
DYSWIS: Crowdsourcing a Home Network Diagnosis

Kyung-Hwa Kim∗, Hyunwoo Nam∗, Vishal Singh†, Daniel Song‡, and Henning Schulzrinne∗
∗Columbia University, New York, New York

†Inncretech, Princeton, New Jersey, ‡Rice University, Houston, Texas

Abstract—Existing failure diagnostic techniques for end
users are insufficient to pinpoint the root causes of network
failures due to their limited capabilities to probe other net-
work elements. We present DYSWIS, an automatic network
fault detection and diagnosis system for end-users. DYSWIS
leverages user collaboration to distinguish important network
faults from false positive indications, and diagnoses the root
cause of the fault using diagnostic rules that consider diverse
information from multiple nodes. Our rule system is specially
designed to support crowdsourcing and distributed probes. We
have implemented DYSWIS and compared its performance
with other tools to prove that several network failures which
are difficult to be diagnosed by the single-user probe can be
detected and diagnosed successfully with our approach.

Keywords-Network troubleshooting, Crowdsourcing, Net-
work failure, Distributed system

I. INTRODUCTION

While operating systems and computers have generally
become more user-friendly and reliable, Internet usage can
still be frustrating – applications fail silently, things that
worked yesterday do not work today, and failures are often
transient.

Compared to a few years ago, consumer Internet usage
has changed in at least four aspects: Users now expect to
connect to a wide variety of networks, from home and
office networks to Wi-Fi hotspots and cellular networks.
Applications have become more demanding, as almost every
application, from online calendars to games, relies on Inter-
net connectivity and a number of applications, such as Voice
over Internet Protocol (VoIP) and video on demand (VoD),
require consistent performance. Finally, such applications
often rely on the proper functioning of up to half a dozen
parties, from the local wireless network to DNS servers,
content delivery networks (CDNs), and various middleboxes.
For all of these components, professional assistance is either
unavailable or expensive, with the result that most users need
to become unwilling network administrators (or rely on their
technically-savvy children or friends for assistance). Thus,
users have no good way to know whom to call or what to
try when things go wrong.

Most applications provide, at best, minimal support to
help pinpoint potential sources of trouble. For example, if
Web access is slow, the cause could be high packet loss on
the local wireless network due to interference, an overloaded
residential Internet connection, wide-area network problems,

a misconfiguration in the Network Address Translation
(NAT) box, or a remote server problem. The appropriate
action differs in each case, ranging from using a third-party
DNS server to simply waiting and hoping that the server
recovers.

Motivated by these real-world problems, we have devel-
oped DYSWIS (“Do You See What I See”), a system for end
users and enterprises to diagnose a range of network-related
problems. DYSWIS differs from other approaches in relying
on the assistance of other network users, modeling the
common pattern where one person asks somebody close by,
“Hey, is your Internet working?” Reflecting the proliferation
of services, both standardized and proprietary, DYSWIS is
designed to be extensible by users and third parties, such
as vendors of applications. New probes and rule sets can be
added to the running system.

Thus, DYSWIS is the first complete system that automat-
ically diagnoses common network problems for end users,
using peer assistance and an extensible probing and a rule
framework.

The main contributions of the DYSWIS architecture are:
● Automatic detection of significant failures We propose

a mechanism that leverages end-user collaboration to distin-
guish meaningful failures from false positive faults among
a number of detected faults in the end-user environment.
● Optimized design for crowdsourced rules To support

crowdsourcing of network experts effectively, we designed
a rule system that is composed of small independent rules.
Also, DYSWIS provides a simple application interface that
enables multiple groups of developers, network administra-
tors, and application vendors to participate in writing new
probe modules and diagnostic rules.
● Practical design for distributed probes A node catego-

rizes other nodes by their properties. Then, a node compares
probing results from different networks and reasonably infer
the status of the network infrastructure, which is normally
invisible to end-users, without any help from network core
devices.
● Design for distributed network DYSWIS is specially

designed to support decentralized networks such as dis-
tributed hash table (DHT), which enables nodes to collabo-
rate without an infrastructure and achieve Internet scale. As
each node’s information and fault statistics can be published
as key-value pairs to a DHT, other nodes can discover



AS 14AS 5000

AS 1781

History

lookup

Remote

 Probe

Request

Diagnosis Rules & 

Probe Modules 

Repository

Network Experts

 upload 

download
Admins or 

Vendors

upload

Overlay Network

(DHT)

Crowdsourcing of 

modules and rules

Rules

Modules

Rules

Modules

Figure 1: DYSWIS Architecture

appropriate nodes effectively.
From Section II to Section IV, we present the architecture

and mechanisms of DYSWIS. In Section V, we evaluate our
approach, and in Section VI, we discuss several security
issues.

II. OVERVIEW

DYSWIS is designed to be a framework that supports
diagnostic software running on end users’ machines, such as
desktops and laptop computers. We present how DYSWIS
supports end users and how its crowdsourcing approach
enables end users, developers, and network administrators
to contribute new rules and diagnostic modules to expand
DYSWIS functionality.

A. Peer network

The key feature of DYSWIS is the collaboration of end
users. Therefore, a node first needs to discover other users
who are willing to assist in the problem diagnosis. A
centralized server can be used to maintain a list of available
peers, and an alternative method is to build a distributed
overlay network (e.g., DHT) composed of end users, which
is more scalable and tolerant to the single-point-of-failure
problem [1]. Our current implementation adopts the latter
approach.

