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Abstract—Troubleshooting network problems on networked
home devices is not easy, because most devices have insufficient
computing power to run sophisticated diagnostic tools and have
no user interfaces to debug the problem directly. We propose
MoT, a network problem diagnosis platform that leverages the
collaboration of smart objects, smartphones, and computers. We
take advantage that recent devices have multiple communication
interfaces. Therefore, when a device has a problem with an
interface, it can send a probe request to other devices using
an alternative interface. We use collaborative mechanisms to
diagnose the root cause of a network problem. It can use coop-
eration from internal nodes or send requests to external nodes.
We demonstrate the feasibility of this approach by implementing
an Android application and an algorithm that diagnoses a push
notification failure.

I. INTRODUCTION

Today, not only smartphones and laptop computers but
also traditional household devices such as TVs, air condi-
tioners, lamps, and door locks are networked (smart objects).
Although the Internet grants powerful functionality to these
smart objects, the convenience instantly turns into a nuisance
when the network does not function properly and the cause
remains hidden. Troubleshooting network problems on such
devices is not easy because most devices have insufficient
computing power to run sophisticated diagnostic tools and have
no user interfaces to debug the problem directly. According to
Sundaresan et al. [1], service calls to Internet Service Providers
(ISPs) for network troubleshooting are costly ($9–$25 per call).
If the Internet of Things (IoT) environment further penetrates
the home and every household device is connected to the
Internet, this cost will increase drastically in the near future.

For general end-user computers, the diagnostic tools for
network problems can be useful to mitigate the pain of
the troubleshooting process. Existing tools include traditional
command line tools (e.g., ping and traceroute), network
diagnostic software embedded in each operating system, and
several third-party diagnostic tools [2], [3]. However, these
tools are not only difficult to use for technically non-savvy
users, but also inappropriate for home devices because they
require user interfaces such as keyboards and monitors. More-
over, some tools may execute arduous tasks such as packet
sniffing to trace and analyze the network packets [4], which
requires more memory, storage, and CPU power than the
small devices usually possess. For example, it is impractical
to connect a monitor and keyboard physically to a networked
door lock and execute ping, nslookup, and tcpdump in
order to identify the cause of its network problem. Therefore,

it is necessary to build a lightweight and user-friendly network
diagnostic tool for home networks.

We propose MoT (“Medic of Things”), a network prob-
lem diagnosis platform that leverages the collaboration of
smart objects, smartphones, and computers. The main idea
is that when a device suffers from network problems such
as DNS resolution errors, misbehavior of a Network Address
Translation (NAT) box, port blocking, and DHCP problems, it
offloads the troubleshooting task to other devices that have
more capabilities (e.g., network accessibility or computing
power). However, there is an issue of how to inform the other
devices that the problem has occurred if the network is faulty.
We note that most recent smart objects (e.g., smart TVs) have
been designed to support extra communication protocols such
as Bluetooth, ZigBee, or NFC (Near Field Communication) in
addition to Wi-Fi. Therefore, even if a device has a problem
with a Wi-Fi network, the problem can be reported to nearby
devices via other available communication interfaces. When
another device receives the problem report, and that device
has diagnostic functionality, it can start the diagnostic process
to examine the problematic device and the network. Otherwise,
it can simply forward the task to a more suitable device. For
example, if a networked refrigerator has a problem with a
Wi-Fi network, it sends a diagnosis request (like a distress
message) to a nearby laptop computer that has no network
problem. The laptop has enough memory, CPU, and user
interfaces to run a dedicated diagnostic tool and thus is better
able to diagnose the current network status.

We use a common message format as the means through
which heterogeneous devices communicate with each other
to send, forward, and receive reports of network problems.
Moreover, a device that diagnoses a problem can send probe
requests to other devices to obtain different information about
the current network state from multiple devices. To separate
the modules for rules and probing, we designed two layers:
logic layer and probe layer. This enables some devices that
have less computing power to have only the probe functionality
and others that have sufficient computing power (e.g., laptop
computers and tablets) to have both diagnostic and probe
functionality. We implemented a prototype of this platform,
including applications for Android devices and general com-
puters. The Android application uses native APIs to implement
the probe layer and adopt a Web application technology for
the logic layer. In order to obtain probe results from other
nodes located outside the home network, the software for the
general computers was developed on the basis of DYSWIS
(“Do You See What I See?”) [5], which is an end-user network
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diagnostic tool based on a peer-to-peer (P2P) network. We also
suggest using instances in public clouds if a user worries about
privacy in using P2P nodes. To prove the feasibility, we wrote a
sample rule for diagnosis of push notification faults on Android
devices.

