance.

B. Trustable Micro-benchmarks

The user of the probing VM defines a set of micro-
benchmarks to gauge performance of other VMs in or-
der to determine their suitability for swap. The micro-
benchmarks can measure several properties such as CPU,
memory, network latency (RTT between two VMs), or
network bandwidth. To evaluate the CPU performance, an
agent measures the elapsed time to execute a pre-defined
function that contains a CPU-intensive calculation. Similarly,
an agent can run micro-benchmarks to gauge the disk and
network throughput.

The probing agent requests the agents running on VMs
being probed to run these micro-benchmarks and passes the
relevant executable of the benchmark. To protect against
malicious code, the micro-benchmarks can be run in a sand-
box. Alternatively, the applications can submit their micro-
benchmarks to the broker which the VMs trust. The VMs
only run the benchmarks that have been cryptographically
signed by the broker. After running the micro-benchmarks,
the probed agents return the result to the probing agent.

Once the probing agent finds a list of suitable VMs, it
sends them a swap request. The agents running on VMs
being probed must also ascertain the performance of probing
agent by requesting it to run micro-benchmark specific to
their applications. The agreeing agents can then handshake
and initiate the swap process discussed in Section II.

A problem is that the probed agents can also manipulate
the results of micro-benchmarks before they send it to the
probing agents. It is impossible to absolutely guarantee
the validity of the results unless they are run within the
hypervisor, which violates the provider-agnostic property
of VBoom. Thus, we suggest an alternative mechanism
to verify the results. Instead of rebooting a VM from any
RAM disk as discussed in Section II-C, a VM can be



rebooted from a remote disk that is under control of the
broker. In this way, the broker can prohibit users from
accessing their VMs temporarily. Then, the broker executes
the benchmarks and verifies the results reported by the
agents earlier. Since users cannot manipulate the remote
disk under the broker’s control, the benchmark results are
trustable.

IV. EVALUATION

We implemented the automated provider-agnostic swap-
ping method described in Section II-C and the VBoom
components (broker and agents) discussed in Section III,
and tested them on various hypervisors, including Xen,
KVM, and VMware. The results verified that the VBoom’s
provider-agnostic approach was successful in swapping be-
tween VMs hosted by the same type of hypervisor, and
furthermore, that swapping VMs across different types of
hypervisors is also possible if the hypervisors support full-
virtualization (e.g., KVM and VMware).

In this section, we present experimental results observed
from a private cloud operated by Columbia University. This
private cloud consists of 80 physical machines and hosts
a number of VMware instances on demand. Our experi-
mental setup used seven VMs located on different physical
machines and co-located with other VMs owned by different
users. To test a real-world scenario, we ran MapReduce
tasks using the Hadoop framework, and verified that the
VBoom approach significantly reduced the total elapsed time
by swapping underperforming VMs.

A. MapReduce Task

We ran five Hadoop nodes on different VMs - one master
node and four slave nodes. Two of the salve nodes were run
on normally performing machines, while the other two were
run on machines with disk I/O interference. The master node
ran TestDFSIO, a benchmark tool provided by the Hadoop
framework. The role of the master node was to distribute
I/O-intensive tasks to each slave node and collect statistics as
they completed their tasks. We ran a total of 22 MapReduce
tasks sequentially, with each task writing 800 MB to the
local disk.

First, without applying the VBoom swapping method,
we measured average disk write throughput on each VM
(See Figure 3(a)). The average throughput of the VMs on
normal machines was 31 MB/s, while the average for the
VM on the machine with disk interference was 18 MB/s.
Next, we ran VBoom agents on all VMs and executed the
same MapReduce tasks again. Figure 3(b) shows disk write
throughput observed for the VM with disk interference.
Near the beginning, when the throughput was found to
be less than expected (under 20 MB/s), the VBoom agent
activated its swapping process, automatically interacting
with the broker to discover the best location to swap.
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Figure 3. MapReduce task throughput

Between 300 to 800 s, the throughput went to zero while
the VM was in the process of swapping. Once the swap
was completed, the average throughput increased to over
30 MB/s and remained at that level for the rest of the
experiment. Figure 3(c) shows the time needed to complete
each task. The swapping process begins between tasks 2 and
3 and ends before task 7. Once the swapping was finished,
each task took only about 80 s to complete, with all four
slaves working at normal disk throughput. In all, our 22
MapReduce tasks took 2790 s without VBoom and 2028
s with VBoom, which is a reduction of 27%. Note that,
in general, this reduction ratio depends on the size of the
tasks and the number of VMs showing poor performance.
If the tasks are larger and more VMs are suffering from
performance degradation, the VBoom swapping method
will yield grater time reductions.



V. DISCUSSION

In this section, we discuss issues related to the economics,
swapping cost, and VM ownership.

A. Swapping Cost and VM performance

In our experiments, it took about 8 min to completely
swap two VMs. There are several ways to reduce the length
of this swap interval. For one, the content of the disk
can be compressed before it is sent over the network. For
another, the swapping VMs can be made to exchange only
those blocks that differ. The latter method is especially
effective since the VMs will often be running on the same
or similar OS in a cloud environment, and will therefore
have many identical blocks that do not need to be swapped.
Implementing and evaluating such optimizations is left to
future work.

Another issue worth addressing is the variation of VM
performance over time. When two VMs agree to swap
their locations, there is no guarantee that the performance
of those locations will remain stable across the swapping
interval. Though performance degradation is usually caused
by underlying hardware problems, and is therefore unlikely
to change after only a few minutes, it is also true that
performance variations can be caused by non-hardware
factors, such as other VMs running on the same physical
machine. To address these variations, we would need a
long-term pattern analysis of performance changes for a
given machine, and a smart optimization algorithm that can
use this analysis to reduce the risk of bad swaps.