Since we are focusing more on partial network faults, we
assume that a node can connect to the DYSWIS network
(a central server or other DHT nodes), or can at least have
a list of other nodes cached from when the network was
available. Service discovery technologies such as Bonjour
[2] can also be used when a DYSWIS node cannot join the
DYSWIS network while the local area network is available.

1) Peer classification and discovery: Since DHT sys-
tems only support exact-match lookups, a DYSWIS node
publishes node information with multiple key-value pairs.
For example, a single node can be represented by multiple
keys such as an Autonomous System Number (ASN), a
subnet, an IP address, or whether it uses a NAT. The value

Table I: Node types and examples of DHT keys

Node Format of keys Example of keys
Sister NAT@[IP address] “NAT@128.59.21.16”
Near public@[subnet] “public@128.59.16.0/24”
Internet public “public”
Far public@[subnet] “public@AS22”

corresponding to the key contains the node’s IP address, port
number, and properties such as type of operating system
(OS), network connection (e.g., Ethernet or wireless), or
whether it uses a firewall. Table I describes several exam-
ples of the keys. These key-value pairs are registered to
the DYSWIS network and enable other users to discover
appropriate nodes easily.

We categorize peers into five groups according to where
they are located. We define following node types:
● Local node: A node currently diagnosing faults.
● Sister node: A node behind the same NAT device.
● Near node: A node within the same subnet.
● Internet node: A node located in any other subnets.
● Far node: A node located in the service provider

network of a remote server (e.g., a web server).
To discover a specific type of collaborating nodes, a node

queries the DYSWIS network with a corresponding key. For
example, to obtain a near node, the key must include the
subnet information or address of the first-hop router. If the
local node is behind a NAT, we often need to discover a
sister node to obtain the view from the same environment.
In this case, the key includes the public IP address of the
NAT device. To seek an Internet node, we simply query with
a key, “public”, that returns a list of random nodes from
other networks. We can filter out near nodes from the list to
obtain only Internet nodes. In addition, we can discover a
far node located at a specific subnet. This far node is useful
when we need to obtain the information from the subnet at
which a remote server is located. Some examples of keys
are listed in Table I.

III. DETECTING FAULTS

We implement two methods for detecting a network
problem automatically: packet monitoring and application
plugins.

A. Monitoring packets

DYSWIS monitors raw network packets and checks vari-
ous failure conditions. First, we check whether the response
packets contain error indicators such as “name not found”
in DNS, “404 not found” in HTTP, or an RST flag in
TCP packets. Then, we monitor the no-response situations.
For example, we check if there are responses to outgoing
requests such as TCP SYN packets, DNS queries, or HTTP
GET messages. If there is no response to these packets,
DYSWIS reports it as a problem. Finally, we track the
number of TCP retransmissions and duplicated ACKs to
examine the status of the current network performance.



Table II: Examples of false positive failures and applications

False positive failures Applications
mDNS packets Bonjour
HTTP long polling Facebook, Dropbox, Gtalk
TCP Retransmission Video streaming, file download
TCP RST packets Video streaming (YouTube)

This monitoring approach enables us to detect a number
of hidden failure symptoms without the assistance of other
applications. However, we discovered that many of these
failure indicators occur as part of normal application-specific
mechanisms. In this paper, we define a false positive failure
as a problem indicator detected by the packet-level mon-
itoring but not an actual failure when application-specific
behaviors are considered. We describe several examples and
present an automatic filtering mechanism in the following
paragraph.

1) Filtering false positive failures: Monitoring packets
on real end-user machines, we periodically observe a number
of multicast DNS (mDNS) packets that contain a “no such
name” error. Although this is a failure message of a DNS
query, it is expected if the OS uses the DNS Service
Discovery (DNS-SD) protocol to discover services. This
happens when a machine sends a service query message,
but the service does not exist in the network. In this case,
there is no point in reporting these errors to end-users.
Another example is HTTP long polling [3]. Long polling
is one of the push technologies, which is used by many
applications and web sites to communicate interactively with
clients without disconnecting a TCP connection. With long
polling, a web server does not respond immediately after
receiving an HTTP GET request but rather responds after a
period of time (e.g., one minute) to maintain the connection.
Although this delay is intended, its pattern is identical to the
case of a slow response due to poor network performance or
a problematic web server. Therefore, even though it is not
an actual failure, long polling will be considered as a failure
(i.e., high latency) in the packet monitoring system. Another
example is TCP retransmission. Although the occurrence of
a large number of TCP retransmissions indicates significant
performance degradation, it is normal to have a small
number of retransmissions caused by temporary network
congestion. Thus, a fault detection system needs to set off an
alarm only when an unusual number of TCP retransmissions
have been detected. In addition, some TCP RST packets can
also be misidentified as failures. Although TCP RST packets
usually imply a session is unexpectedly terminated, they are
intended in some applications. For example, it is known that
YouTube may cause a number of TCP RST packets when a
client changes video resolution while watching a video [4].
Table II summarizes the examples of false positive failures
and applications that cause them.

However, it is impractical to configure every false positive
failure scenario beforehand because not all of them are

Fault
Fault
Filter

Fault History / 
Statistics

Other
Peers

Other
Peers

Other
Peers

Important

Questionable

Ignorable

Report to 
End users

Figure 2: Fault filtering mechanism

known. For example, it is impossible to know a list of web
sites that are using long polling. In addition, it is difficult
to set up a threshold of TCP retransmission or TCP RST
counts because this depends on applications, protocols, and
web sites. It is also possible that other scenarios that we are
not aware exist.