In Section III, we describe the architecture of MoT, and in
Section IV, we discuss several practical scenarios of problem
diagnosis. Then, we present the details of the implementation
in Section V, and demonstrate the feasibility of this approach
in Section VI. Finally, we state our conclusions in Section VII.

II. RELATED WORK

A number of researchers have studied home network trou-
bleshooting. Sundaresan et al. [1] diagnosed home networks
with poor performance by determining the bottleneck points.
Cui et al. [6] designed a Web session troubleshooting tool
for home environments by using the correlation between
packet measurements made on multiple machines. Aggarwal
et al. [7] developed a network diagnostic tool that uses a
signature-based learning technique, and Dong et al. [8] wrote
an argumentation-based algorithm for home network diagnosis.

We have also developed network diagnostic systems,
DYSWIS [5] and WiSlow [9]. These tools were also focused
on diagnosing network problems and performance degradation
for end users. DYSWIS uses distributed nodes to pinpoint the
root cause of a network problem, and WiSlow analyzes 802.11
packets to identify the sources of Wi-Fi performance degrada-
tion, such as channel contention and interference caused by
non-Wi-Fi devices.

However, not many studies have been focused on net-
worked home devices. Since these devices are different from
general computers in terms of user interface and computing
power, existing studies are unlikely to be applicable for these
devices.

In this paper, we adopt the rule system of DYSWIS and its
collaborative method, and suggest additional mechanisms to
support home devices. Wustner et al. [10] suggested a similar
idea as MoT in terms of collaboration of home network devices
for troubleshooting network problems. When a user complains
about the low performance of a network, the authors suggested
to correlate the different recorded metrics such as RTT, jitter,
throughput, and packet retransmission. They determine which
metric is related to the poor performance. Our approach shares
this idea of cooperation between devices; however, we use
real-time probing with predefined diagnostic rules instead
of correlating metrics. Thus, our approach does not require
devices to record network states. Furthermore, we suggest
practical mechanisms such as discovering, forwarding, and
probing that support the collaboration of devices effectively.

III. MOT ARCHITECTURE

The main goal of MoT is to diagnose network problems of
devices in home networks. The diagnostic process is conducted
using the collaboration of nodes in a home network and,
if needed, MoT connects to other collaborators in external
networks to request probes for problem diagnosis. We use
a straightforward communication protocol that enables the
devices to exchange problem profiles and diagnostic results
with each other.

A. Device types

We define three roles in the MoT system: a client device is
a smart object that has a network problem, a forwarding device
passes probe requests from the client device to a diagnostic
device, and a diagnostic device actually helps to diagnose the
problem.

Each device in a home network has one or more roles,
depending on its computing power (e.g., memory and CPU)
and its attached user interfaces. For example, a laptop com-
puter, which has ample computing power and user interfaces
such as a mouse and a monitor screen, will be a diagnostic
device because it is suitable to run diagnostic software. The
laptop may also be a client device since it can request a
diagnosis to other devices when it has a network problem. Most
other devices have roles as both client devices and forwarding
devices. The forwarding is necessary when a client device
is not physically close enough to the diagnostic device to
communicate via Bluetooth or ZigBee.

B. Device registration

Each device first uses a service discovery technology
(e.g., Bonjour) to discover a directory server and registers
its attributes with the server when they are connected to the
network. These attributes include which network interfaces it
has (e.g., Wi-Fi, Bluetooth, ZigBee, or 3G/LTE), whether it
can be mobile (e.g., smartphones and tablets), and whether
it has a capability to run diagnostic software. A diagnostic
device, which is usually a desktop or laptop, runs a MoT server
that maintains a device directory based on these profiles and
uses this when it diagnoses a problem. For example, if a 3G
network is required to diagnose a particular problem, it first
looks up which devices can connect to a 3G network (e.g.,
smartphones), and if such a device is currently reachable, it
sends the probe request to the device via intermediate network
available (e.g., Wi-Fi or Bluetooth). We describe this scenario
in Section IV-D.

