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The Email Mining Toolkit (EMT) is a data mining system that computes behavior profiles or models of user 
email accounts. These models may be used for a variety of forensic analyses and detection tasks. In this paper 
we focus on the application of these models to detect the early onset of a viral propagation without "content-
based" (or signature-based) analysis in common use in virus scanners.  We present several experiments using 
real email from 15 users with injected simulated viral emails and describe how the combination of different 
behavior models improves overall detection rates. The performance results vary depending upon parameter 
settings, approaching 99% true positive(TP) (percentage of viral emails caught) in general cases and with 0.38% 
false positive(FP) (percentage of emails with attachments that are mislabeled as viral). The models used for this 
study are based upon volume and velocity statistics of a user’s email rate and an analysis of the user’s (social) 
cliques revealed in their email behavior. We show by way of simulation that virus propagations are detectable 
since viruses may emit emails at rates different than human behavior suggests is normal, and email is directed to 
groups of recipients that violates the user’s typical communication with their social groups. 
 
Categories and Subject Descriptors: Security and privacy 
General Terms: Email Virus Propagations, Behavior Profiling 
Additional Key Words and Phrases: Anomaly Detection 
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1. INTRODUCTION  

Email is a common method of choice for the propagation of viruses and worms.  

Typically, a virus will extract email addresses in an infected computer and send copies of 

itself to some or all of these addresses. These addresses may be obtained from many 

sources, such as the address book, socket-layer sniffing, or a locally stored email archive. 

Virus scanners are signature-based, which means that they use a collection of byte 

sequences or embedded strings to identify known malicious attachments. If a virus 

scanner's signature database does not contain a signature for a malicious program, the 

virus scanner is unable to detect or protect against that malicious program. In general, to 

mitigate against this false negative problem, virus scanners require frequent updating of 

signature databases, otherwise the scanners become useless to detect new attacks.  

Similarly, security patches protect systems only when they have been written, distributed 

and applied to host systems in response to known attacks. Until then, systems remain 

vulnerable and attacks are able to propagate widely and rapidly over the internet. 

For example, the SoBig.F propagation that occurred in the late summer of 2003 

spread rapidly across the internet using a high speed spam-based propagation strategy. It 

took several days before an effective signature was available for distribution to locally 



update virus scanners to stop this virus. During this period of time no signature-based 

filters were available and SoBig.F flooded the internet causing remarkable damage and 

expense. It is this case of a new viral attack that is the subject matter of this paper. 

Furthermore, virus writers have demonstrated their continual cleverness by thwarting 

virus scanners with strategies that defy signature-based detection. Stopping a 

polymorphic virus that uses several points of entry, and that also “morph” the contents of 

the virus in various ways, can be a daunting task using traditional signature-based virus 

scanning methods alone.   

Our core premise is that viral propagations fundamentally behave differently than 

typical human user email behavior. Thus, the idea is to train or learn a detector that 

models a user’s email behavior, and then to apply these models to the email flow of a 

user’s account to detect abnormal or anomalous email flows that may indicate a viral 

propagation has been initiated. Much prior work on anomaly detection systems has been 

reported in the literature to solve the false negative problem of signature-based detection 

systems in intrusion detection systems. Here, we apply this methodology to email. 

In this paper, we describe the Email Mining Toolkit (EMT), a data mining system that 

computes a large number of different profiles over email archives, and demonstrate how 

its model outputs are used as an email anomaly detection system. We believe EMT 

demonstrates a solution to raise the bar of protection to detect and extinguish viral 

propagations as early as possible until new signatures are developed and deployed. 

Consider the following observations.  

First, viral email propagations involve an email sent to or from a victim email account 

with either an attachment or with something equivalent to an HTML page in the text 

body. In the former case, the user will have to run the executable that launches a virus 

directly, or invoke a program that uses the seemingly innocent data file that exploits the 

weakness of the program that makes use of it. In the latter case, the user may simply click 

on an innocent appearing URL that may start the download and execution of malware.  

Second, it is highly unlikely a virus will propagate itself with only one or a few 

emails. This is because usually viruses are designed to infect as many computers as 

possible in a short period of time.  Otherwise, they would be stopped long before they 

have a chance to inflict damage to many systems. Creating many copies ensures the virus 

will propagate quickly and widely. We conjecture that the frequency of emissions of 

emails during a viral propagation will be substantially different than the victim user’s 

typical email rate (both inbound and outbound).  