In DYSWIS, instead of configuring all the exceptional
cases and threshold parameters manually, we filter out the
false positive and less important failures using an automatic
judging system that uses other peers’ failure ratios. We
define the failure ratio as the number of failures per packet
in a session. For example, if one retransmission has occurred
within five TCP packets, then the failure ratio of TCP
retransmission is 20%.

DYSWIS periodically publishes these values to the DHT
and other peers use them to estimate the significance level of
their own failures. In other words, the peers in the DYSWIS
network collect failure ratio samples from multiple peers
and compare them with their local failure ratio to determine
whether the failures are actual problems or not. The collected
ratios from other nodes are called the global failure ratio.

Figure 2 illustrates the filtering architecture and Figure 3
describes the detailed flow that estimates the significance
level using the global failure ratio. We group the failures into
three levels: important, questionable, and ignorable. When
a failure is detected, DYSWIS first queries the local cache
of failure history. If an insufficient number of samples are
retrieved or the samples are stale, it will query the DHT and
update the local cache. After that, we calculate the average
and standard deviation of the samples. If the local ratio
is higher than the average of the global samples, then we
consider this failure as important or questionable, depending
on the degree. The notable situation is when the failure
ratio is similar to or less than the average of the global
samples. This means that many other peers have observed
the same types of failures as frequently as the local machine
has. In this case, it is possible that either the failure is
not significant or that other peers have been suffering from
the same problem. We can distinguish these situations by
observing the timestamps of the failures reported by other
nodes. If they have been observed constantly over time,
then we consider the problem as ignorable (e.g., every node
constantly observes many failures with applications that use
the long polling technique). On the contrary, if the failures



Follow the 
predefined rule

Start
Failure

detected
Predefined

case

Query 
Failure history

No

Enough valid 
global samples

Query DHT / 
Update failure 

history

No Enough global 
samples

Ratio > 
avg.+α%*

Yes
Yes

Yes

Ratio > 
avg.+β%*

No

Constant?

No

Questionable

No

IgnorableYes

QuestionableYes

ImportantYes

Questionable

No

*α =20, β = 10

Figure 3: Fault filtering flow

were all observed very recently, then we consider this failure
as questionable because it is reasonable to infer that the
problem has actually occurred and it can be significant.

If no global failure ratio of a particular failure exists, it
implies that nobody has reported this failure before. It is
possible that the application (or website) that caused the
failure is not popular enough for anyone to have used it. We
do not have sufficient clues to judge this case; therefore,
we mark this failure as important and report it to the
user. This case shows that a lack of event history is one
of the limitations of passive probing approaches. This is
why our diagnostic process uses active probing that works
dynamically, as described in Section IV.

B. Application plugins

The second method to detect network failures uses failure
reports from applications. Since applications can observe
their failures directly, if they report descriptions of failures
to DYSWIS, we do not need to parse captured packets to
obtain problem information. For example, if a web browser
fails to connect to a DNS server or a particular web
server, it reports the problematic server address and failure
symptoms to DYSWIS and request a problem diagnosis.
Then, the browser can receive back the diagnostic result
from DYSWIS and show it to the user. If an application
supports plugin development, this approach can be imple-
mented as plugins without modifying the application itself.
To prove the feasibility of this concept, we implemented1 a
Google Chrome application that interacts with DYSWIS to
report network failures and a Chrome extension that detects
performance degradation of YouTube video streaming.

IV. DIAGNOSTICS

The second phase of DYSWIS diagnoses the filtered
network faults. In this phase, we actively diagnose faults in
real time to avoid relying on stale information. The history

1Chrome app: http://dyswis.cs.columbia.edu, Chrome extension:
http://dyswis.cs.columbia.edu/youslow

of faults obtained from other nodes is helpful for filtering the
faults, but it is often useless in identifying the root cause. For
example, a result of probing that was performed an hour ago
has no significance if a failure occurred five minutes ago. In
addition, if nobody has tried to connect to the target server
during that period, it is difficult to collect proper data to
diagnose the fault. In the following sections, we elaborate
the probing process and introduce our crowdsourcing-based
parallel rule-matching system.

A. Probing modules

Probing modules are small programs that investigate var-
ious networking conditions. Each DYSWIS node has a set
of probing modules, which can be updated via the module
repository.

A probing request contains a name of a probing module to
be invoked and fault information to be used as parameters.
The response can be either a return value generated by the
probing module or ‘no response,’ which means that the
node does not answer. Sometimes, ‘no response’ provides
an important clue for diagnosing the fault. For example, if a
node can contact some near nodes while failing to contact
every far node, we can guess there is a network connection
issue from the local subnet to the outside network.

B. Crowdsourced rules

The diagnostic rules specify which probing modules need
to be invoked in which order and where (local or remote).
Their roles also include analyzing the feedback from other
nodes and providing final diagnostic results to users. A
decision tree is a straightforward way to formulate diagnostic
rules. Such a tree indicates which probing module should be
invoked, and its result decides the next step of probing. This
is repeated until a leaf of a tree is reached, which is either
a conclusion or the execution of another rule. We use our
own Python-like syntax to represent the decision trees.