C. Problem description and forwarding

When a device detects a network problem, it first creates
a problem description that contains failure symptoms (e.g., it
cannot connect to the wireless access point (AP), or the TCP
latency to servers in the Internet is too long). Then, it sends
a diagnosis request that contains the problem description to
the diagnostic device. The problem description includes the
following parameters.

problem description := (deviceId, problemId,
timestamps, problematic interface type, MAC
address, application name, protocol, port,
problem symptoms)

However, when a device is located too far from a diagnostic
device, it cannot send the diagnosis request to the diagnostic
device via Bluetooth or ZigBee. In this case, our suggestion is
that the diagnosis request can be forwarded (broadcasted) to
other devices that are in the vicinity of the faulty device. The
devices that receive the diagnosis request are responsible for
sending it to the diagnostic device or forwarding it to other
devices that have a connection to the diagnostic device.
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Fig. 1: The architecture of MoT

D. Mobile devices

When a device has a problem with the Wi-Fi network and
has no nearby forwarding device, it cannot send the diagnosis
request to another device. In this case, mobile devices such
as smartphones and tablets have important roles. We take ad-
vantage of its portability in order to collect diagnosis requests
from problematic devices. The devices that are large or fixed,
such as refrigerators, lights, and door locks, cannot be moved
and often are located far from other devices (e.g., lights at
the ceiling). Therefore, when these devices have problems
with the Wi-Fi network, the devices may fail to reach others
because of their limited communication range, even if they
have active communication interfaces other than Wi-Fi. In
this case, a mobile device can be a forwarding device or a
diagnostic device. A user carries the mobile device close to
the problematic device and pairs via Bluetooth1. Then, the
problematic device notices that a forwarding (or diagnostic)
device, which is portable, is nearby and sends it the diagnosis
request.

E. Diagnosis

The diagnostic processes are driven by predefined diag-
nostic rules. We adopt the rule system from DYSWIS, so
the rules can be crowdsourced and updated via a central rule
repository server. The basic rule starts with a check of whether
the same problem has been reported by other devices. If there
has been no report of the problem, we attempt to communicate
with other devices to determine whether those are reachable
without any network problems. If it turns out that the same
problem occurs for multiple devices in the network, we infer
that the problem is caused by the home network infrastructure
(e.g., an AP). In this case, we run other diagnostic software
such as DYSWIS and WiSlow to check whether DNS, DHCP,
TCP/UDP, and Wi-Fi function properly. If other devices do not
observe the problem, then MoT interacts with the problematic
device again via an alternative communication interface and
requests that the probe modules indicated by the diagnostic
rule be executed. We define a simple message syntax for this

1Currently, the Bluetooth paring process is done manually in our prototype.

request. The message contains the name of the probing module
that should be executed and the parameters that should be
passed to the module. The return value will be sent back in
a similar format. As an example, JSON-format messages are
illustrated below.

request = {“module”: “TCP listen”, “parameters”: {“port: 80”}}
response = {“status”: “success”}

request = {“module”: “ping”, “parameters”: {“host”: “192.168.1.1”}}
response = {“status”: “success”, “result”:“5ms”}

These messages are used between different types of devices
in order to exchange probe requests and responses. We open
the rule system to any network experts and manufacturers of
smart objects.

When a device fails to connect to a server outside the home
network (e.g., a web service or IoT management server2), it is
necessary to obtain probe results from external collaborative
nodes. For example, if a device fails to connect to the central
management server, it is useful to know whether other devices
or computers in different networks (other households) have
the same problem. Accordingly, we can use the P2P network
that DYSWIS provides, which originally was designed to
help general computer users with problem diagnosis. DYSWIS
supports a distributed network composed of multiple peer
nodes that voluntarily participate in a fault diagnosis process.
The nodes run the probes requested to diagnose the network
problems of end-users. In a similar way, MoT ask other
nodes in the DYSWIS network in order to determine whether
the management server is working properly for those nodes.
Moreover, collaborative nodes in outside networks can send
network packets to the home devices in order to confirm that
incoming packets are received correctly.

However, a user may well be concerned about the privacy
of using P2P networks, because information on the problem

2For example, devices need to connect to a SECE [11] server, which is
a central management server for networked devices. SECE is a general IoT
platform developed at Columbia University.
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is revealed to other users when probes are requested. If a user
prefers a secure method to diagnose the problem, the alter-
native method that we suggest is the use of virtual instances
in public clouds. Since public clouds now offer instances in
multiple geographical locations (e.g., Amazon EC2), it is even
possible to run probe processes in multiple different networks
without the help of a P2P network or a distributed shared
network such as PlanetLab [12]. Figure 1 illustrates the
collaboration of cloud instances to diagnose home network
devices. When a suspicious network behavior is observed, we
launch instances from a prepared image that contains probing
modules to assist in the problem diagnosis.

IV. DIAGNOSIS SCENARIOS

In this section, we describe several sample scenarios of
problem diagnosis process using MoT.