B. Economics

We believe VBoom will introduce a new economic model
for VMs based on their locations. As we have shown previ-
ously, CPU speed, I/O performance, fault behavior, and other
characteristics of VMs can vary significantly depending on
where they are provisioned, i.e., VM real estate. Due to these
differences, some customers may choose to pay a little bit
more to secure premium VM locations while others may
relocate their VMs to less expensive locations. Relocation
services can be provided by cloud providers, however, it
makes more sense for a neutral third party to provide
such services especially for relocation across different cloud
providers.

1) A Market Place for VM Real Estate: In the previous
sections, we discussed VM swapping that can bring mutual
performance benefit. However, the number of situations
where mutual benefit can be achieved might be somewhat
limited. This situation changes when other types of in-
centives are introduced, particularly monetary incentives,
as their inclusion widens the definition of mutual benefit
beyond just basic VM performance. The willingness to
relocate VMs for an economic benefit will encourage many
customers to participate, and the resulting premium pool of

VM locations would entice more customers to participate
to satisfy any requirements that are beyond what cloud
providers can provide.

This creates a healthy market for both sellers and buyers
of a VM real estate to satisfy different needs. However, to
facilitate these transactions and ensure their security and
authenticity, a brokerage service is needed. A broker is a
trusted service, and to ensure authenticity of a transaction,
e.g., to verify the real estate that one claims is really valid,
various agents are dispatched onto VMs that are to be
swapped. Agents are simple programs or scripts that are
secure and low-overhead. The price of a VM location can
vary from time to time and is completely driven by supply
and demand, but it is also a function of the standard rate that
cloud providers set. An example scenario of VM bidding
is as follows. A customer who is willing to swap his VM
locations at a gain first registers with the broker and sets a
desired price. Another customer who wants to find better
locations for his VMs can query the broker with a set
of desired features. If there is a match and its price is
below the buyer’s budget, a swapping request is sent to
the broker to initiate the swapping operation and related
financial transactions. Also, since it is possible that there
are multiple buyers, a simple bidding system can facilitate
fair competition.

In this model, some customers pay more to secure pre-
mium locations. However, one may ask why customers
who are willing to spend more for a VM location do not
simply purchase more resources from the cloud provider.
There are two reasons. First, cloud providers usually offer
only a few coarse-granular instance types. For example, an
alternative option of a small instance in Amazon EC2 is a
large instance, which is four times more expensive than a
small instance ($0.085 per hour for a small instance and
$0.34 per hour for a large instance [2]). Second, even if a
user creates a new large instance, it will be instantiated at
a random location. Thus, it does not necessarily guarantee
the desired performance.

C. VM Ownership Transfer

In a cloud, a VM is owned by the user who initially creates
the VM. The process described in Section II-C swaps the
contents of two VMs, but does not change the ownership of
the VMs perceived by the cloud management system. This
causes several issues. First, the usage of a VM would be
incorrectly billed to its original user rather than its current
user. Second, even if the original user cannot log into the
VM, she still has control over the VM by using the cloud’s
management tool, e.g., to take a snapshot of the VM’s disk
image and gain access to its data, which becomes a security
breach.

It is obvious that, after two VMs are swapped, the
ownership of the VM must be transferred to its new user
so that the old user no longer has control over the VM.



This can be achieved in multiple ways. This capability
may be offered by a third party that provides value-add
services on top of one or more public clouds. One example
is that a third party (such as Rackspace [3]) launches VMs
in Amazon EC2 on behalf of its customers. In this case,
the third party is the real owner of those VMs from EC2’s
perspective. Then the third party can offer its own layer
of VM ownership management and allow VM ownership
transfer between its customers. In this manner, we do not
need any support from cloud providers, so that we can
preserve VBoom’s provider-agnostic feature. However, in
the future, we can expect that cloud service providers also
provide a public service to transfer the ownership of a VM
from one user to another user. It is reasonable to request
cloud providers to offer this kind of service since this
capability is generally useful even outside the context of
VM swapping (see a related topic in the Amazon Web
Service discussion forum [1]).

VI. RELATED WORK

To the best of our knowledge, there is no prior work on
consumer-driven VM swapping in a public cloud, although
there exists a large body of work on related topics such
as resource allocation and VM placement. Tang et al. [13]
developed a CPU and memory aware algorithm for dynamic
placement of Web applications in enterprise data centers.
Meng et al. [11] proposed a method for traffic-aware virtual
machine placement. Similarly, Hyser et al. [10] employed
user policies to guide VM-to-PM (physical machine)
mapping. Bobroff et al. [9] focused on reducing the number
of physical machines needed to run a set of VMs while
minimizing SLA violations. While all these studies take a
provider-centric view and use a central server for collecting
performance metrics and executing the control algorithm,
VBoom takes a consumer-driven approach to rearrange
VMs in a distributed manner.

VII. CONCLUSION

We have proposed and implemented a system, VBoom,
which measures and leverages the performance variations
among VMs to their advantage in a decentralized fashion
without any support from cloud providers. Our proposed
system comprises a central broker and distributed agents
running on VMs. An agent asks peer agents to run user-
specified micro-benchmarks to identify better locations for
its VM, and negotiation between agents happens to de-
termine whether or not incentives to both parties can be
met. If so, virtual machine locations are swapped without
any help from cloud providers. We discussed several design
challenges and security issues in VBoom. We believe that
a VBoom like approach can engender a market place for
VMs, where users can buy and sell their VMs based on the

VMs’ observed characteristics. Our prototype demonstrated
the feasibility of provider-agnostic swapping and showed
that it could significantly reduce the total runtime of sample
MapReduce tasks running in a private cloud.
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