Finally, a virus is ignorant of their victim’s behavior, in the sense that it does not 

know the relationship between a user and those with whom they communicate. For 

example, a user would be unlikely to send an email, or many copies of an email, to a 

large number of recipients among the user’s separate social cliques. Instead, a virus may 

use simple hard-coded rules in deciding whom to propagate to, violating the user’s 

typical behavior in sending emails among his/her social cliques. These observations 

suggest that viral propagations may be detected by profiling email behavior and using the 

user’s behavior models to detect the onset of a propagation. 

Behavior-based detection is not a new concept. Credit card fraud detection [40] is 

perhaps the best example of a widely deployed security system that depends upon 

profiling behavior of credit card users. We posit that a similar approach directed towards 

“email transactions” will provide comparable broad-based security without requiring a 

complete overhaul of email protocols and server implementations.  

By measuring behavior of individual email users over time using different statistics 

and profiling techniques, and the probabilities associated with these statistics, we wish to 

correlate as much evidence from multiple models to accurately detect errant or malicious 

email while minimizing false alarms.  

Three types of behavior-based models are examined in detail: user cliques and the 

Hellinger distance and cumulative distribution models. The user clique model profiles a 

user’s communication groups that naturally occur in their email communication history 

(for example, colleagues, family members, friends, etc). The Hellinger distance model 

profiles the distribution of the frequency of communication of the user, and the variability 

of that frequency, between a user and his/her correspondents. (Interestingly, the analysis 

we have performed on the email archives of many volunteer email users reveals that 

email communication behavior follows a Zipf distribution, the same distribution that 

models the naturally occurring frequency distribution of words in natural language.)  

The cumulative distribution model profiles the (daily) rate at which a user sends 

emails to distinct parties in sequential order. These three models are more or less 

orthogonal to each other and they are combined together to form a hybrid model that 

yields very good detection performance.   

We describe a number of experiments using an email archive collected from 15 

volunteers. Experiments were performed by injecting this archive with viral emails using 

the virus’ propagation strategies. The viruses were not run to avoid potential damage (and 

litigation).  



To measure and compare the detection rate of the combined behavior models, there is 

no baseline to study other than typical COTS virus scanners. We take the point of view 

that a virus scanner will have a 100% True Positive rate and 0% False Positive rate for 

any virus for which a signature exists; but it will also exhibit a 0% TP rate for any “new” 

virus for which a signature has not yet been developed and deployed. It is these “new” 

viruses that cause damage, and that we use under simulation to test the performance of 

EMT. Of particular importance here is the tradeoff between EMT’s TP rate (detecting 

new viruses) and its FP rate, i.e. the percentage of emails deemed viral by EMT but 

which are indeed non-viral. We demonstrate this performance using ROC curves and 

evaluate the “annoyance rate” EMT may exhibit in generating false alarms.  

The results show that EMT’s behavior models are an effective detection system. Its 

best performance in detecting inbound viral propagations over all users is 99% TP and 

0.38% FP, while its best performance for detecting outbound viral propagations from an 

account is 99% TP and 0.9% FP. EMT also exhibited its worst performance for inbound 

viral detection at 70% TP and 0.38% FP (outbound detection is 60% TP and 0.9% FP) if 

the viral propagation is a very slow, stealthy propagation with one viral email delivered 

every 5 days. 

Thus, fast propagations are easy to detect by observing anomalous email flows that 

are inconsistent with a user's normal email behavior. Slow and stealthy propagations are, 

however, hard to detect. In all these cases, detection is achieved by observing email flows 

and user behaviors, not by analyzing the contents of the email traffic. 

The rest of this paper is organized as follows. Section 2 describes related research on 

anomaly detection in intrusion detection systems from which this work was originally 

conceived. Section 3 provides an overview of EMT’s implementation and database 

schema. We then describe the particular models supported by EMT and used in this study. 

Section 4 describes the technique to compute user’s (social) cliques revealed in their 

email behavior, and an independent test of this model shows that viral emails violate a 

user’s email clique behavior. Section 5 details a frequency-based model of the user’s 

typical recipients, and likewise a simulated test showing how this model may detect viral 

email propagations. Section 6 presents an experiment where these two models are 

combined for better detection performance and reduced false alarm rates. Section 7 

introduces another statistical distribution and a final performance evaluation for all three 

models producing our best results. Section 8 concludes the paper with a discussion of 

future research.  