A. Device diagnostics using history

Suppose that the bandwidth of a device is capped by a
firewall at an AP for security reasons. Because of this, the
device has difficulty connecting to the network and sends a
diagnosis request to a nearby laptop via Bluetooth. Then, the
laptop starts the diagnostic process by sending probe requests
to other devices to determine whether those have the same
problem. Then, MoT compares the problem description by the
problematic device with probe results from other devices to
identify the cause of the problem. In this case, since other
devices observe no network problem, MoT can infer that the
AP is functioning correctly, but only this device suffers from
the bandwidth problem, which implies there is a configuration
issue at the AP.

B. Device diagnostics using active probing

Suppose that a device suffers from performance degrada-
tion due to severe Wi-Fi interference. The Wi-Fi interference
can be caused by channel contention or nearby non-Wi-Fi
devices [9], [13]. Such interference degrades the throughput
to almost zero when a strongly interfering device such as a
baby monitor is located very close to the afflicted device. In
this case, the problematic device may even fail to report the
problem to a diagnostic node.Therefore, our approach is that a
mobile device with a forwarding capability (e.g., smartphone)
collects the problem description from the problematic device
using an alternative communication protocol such as Bluetooth
and then forwards the message to the diagnostic node when the
nodes move into areas where the Wi-Fi network is accessible
with no problem. Then, the diagnostic node runs specialized
diagnostic software such as WiSlow [9] to detect the root cause
of the Wi-Fi interference.

C. Smartphone diagnostics

Another example is the diagnosis of a problem with a
smartphone. Suppose that a smartphone application has a
network problem but the source of the problem is not known.
For example, many Android applications use push notifications
to send network packets to mobile devices. To test whether
these notifications work correctly, the diagnostic application on
a smartphone sends probe requests to a laptop via Bluetooth
or any other intermediate communication methods available.

The laptop diagnoses the problem using predefined diagnostic
rules. These diagnostic rules entail further probes into the
smartphone via Bluetooth to proceed with the diagnosis. We
tested this scenario with an Android application that we
implemented (Section V and VI).

D. Computer diagnostics

Another possible scenario is the reverse of the previous
scenario. A laptop computer has a network problem, and
thus it cannot contact external nodes in other networks. For
example, suppose that an ISP has a temporary outage and
its customers have no Internet connection. In this case, the
laptop becomes completely isolated and there are not many
methods to diagnose the causes. With MoT, the laptop first
detects that there is a device (smartphone) connected to a
3G network. Then, the laptop sends a diagnosis request to
the smartphone which connects to the Internet via the 3G
network and diagnoses the problem. Although the 3G and
Wi-Fi network use different ISPs and network paths, the
3G network can still assist the diagnosis. For example, the
smartphone can obtain real-time service interruption records
from the websites that maintain the list of services that are
down3. Moreover, it can send probing requests to external
nodes that are connected to the same ISP to ascertain what
is actually happening in the Internet and the service provider
network.

V. IMPLEMENTATION

As a proof of concept, we implemented and tested a
prototype of a network troubleshooting tool based on the MoT
platform. This implementation includes two applications, one
for Android devices and the other for computers. The applica-
tions communicate via Bluetooth in this example. Algorithm 1
diagnoses Scenario C in Section IV.

The challenges to implementation are twofold. First, we
need to create a framework that is generally applicable to
heterogeneous devices. Therefore, it is necessary to have a
platform-independent interface. Second, the diagnostic strate-
gies should be changed easily without repackaging software
entirely, since the diagnostic logic may be updated frequently.
To achieve these goals, we divide the system into two layers
(Figure 2): the core layer, which is rarely updated, and the
logic layer, which can be updated flexibly. These two layers
communicate with each other using the probe messages.

We aggregate platform-dependent modules and place these
in the core layer to avoid entirely rebuilding the software
when diagnostic algorithms are updated. As a result, probe
modules (e.g., ping, traceroute, and the TCP connec-
tion checker) and network communication modules (e.g., for
Bluetooth and TCP) are included in the core layer since these
functions use the native APIs supported by the underlying
platform. Although the modules in the core layer should be
developed separately for each type of device, these rarely need
to be updated once implemented. The core layer modules
that we developed for the Android application include a
Bluetooth sender and receiver, a TCP and UDP tester, a DNS
tester, and wrappers for traditional tools such as ping and
traceroute.

3For example, http://www.downdetector.com
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Fig. 2: Implementation architecture

The logic layer includes diagnostic rules and a user inter-
face. These modules need to be updated frequently, whenever
new diagnosis rules are designed. Therefore, a mechanism that
dynamically loads and updates new modules is needed. The
industry standard for such mechanism is OSGi, which supports
dynamic loading of Java classes without entirely recompiling
or repackaging software. However, Dalvik VM, which is the
Java virtual machine for Android, does not allow dynamic
loading of Java classes because each class in Dalvik should
be signed at its compile time. As a result, there is no way
to insert the class files or JAR files during the runtime of the
application.