However, although decision trees show the diagnostic
flow clearly, they do not fit a crowdsourcing approach.
For example, our prior work [5] diagnoses VoIP failures
using decision-tree-based rules that are designed carefully
by VoIP experts. Ironically, however, these complete and
large-size rules are not easily upgraded or expanded by other
experts because the rules are too intricate to be completely
understood. It is very common that the entire decision tree
does not work as originally intended when a single part
of the rules is modified. Furthermore, more importantly, a
decision tree-based-rule can mislead if one of the probes in
the middle of the decision tree returns incorrect information.
In addition, it often takes a long time to complete the entire
decision process since a next step is chosen only after the
current probe is completed and the result is returned. If
a collaborative node does not answer quickly due to the
probing process itself or to network latency, the steps are
entirely suspended. For these reasons, we suggest a rule



Table III: Possible causes of connectivity errors and diagnostic rules

Problem
ID Description

C1 Misconfiguration on the user’s computer
C2 A problem on the link to a router
C3 Misbehavior of the local router
C4 ISP outage
C5 Link between the ISP and the Internet
C6 Remote service provider network outage
C7 Remote server down
C8 The service provider blocks your ISP
C9 The server blocks your ISP

C10 The service provider blocks your IP address
C11 The server blocks your IP address

(a) Possible causes

Rule
ID

Requesting
probing to: Probing module If response

is:
Likely
cause

Unlikely
cause

R1.1 Sister node TCP connection Yes C1 C2–C11
R1.2 Sister node TCP connection No C3–C11 C1, C2
R1.3 Sister node TCP connection No response C2 -
R1.4 Near node TCP connection Yes C10, C11 C1–C9
R1.5 Near node TCP connection No C5, C7–C9 C1–C3
R1.6 Near node TCP connection No response C2–C4 -
R1.7 Internet node TCP connection Yes C8–C11 C1–C7
R1.8 Internet node TCP connection No C6, C7 C1–C5
R1.9 Internet node TCP connection No response C1–C5 -

R1.10 Far node TCP connection Yes C11 C1–C8, C10
R1.11 Far node TCP connection No C7 C1–C6, C8–C11

(b) Examples of rules

system that is tailored to crowdsourcing of rules and parallel
remote probes.

1) Voting-based crowdsourced rules: Searching for “net-
work problems” on Google returns millions of web pages.
Many of these are linked to Q&A boards where people
discuss their symptoms and others suggest possible causes.
However, it is very inefficient to visit every site and read ev-
ery answer to determine a correct solution for their situation.
The DYSWIS rule repository is intended to provide a unified
platform for collecting such knowledge in a single place.
Questions and answers on the Internet are equivalent to
the diagnostic rules in DYSWIS. To support crowdsourcing
efficiently, we design the rules to be simple and independent.
Each rule contains the name of a probing module, a type
of node, a probe result, likely causes, and unlikely causes.
Likely causes are the causes that the author of the rule
believes to be the probable causes when the particular type
of node runs the probing module and returns the specified
result. On the contrary, unlikely causes are the causes that
are believed to be irrelevant to the returned result.

When a user creates or updates a rule on the DYSWIS rule
website, other experts can judge the new rule and vote; plus
one if they think it is true and useful (up-vote), and minus
one if it is incorrect (down-vote). The effectiveness of this
type of voting has been proven through many crowdsourced
social websites such as Reddit and Stackoverflow. Similar
to these websites, the useful rules acquire the attention and
greater points. The total voting points for an incorrect or
unhelpful rule will be low or even negative.

2) Parallel remote probing: To diagnose faults, DYSWIS
first selects an appropriate set of rules based on the detected
symptoms of failures and automatically excludes the rules
that have negative or low voting points. Then, it sends probe
requests to particular types of remote users according to
the rules. Remote users respond with their probing results
asynchronously, and whenever a result arrives, the possibility
scores of potential causes are updated. The details of the
algorithm are described in Algorithm 1.

When a probe result arrives, ResultReceived is
called. This module finds a rule matched to the received

Algorithm 1 Parallel distributed probing

1: function PROBE(failure)
2: Update rule sets from the repository.
3: for each rule in the rule set for failure do
4: if rule.nodeType == remote then
5: Send probing request to a remote node.
6: else
7: Run the probing module in a new thread
8:
9: //Invoked when each probing result arrives:

10: function RESULTRECEIVED(result)
11: R ← FindRuleSet(result.ruleId)
12: rules← FindRules(R, result.nodeType, result.response)
13: for each rule in rules do
14: if rule.votingPoint>0 then
15: for each cause in rule.likelyCauses do
16: P [cause] ← P [cause] + 1

17: for each cause in rule.unlikelyCauses do
18: P [cause] ← P [cause] − 1

19: DescendingSort(P)
20: Update current top possible causes to the users.

result. It then increases the possibility score of each cause
in the likely causes list and decreases it in the unlikely
causes list. For example, if a sister node is asked to run
the TCPConnection module, it will verify whether a TCP
connection to the remote server is successful. If it succeeds,
it will respond ‘Yes’, and we increase the possibility score
of problem C1 and decrease all the other possibility scores
according to rule R1.1, as shown in Table IIIb. The results
from other collaborative nodes also update the scores, and
finally, the cause with the highest score is considered the
most probable root cause. After informing the users of the di-
agnostic results, we can collect useful feedback information
from them as to whether the diagnostic result was correct.
The statistics obtained from this survey can be used to
improve the rules and estimate the occurrence frequencies of
the actual causes. In the case where our diagnostic results fail
to pinpoint a specific cause, but suggest multiple probable
causes, this occurrence frequency will be helpful to infer the
one most likely occur among them.