 



2. RELATED REASEARCH 

EMT is a data mining and profiling system applied to email data to detect anomalous 

email behavior. Our prior work on the Malicious Email Tracking (MET) system focused 

on modeling the behavior of attachments, and attachment flows in email [3] among 

participating sites either within an enclave or across sites within an enterprise. The 

concept behind MET is to measure the statistics of attachment flows across a mail server 

and to detect a viral propagation as an anomaly (e.g. a “burst” or a “high host saturation”) 

in this attachment flow. Thus, MET is best viewed as an anomaly detector for flows. 

Anomaly detection systems were first proposed by Denning [8] for intrusion detection, 

and later implemented in NIDES [15] to model normal network behavior in order to 

detect deviant behavior that may correspond to an attack against a network computer 

system.  W. Lee et al. describe a framework and system for auditing and data mining and 

feature selection for intrusion detection. This framework consists of classification, link 

analysis and sequence analysis for constructing intrusion detection models. [19, 21] 

A variety of other work has appeared in the literature detailing alternative algorithms 

to establish normal profiles, applied to a variety of different audit sources, some specific 

to user commands for masquerade detection [29], others specific to network protocols 

and LAN traffic for detecting denial of service attacks [24, 34] or Trojan execution, or 

application or system call-level data for malware detection [13, 36], to name a few.   

A variety of different modeling approaches have been described in the literature to 

compute baseline profiles. These include probabilistic or statistical distributions over 

temporal data [2, 9, 39], supervised machine learning [11, 20] and unsupervised cluster-

based algorithms [10]. Some approaches consider the correlation of multiple models [11, 

36].   

In general, in the case that an audit source is a stream or temporally ordered data, a 

variety of models may be defined for an audit source and a detector may be computed to 

generate an alarm if a violation is observed based upon volume and velocity statistics. 

Volume statistics represent the amount of data observed per unit of time, while velocity 

statistics model the changes in frequency and magnitude of the data over time. In our 

EMT work, for example, we compute volume statistics, such as the “number of distinct 

recipients of emails” and the “cumulative number of emails with attachments” sent 

sequentially. EMT also computes the Hellinger distance of the recipient frequency as an 

example of velocity statistics. These two kinds of statistics represent one aspect of a 

user’s behavior profile and are used to detect the abnormal behavior indicative of virus 

and spam emails.  



We are not aware of any prior work devoted to anomaly detection applied to email 

audit streams other than MET. However, recent work by Forrest [27] and HP [38] and 

social scientists at Columbia University [37] analyze email account connectivity for 

various purposes. In Forrest’s case, they consider email accounts linked in a graph as 

defined by address books to measure network density specifically to provide guidance on 

address book management. They note that viral propagations will spread fast among 

accounts whose address books are deemed “dense” from a graph theoretic point of view. 

The HP and Columbia social science work are similar to our work on cliques. In these 

two pieces of work, the communication density and flow within an organization is 

studied to understand the effectiveness of communication with an organization. In the 

case of the Columbia social science work, they seek to answer the question whether 6 

levels of indirection indeed separate any two people within email communication.   

 

3. EMT – EMAIL MINING TOOLKIT 

In order to develop behavior-based methods for email security, we have implemented the 

Email Mining Toolkit (EMT) [32]. This toolkit is useful for report generation and 

summarization of email archives, as well as for detecting email security violations when 

incorporated with a real-time violation detection system, such as the MET system [3]. 

EMT is presently implemented as a forensic analysis tool applied to email logs; it is 

being upgraded to allow uploading of its computed models for real-time detection either 

as a client-side detector (when integrated with a mail program) or within MET as a 

server-side detector. 

 

3.1 Schema 

The main database embedded within EMT consists of three tables: the Email, 

Message, and Kwords tables, which represent email in the database. Below is a 

brief overview of these tables.  

3.1.1 Email Table  



Email Table

PK sender
PK rcpt
PK dates
PK times
PK msghash

sname
sdom
szn
rname
rdom
rzn
numrcpt
numattach
size
mailref
xmailer
flags
rplyto
forward
type
recnt
subject
timeadj
folder
utime
senderLod
rcptLoc
insertTime
recpath
UID
class
score
groups

Message Table

PK,FK1 mailref
PK hash

type
received
size

FK1 msghash
body
filename

Keywords

PK,FK1 mailref

hotwords

 
Fig. 1. Main database schema. 