Therefore, in the MoT client for Android we adopt the
hybrid approach, which is popular with mobile application
developers because it makes the development cycle faster and
updates easier [14]. Thus, we implement the core layer in
the native language of Android (i.e., Java), and the logic
layer using web applications (i.e., HTML5 and Javascript).
This technology is used to separate core network probing
modules from diagnostic rules. As a result, we can indepen-
dently develop and reuse the logic layer without modifying
the original application. Thus, by simply writing HTML files
and Javascripts, new rules and user interfaces can be added
to the application. As described in Section III, the modules
within each layer communicate with each other using messages
formatted in JSON that contain the names and parameters of
probe functions.

Another advantage of dividing the system into two layers
is that some devices do not need to have both layers. Although
our implementation for Android has both layers, the logic layer
is not necessarily installed on small devices that have less
computing power and no user interface. Figure 2a describes
the prototype of MoT for such devices, which is implemented
on top of the Arduino microcontroller [15]. In this model,
the device has only the core layer, which communicates
with the logic layer of another device to diagnose its own
network problem or help the other device with a diagnosis.
The messages used between two layers within the same device
are also used across different devices when probe requests and
responses are exchanged.

VI. EVALUATION

The Android application servers send messages to the target
Android device using Google’s messaging services such as
Google Cloud Messaging (GCM) or Cloud to Device Messag-
ing (C2DM). These services enable application developers to
transmit push notifications to Android device users [16], [17].
Although a number of Android applications use these services,
the users have no good way to diagnose a problem if they
suspect that their applications do not receive the notifications
properly.

Algorithm 1 C2DM Test

1: function PROBE(failure)
2: D ← the problematic Android device
3: Request(C2DM Server, send a message to D)
4: if D received C2DM message then
5: return “A non-network problem”
6: else
7: Ne ← an external node
8: Request(Ne open a TCP port)
9: Request(D, send TCP packets to Ne)

10: if D successfully sends packets to Ne then
11: return “A problem in the GCM or C2DM servers”
12: else
13: Ni ← an internal node
14: Request(Ni open a TCP port)
15: Request(D, send TCP packets to Ni)
16: if D successfully sends packets to Ni then
17: return “A problem with the connection to the ISP”
18: else
19: return “A problem in the local network”

We implemented the Android network diagnostic tool,
which can determine whether a mobile device is able to receive
a push notification correctly. When the push notification system
is not functioning properly, there are four possible cases:

• A problem in the GCM or C2DM servers
• A problem with the connection to the ISP
• A problem in the local network
• A non-network problem

We assume that the device is using a Wi-Fi network.
To identify the cause of the network problem, our Android
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Fig. 3: An MoT application for Android devices

application first sends a diagnosis request to a laptop via
Bluetooth, since we cannot be sure that the Wi-Fi network is
functioning correctly in this example. On behalf of the Android
device, the laptop runs a diagnostic algorithm (Algorithm 1).
First, it requests the Google server to send a push notification
to the Android device. If the device fails to receive this
notification, the second test is performed to determine whether
the device can exchange TCP packets with an external node
in the Internet. We use P2P nodes or cloud instances for this
test as described in Section III. If this succeeds, we can infer
that there is no problem in connecting to the Internet from
the device. Then, we attempt to send packets to the device
from the laptop to determine whether the local area network
is faulty. If everything works but the device still cannot receive
the push notification, we can infer that the push notification
servers are the cause rather than other networks. We tested the
tool using our testbed, which artificially injects local network
connectivity faults. Also, we simulated the outage of C2DM
servers by using our own servers instead of Google servers
in our testbed. The tool successfully distinguished the local

network problems from the push notification fault in our
testbed. Figure 3 shows the screenshots of the tool for Android.

VII. CONCLUSION

We designed a network troubleshooting system, MoT,
which supports the collaboration of home devices (smart
objects) and end-user devices such as laptop computers and
smartphones. We take advantage that recent devices have mul-
tiple communication interfaces. Therefore, when a device has a
problem with an interface, it can send a probe request to other
devices using an alternative interface. Moreover, we focused
on a mobile device that is able to move physically close to
other problematic devices and collect problem profiles. Finally,
the system adopts collaborative mechanisms to diagnose the
root cause of a network problem. It can use cooperation from
internal nodes or send requests to external P2P nodes or cloud
instances. We demonstrated the feasibility of this approach by
implementing an Android application and an algorithm that
diagnoses the push notification failure.
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