Machine 7
(Far node)

Machine 2
192.168.1.102 / 128.59.x.y

(Sister node)

Machine 3
192.168.1.120 / 128.59.x.y

(Local node)

Columbia CS Router
128.59.16.1

Mudd-edge-1
(ISP Router)

Machine 4
128.59.19.223

(Near node)

Linux machine 
(Configured as a bridge)

Router 
(NAT Box)

Machine 5
(Internet node)

Router
Remote Server
(Web server)

Internet

Machine 6
(Internet node)

Figure 4: A fault diagnosis testbed for injected failure scenarios

This approach makes crowdsourced rule development and
network diagnosis feasible – the independence of rules en-
ables multiple participants to create their rules easily without
disturbing other rules. The voting feature enables DYSWIS
to exclude useless or incorrect rules, and distinguish more
commonly occurring causes. In addition, the separation of
rules makes parallel remote probing possible. Since the diag-
nostic process is not affected by the order of received probe
results, a node can distribute probe requests to multiple
nodes and process returned results asynchronously, which
is faster than sequential probes. Furthermore, this approach
can avoid the situation that the entire diagnostic process is
misdirected by a few incorrect probes from malicious nodes.

V. EVALUATION

A. Experimental testbed

In order to evaluate the capability of DYSWIS, we set
up a testbed that contained a NAT box, a bridge, remote
servers, and collaborative nodes. As illustrated in Figure 4,
we placed near nodes inside the campus network, Internet
nodes in various external networks, and a web server and far
nodes on the Amazon EC2 network. We simulated Internet
service provider (ISP) network failures by injecting network
delays or dropping packets on the bridge between the NAT
box and the campus network.

B. Common network failures

We compared the diagnostic accuracy of DYSWIS with
four diagnostic tools, two tools provided by operating sys-
tems (Windows 7 and Mac OS X) and two commercial tools
(Network Magic Pro 5.5 from Cisco Systems [6] and Home-
Net Manager 3.0.8 from SingleClick systems [7]). We ran
each tool in the testbed with injected faults and evaluated the
diagnostic result. The failure scenarios were adopted from
other studies [8], [9], which investigated common network
failures obtained from surveys on end-user environments.
We merged them and inserted several additional scenarios
to create our test list (Table IV). In this table, ◯ implies
that the diagnostic result is correct, △ indicates that the
result is helpful but imprecise, and × denotes that the tool

Internet

Request: Test 
port A

Probe: Connect 
to port A

Request: Listen 
on port A

Probe: 
Connect to 

port A

Sister node
Internet node

Figure 5: Diagnosis example: Port blocking test

has no capability to diagnose the fault or that it outputs
an incorrect answer. The first five failures listed in the
table were caused by misconfigurations, and the last five
were due to a service outage or port blocking. Although
the commercial tools provided many powerful functions
such as network monitoring and convenient user interface
for network settings, they exhibited limited capabilities in
diagnosing our fault scenarios. The tools embedded in each
OS also failed to diagnose most scenarios as described in
Table IV. The tools performed better in the scenarios of
misconfiguration faults; however, they failed to correctly
diagnose the outage and port blocking scenarios. This is
not surprising since there is no good way to investigate the
network infrastructure (NAT, ISP, or remote server) for tools
running on end-user machines.

In contrast, DYSWIS successfully identified the root
causes in seven out of ten scenarios taking advantage of
the assistance of other nodes located in different networks.
For example, the blocking of a website by the ISP could be
diagnosed by comparing probe results from multiple near
and Internet nodes. If every near node failed to connect to
a particular server while the Internet nodes could connect
to the server, we inferred that the traffic between the server
and the ISP was constrained.

Similarly, we diagnosed the port blocking problems,



Table IV: The diagnosis results of each problem diagnostic tool for injected fault scenarios.

No. Injected faults Windows 7 diagnostic tool
Mac OS X
diagnostic
tool

Network
Magic
Pro

HomeNet
Manager DYSWIS

1 Ethernet cable unplugged O O O O O
2 Network adapter disabled O O O O O
3 IP address conflicts O O X X △ (Invalid IP address)

4 Incorrect gateway address
△ (DHCP is not enabled
for wireless network con-
nection)

△ (reboot
the router) X X △ (Your local gateway router is down

or refusing your request)

5 DNS address misconfigured O X X X

O (You don’t have a proper DNS
server. Other nodes do not observe
the problem on their DNS servers. We
recommend an alternative DNS server:
xx.xx)

6 Server down (Web or SSH
server)

△ (Not accept the connec-
tion) X X X

O (Nobody can connect to the server at
present. It is very likely that the server
is not working at present.)

7 A NAT blocks a server △ (Not accept the connec-
tion) X X X O (It is very likely that your router

blocks the server.)

8 An ISP blocks a server △ (Not accept the connec-
tion) X X X O (It is very likely that your ISP blocks

the server.)

8 Port blocking by NAT (e.g.,
SSH and BitTorrent) X X X X O (The port X is blocked by your

router.)
9 Port blocking by ISP X X X X O (The port X is blocked by your ISP.)