The email table is the primary collection of information about an email. Information 

about the sender, recipient, date, time when the email was moved and its contents 

including attachments are stored here. If a single email has many recipients, the table 

includes a row for each recipient (as if the email were viewed by a distinct 

sender/recipient pair). The reason for this is that, conceptually, there is no difference 

between sending an email to many people at once and sending it to each person 

individually.  

Each email has two unique identifiers in the schema. Each row in the table has a 

unique field that indicates the e-mail’s unique identification number (UID). In addition, 

each processed email has a unique ID called the ‘mailref’. Some email records may share 

a single ‘mailref’ if they were created from a single email that had multiple recipients. 



The kwords table collects keyword statistics about the content of an email. A keyword 

file can be specified and the table saves the frequency of keywords found with each 

unique ‘mailref’.  In practice this table is updated when keyword functionality is enabled 

either when the e-mail’s are parsed, or during EMT operations. This feature is used for 

various content-based analyses available in EMT (for example, similarity of messages 

and their grouping, or statistical analyses using a “bag of words” feature for author 

identification, etc.). 

 

3.2 EMT Modeling Features 

EMT contains a large collection of (statistical) modeling features that may be combined 

for various detection tasks. Figures 2 and 3 show two screen shots of EMT’s GUI display 

windows, and a set of tabs to access these features. 

EMT is implemented in Java providing a GUI implementing an interface to an 

underlying database application. The data can reside in any SQL RDBMS. EMT is also 

provided with a set of parsers written in Perl that can read email files from a variety of 

formats (mbox, nsmail, Outlook and Lotus are all supported) and insert data into the 

underlying database. Each row of this data base is a detailed record of an email from 

which a variety of statistical analyses may be applied.  Most of EMT’s statistical models 

are computed by SQL commands against this database. Thus, EMT has been designed for 

scalability to large email archives, and generality to other communication mediums. A 

version of EMT that analyzes Instant Messaging traffic has also been implemented.  

For this paper, we focus primarily on testing three behavior models computed by 

EMT to detect the onset of viral propagations. We first describe EMT’s analysis of group 

communication behavior. 



 
Fig. 2.  Recipient/Sender Frequency. 

 

 
Fig. 3. Groups and cliques of users. 



4. GROUP COMMUNICATION MODELS: CLIQUES 

In order to study email flows between groups of users, EMT computes a set of cliques in 

an email archive. We seek to identify clusters or groups of related email accounts that 

participate with each other in common email communications, and then use this 

information to identify unusual email behavior that violates typical group behavior. For 

example, intuitively it is unlikely that a user will send a distinct message to a spouse, a 

boss, “drinking buddies” and church elders all appearing together as recipients of the 

same message (whether delivered in one email, or a series of emails). Of course this is 

possible, but it is rather unlikely. A virus attacking a user’s address book at random 

would surely not know these social relationships and the typical communication pattern 

of the victim.  Hence it would violate the users’ group behavior profile if it propagated 

itself in violation of the user’s social cliques.  

Clique violations may also indicate email security policy violations internal to a 

secured enclave. For example, members of the legal department of a company might be 

expected to exchange many Word attachments containing patent applications. It would be 

highly unusual, and probably unwise, if members of the marketing department, and HR 

services would likewise receive these attachments. We can infer the composition of 

related groups by analyzing normal email flows to compute the naturally occurring 

cliques, and use the learned cliques to alert when emails violate that clique behavior. 

Conceptually, two broad types of cliques can be extracted from user email archives: 

user cliques and enclave cliques. In simple terms, user cliques can be computed by 

analyzing the email history of only a single user account, while enclave cliques are social 

groups that emerge as a result of analyzing traffic flows among a group of user accounts 

within an enclave. In this paper, we utilize only User Clique models, leaving the analysis 

of enclave cliques to a future paper.  

 

4.1. User Cliques 

We model the collection of recipients in a single email as a set, and summarize these sets 

and their dynamics. This information is used to detect abnormal emails that violate the 

user’s clique behavior.   