10 A web server is too slow X X △ △
△ (Pinpoint possible congestion points
with additional steps.)

which are common in home networks. If a home router
blocks a particular inbound or outbound port, applications
that use the port will not function properly. In the problems
presented in NetPrints [9], five out of 25 recent home
network faults were related to this issue. To diagnose these
problems, NetPrints used current configurations on home
routers and nodes. Although this attempt can pinpoint mis-
configured settings, it is difficult to identify the root cause
when packets are blocked by an ISP or remote servers, which
usually do not expose their policies. Figure 5 describes the
approach of DYSWIS for this issue. By comparing probe
results from sister, near, and Internet nodes, we determined
whether a particular outbound port was blocked by a local
router or an ISP. Further, by asking other nodes to send
packets to the local machine via a specific port and com-
paring the results from different types of nodes, we could
determine whether the user needed to reconfigure the router
or consult the ISP about the port issue.

Another advantage of this collaboration is that we can
obtain alternative solutions. For example, if a local DNS
does not function properly, we can temporally configure
other DNS servers recommended by external nodes until the
local server is recovered. If the outside DNS servers refuse
queries from the node because of a security concern, we can
also request the collaborating nodes to query the domain
to their DNS servers and resolve the IP address on behalf
of the local node. However, there is a security issue that
malicious nodes might provide compromised information.
To mitigate this risk, DYSWIS asks multiple nodes to
collect multiple alternative solutions and provide the most

frequently answered solutions to the users because it is very
rare for random collaborative nodes to provide the same
compromised information.

C. Detecting performance bottlenecks

In this section, we describe the detailed diagnostic re-
sults of problem #10 (“A web server is slow”) listed in
Table IV. This kind of performance problem is challenging
to diagnose since there are a number of possible points
where bottlenecks may be located. We assumed that there
were seven candidate congestion points on the path from the
client to the remote server. Then, our project members wrote
multiple rules independently as described in Section IV. For
example, if round-trip time (RTT) between the local node
to the web server is very high while RTT between a sister
node and the server is considerably lower, we increase the
score of P1 in Table V and decrease the other scores. In
a similar manner, we wrote 19 other rules for this case.
The full list of the rules can be found on our website2, and
the list can be edited (crowdsourced) by any participant. To
evaluate the accuracy, we artificially generated bottlenecks
by configuring the packet delay on each device or link.
Table V describes the possible bottleneck points and each
bar graph in Figure 6 shows the results of DYSWIS obtained
from each experiment with injected bottlenecks. The bars
indicate the final scores obtained after running the rules.
The cause that gained the highest score is the most probable
cause. In six out of seven scenarios, the actual point where
the delay was injected gained the highest score, which

2http://dyswis.cs.columbia.edu/webrules



ID Fault scenarios
P1 Network adapter disabled
P2 Problems on the link between the

user and the router
P3 Problems on the router
P4 Problems on the ISP
P5 Problems on the link between the

ISP and the Internet
P6 Problems on the service provider

network
P7 Problems on the remote web server

Table V: Possible bottlenecks of the
network

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re

(a) P1

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re

(b) P2

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re

(c) P3

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re
(d) P4 and P5

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re

(e) P6

P1 P2 P3 P4 P5 P6 P7
−8

−6

−4

−2

0

2

4

6

8

 

Probing results

S
co

re

(f) P7

Figure 6: Probing results of each scenario

implies that DYSWIS can pinpoint the bottleneck point
correctly. However, in three cases (P2, P6, and P7), there
exist two tied entries that gained the same scores. The
addition of more rules is helpful to narrow down the root
causes of these cases. For example, Figure 6(e) shows that
P6 and P7 gained the highest score, which implies that
DYSWIS could not determine whether the high latency of
the web server was caused by the provider network (e.g.,
Amazon EC2) or by the remote server. In this case, we can
request a far node, located in the same provider network, to
measure RTT to the target server. If the RTT is high, we can
infer that the service provider network may have a problem.
Therefore, we can add the following rule – if the RTT from
a far node to the target server is high, increase the score of
P6. By adding this rule, we ensure that P6 will gain a higher
score and DYSWIS can finally narrow down the actual cause
appropriately. This process can be repeated and applied to
other scenarios by crowdsourcing. We believe that the larger
number of rules that are aggregated, the higher will be the
system accuracy.

VI. DISCUSSION

Because our approach employs the collaboration among
peers, it is susceptible to security issues found in peer-to-
peer (P2P) networks [10], which are vulnerable to malicious
users who try to attack others by providing malformed
data (e.g., file poisoning) or by using manipulated identities
(e.g., Sybil attack). Furthermore, in P2P systems, a user’s
IP address is exposed to others. This makes it easy for
malicious users to target a user through denial of service
attack, in addition to the privacy issues that such exposure
entails. In this section, we discuss the potential security
problems in our approach and suggest several solutions.

A. Security issues

Because DYSWIS’s network protocol and APIs are open
to the public, other applications can participate in the
DYSWIS network. However, a disadvantage exists in that

a user could contact DYSWIS nodes in order to initiate
malicious probes against a normal service. There are two
attack scenarios.

The first scenario is a denial-of-service (DoS) attack: A
malicious node can simply send a large number of probe
requests to a target node, which will then become busy
handling these probes. This attack can be prevented by
counting the number of requests from other nodes and
simply restricts the maximum number of probing requests
per node within a particular period. The second scenario is
the distributed denial-of-service (DDoS) attack. A malicious
user can utilize multiple DYSWIS nodes to launch a DDoS
attack by asking them to probe the same node or web server.
For example, the malicious user requests multiple users to
execute a “TCP connection check” to a target IP address.
Because the peers are not aware that these requests are being
sent to multiple users by the malicious user, they will execute
the requests as usual - open a TCP connection to the target -
in a manner similar to how compromised nodes in a typical
botnet behave.

In order to prevent this attack, every node that is requested
to perform a probe looks up the probe history to check
whether the host or service has been probed recently and a
usable result exists. This will prevent redundant probes from
being performed. However, for this to be effective, every
probe transaction performed by each node should be stored.
This is not recommended because the database (DHT, in our
system) can be flooded with probing transactions. DYSWIS
reduces the history size by randomly storing only a small
portion (e.g., 10%) of the entire transactions in the DHT
because an estimated number of probes is enough for our
mechanism. For example, if ten recent probes are detected by
querying the DHT, it implies that around 100 probes have
been performed recently. If the number exceeds a certain
limit, DYSWIS considers it to be a part of an attack and
refuses to perform the probe. In this case, the malicious user
cannot harm the target, but a normal user can still obtain



Figure 7: DYSWIS screen dumps

probe results from other nodes.

B. Social Network Peers

Another challenging problem exists, namely, that of
whether we can trust the probe results from other nodes. This
is because a user might be malicious and could therefore
be providing wrong results. In this section, we suggest a
mechanism to distinguish genuine users from potentially
malicious nodes by recommending social peers registered on
the friend list in a social network service (e.g., Facebook).
This approach is based on the actual human social inter-
actions. When someone needs the answer to an important
question, they first ask their friends before asking, say, some
random, anonymous person on the street, because they trust
their friends more. Similarly, we assume that if we choose
collaborative peers among close friends in the social network
service, the probability of obtaining trustable peers is much
higher than the case of simply obtaining random nodes in
a DHT. Thus, if DYSWIS discovers peers who are on the
friend list of the user, it recommends those social peers to
the user. The user can finally determine whether to choose
random or social peers. Because DYSWIS requires only a
couple of nodes for fault diagnostics, we do not need to
collect hundreds of peers as does a typical P2P file sharing
system. In our current diagnosis rules, six nodes are even
sufficient to run a diagnosis; this number is reasonably small
and this many nodes could easily be retrieved from a user’s
friend list in a social network. One of the challenges of
this system is determining who a user’s close friends are.
DYSWIS calculates the proximity scores of each friend in
Facebook by using the number of wall posts and messages
that they have exchanged. This algorithm is heuristic, yet it
adequately distinguishes actual friends from fake ones.

However, we also need to consider the privacy issue. It is
possible that the IP address of a particular friend could be
exposed in this approach. Our goal is to provide the contact
points (IP addresses) of social peers without revealing the
matches that indicate who has a specific IP address.

We have implemented this system using the Facebook API
as a proof of concept and integrated it into the DYSWIS
framework. It first generates an identification key for each
node. The identification key is a unique MD5 hash string
generated from a Facebook user ID and a secret key of
the application. Because the secret key is not exposed to
the public, it is impossible to reproduce the identification
key using the names of friends. Thus, only the user and
the Facebook application know the secret key. After receiv-
ing the identification key from the Facebook application,
DYSWIS registers the (key, IP address) pair in the DHT.
When another user requests a social peer list, the Facebook
application calculates the proximity of the requested user
and returns the closest friends from the Facebook friend list
of the user. For this purpose, it is necessary for the user to
pass the authentication process beforehand. Note that the
application does not return the names of friends or user
IDs. Instead, it returns the hash strings that were generated
with a user ID along with a secret key. In the last step,
DYSWIS queries the DHT to check whether the received
keys are registered. In other words, it checks whether the
friends have installed DYSWIS and are running it at present.
Consequently, through these steps, DYSWIS can obtain the
IP addresses of close friends who are running DYSWIS
without revealing the actual owner of the IP addresses.

VII. RELATED WORK

Network fault detection and diagnosis have been an area
of interest for a number of years. A number of studies
discuss home network environments. For example, Home-
Net Profiler [11] measured several characteristics of home
networks such as the quality of home Wi-Fi networks and the
deployment of auto-configuration protocols. Cui et al. [12]
identified the root cause of high web page loading time
by capturing packets and correlating measured metrics, and
Sundaresan et al. [13] determined whether a performance
problem was located at the user’s ISP or the home net-
work. Also, several studies use the collaboration of different
machines to diagnose problems. WebProfiler [14] aggre-
gated observations of multiple machines to discover net-
work elements involved in failures, Netprints [9] diagnosed
and resolved problems in home router configurations using
shared knowledge of labeled (good or bad) configurations
collected from multiple machines, and WiFiProfiler [15]
relies on cooperation among wireless clients to diagnose
and resolve problems. The main difference of DYSWIS’s
approach from these studies is that DYSWIS not only uses
the failure history of others, but also leverages end-users’
active probing in real-time while others rely on passive



observations from the users. By combining the passive and
active probings, we filter out false positive failures and
diagnose the filtered problems more accurately. Furthermore,
in our best knowledge, DYSWIS is the first platform that
suggests a practical method that supports a crowdsourced
rule repository for network problem diagnosis.

There are several proposals that use user-based diagnosis.
For example, Glasnost [16] discovers service differentiation
by ISP based on traffic analysis between an end point and
another controlled end point in the network. Choffnes et
al. [17] proposed a methodology to detect network events
based on users’ experiences. They aimed to detect events
impacting user-perceived application performance. Zhang et
al. [18] proposed end user based collaborative active probing
to diagnose significant routing events. Tulip [19] probed
routers to localize anomalies such as packet reordering and
loss. Dasu [20] developed a platform that enables network
researchers to experiment network-related issues using a
huge number of end users. These studies focus more on
investigating the network core elements while DYSWIS
focuses end-user problem diagnosis.

AutoMON [21] uses a P2P-based solution to test network
performance and reliability. The distributed testing and mon-
itoring nodes are coordinated by using a DHT, which helps
in locating resources or agents. This study focuses on testing
and monitoring while DYSWIS is designed to diagnose the
root cause of failures.

VIII. CONCLUSION

DYSWIS diagnoses complex end-user’s network prob-
lems using end-user collaboration. We provide a new frame-
work for collaborative approach and diagnosis strategies for
various fault scenarios. We provide a detailed design to
discover and communicate with collaborating nodes. Also,
we provide a framework for administrators and developers
to participate to contribute to expand the diagnostic system.

We have implemented a prototype of the DYSWIS frame-
work and present how easily the participants add new rules
and modules on top of the framework in order to diagnose
several common network faults. We set up these scenarios
with real network devices and diagnosed them using those
rules and modules we have created. While local probing
with traditional diagnosis tools fail to point out the cause of
these fault scenarios, our evaluation presents that DYSWIS
can effectively narrow down the problematic regions and
pinpoint the root causes.

REFERENCES

[1] B. Pourebrahimi, K. Bertels, and S. Vassiliadis, “A survey of
peer-to-peer networks,” in Proc. of ProRisc, Veldhoven, The
Netherlands, Nov. 2005.

[2] Apple inc, “Bonjour,” http://www.apple.com/support/bonjour/.

[3] E. Bozdag, A. Mesbah, and A. van Deursen, “A Comparison
of Push and Pull Techniques for AJAX,” in Proc. of WSE
2007, Paris, France, Oct. 2007.

[4] H. Nam, B. H. Kim, D. Calin, and H. Schulzrinne, “Mobile
Video is Inefficient: A Traffic Analysis,” in Proc. of IEEE
CTEMD Workshop, Atlanta, GA, USA, Dec. 2013.

[5] A. Amirante, S. P. Romano, K. H. Kim, and H. Schulzrinne,
“Online non-intrusive diagnosis of one-way RTP faults in
VoIP networks using cooperation,” in Proc. of IPTComm ’10,
Munich, Germany, Oct. 2010.

[6] “Homenet manager,” http://www.homenetmanager.com/.
[7] “Network magic pro,” http://tinyurl.com/n6hh7ka.
[8] C. Dong and N. Dulay, “Argumentation-based fault diagnosis

for home networks,” in Proc. of HomeNets, Toronto, Ontario,
Canada, Aug. 2011.

[9] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Pad-
manabhan, and G. M. Voelker, “Netprints: diagnosing home
network misconfigurations using shared knowledge,” in Proc.
of NSDI, Berkeley, CA, USA, 2009.

[10] G. Urdaneta, G. Pierre, and M. V. Steen, “A survey of DHT
security techniques,” ACM Comput. Surv., vol. 43, no. 2, pp.
8:1–8:49, Feb. 2011.

[11] L. DiCioccio, R. Teixeira, and C. Rosenberg, “Characterizing
Home Networks With HomeNet Profiler,” in Technical Report
CP-PRL-2011-09-0001, Technicolor, Sep. 2011.

[12] H. Cui and E. Biersack, “Trouble shooting interactive Web
sessions in a home environment,” in Proc. of HomeNets,
Toronto, Ontario, Canada, Aug. 2011.

[13] S. Sundaresan, Y. Grunenberger, N. Feamster, D. Papagian-
naki, D. Levin, and R. Teixeira, “WTF? Locating Performance
Problems in Home Networks,” in SCS Technical Report GT-
CS-13-03, Jun. 2013.

[14] S. Agarwal, N. Liogkas, P. Mohan, and V. N. Padmanabhan,
“WebProfiler: cooperative diagnosis of Web failures,” in Proc.
of COMSNETS, Bangalore, India, January 2010.

[15] R. Ch, V. N. Padmanabhan, and M. Zhang, “WiFiProfiler: Co-
operative diagnosis in wireless LANs,” in Proc. of MobiSys,
Uppsala, Sweden, June 2006.

[16] M. Dischinger, M. Marcon, S. Guha, P. K. Gummadi, R. Ma-
hajan, and S. Saroiu, “Glasnost: Enabling end users to detect
traffic differentiation.” in Proc. of NSDI, San Jose, CA, USA,
April 2010.

[17] D. R. Choffnes, F. E. Bustamante, and Z. Ge, “Crowdsourcing
service-level network event monitoring.” in Proc. of ACM
SIGCOMM, New Delhi, India, September 2010.

[18] Y. Zhang, Z. M. Mao, and M. Zhang, “Effective diagnosis of
routing disruptions from end systems.” in Proc. of NSDI, San
Francisco, CA, USA, April 2008.

[19] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-
level internet path diagnosis,” in Proc. of ACM SOSP, New
York, NY, USA, October 2003.

[20] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes,
F. E. Bustamante, B. Krishnamurthy, and W. Willinger, “Dasu:
pushing experiments to the internet’s edge,” in Proc. of NSDI,
Lombard, IL, Apr. 2013.

[21] A. Binzenhöfer, K. Tutschku, B. auf dem Graben, M. Fiedler,
and P. Arlos, “A p2p-based framework for distributed network
management,” in Proc. of EuroNGI Workshop, Villa Vigoni,
Italy, July 2005.