Formally, email communication can be captured by a directed graph ),( EVG  with 

the set of nodes, V , corresponds to individual email accounts.  A directed edge, 12e , 

exists if 1v sends an email to 2v . Viewed in this way, cliques are a certain pattern in this 

graph that we characterize and use as norms of communication behavior. (EMT also 



provides an “enclave clique” feature that implements the Bron-Kerbosch clique finding 

algorithm to compute all connected components in this graph.) 

Aside from the graphical view, the user clique model is best described in terms of 

item sets. An item set is a set of items associated with a transaction, such as a single 

purchase at a supermarket. The goal of analyzing item sets is to extract useful association 

rules of how items appear together. This problem has been studied in the data mining and 

database community and is of great commercial interest for its wide range of applications 

and potential predictive value that can be derived [1].  

In the context of mining email, an email can be viewed as a transaction that involves 

multiple accounts, including a sender (in the FROM field) and recipient(s) in the (TO, CC 

and, BCC fields). If we discover the rules governing the co-appearance of these addresses, 

we could then use these rules to detect emails that violate these patterns. Suspicious 

emails may then be examined further by other models to confirm or deny that they are 

malicious. 

 
Fig. 4. Three item sets from account U: {A, B, C}, {B, C, D, E} and {D, E}.  The 

first two sets share two nodes and the last set is subsumed by the second set.  The 

resulting user cliques are {A, B, C} and {B, C, D, E}. 

The recipient list of a single email can be viewed as a clique associated with the 

FROM account. However, using this set (or item set) directly is problematic for two 

reasons. First, a single user account would contain a large number of such sets and 

enumerating them for real-time reporting or detection tasks would be undesirable. Second, 

some of these sets are duplicates or subsets of one another and it would be difficult to use 

them directly for any purpose. For these reasons, we define a user clique as a set of 

recipients that cannot be subsumed by another set. Thus, we compute the most frequent 

email item sets that are not subsumed by another larger item set. Naturally, a single user 

will have a relatively small number of user cliques. As an example, suppose a user has in 

his/her sent-folder four emails with the following recipient lists: {A, B, C}, {A, B, C}, 



{A, B}, and {A, B, D}.  The user cliques belonging to this user would be {A, B, C} and 

{A, B, D}.  Note that duplicate user cliques are removed, as it does not contribute useful 

information. 

Once these sets are derived off-line by analyzing a user’s “profile” period, we inspect 

each email sent from the user’s account in a subsequent “test” period of time to determine 

if there is a clique violation – i.e. the recipient list is inconsistent with the user’s cliques. 

An email sent from a user is regarded as inconsistent with the user’s cliques if its 

recipient list is not a subset of any user cliques belonging to that user. 

The usefulness of this model depends not only on how quickly new groups of 

recipients form over time but also on how it is combined with other models. Installing a 

monitoring tool using this model on a new account or an account that is constantly 

communicating with new groups may cause too many false alarms and thus render the 

model useless. However, this very behavior is indicative of user email usage patterns and 

thus can be turned into a feature that characterizes user behavior.   

Although the dynamics of clique formation [7] (and expiration) is implemented in 

EMT, for the present paper we shall ignore the dynamics of clique formation to explore 

the utility of the base user clique model. Computing the set of “static cliques” is 

sufficiently informative for the purpose at hand; this model provides useful evidence of a 

viral propagation launched from a user’s account.  

Notice that if a user ever sends a single broadcast email to everyone in their address 

book, there would be only one user clique remaining in the model for that user. This 

would render the model almost useless for virus detection task because no clique 

violation is possible as long as a user does not communicate with someone new. In 

practice, however, this scenario is highly unlikely to happen. We illustrate this point by 

examining the communication patterns of 15 users in our database. We show that most of 

the time, a user will send a single email to less than 10% of the people in their address 

book. For an account with a small address book, a single email could cover 20%, 30% or 

an even higher percentage of the address book. As we can see from Table 1, the 

probability of an email covering a given range of percentages of an address book 

decreases quickly as the percentage range increases.  In fact, none of the 15 users ever 

sent a broadcast email to everyone in his/her address book. 

 

 

 



Table 1.  Statistic of the percentage of an address book covered by a 

single email, broken down for each user and the average case. 

User 

# of 
distinct 
addresses 

� 
10% 

10-
20% 

20-
30% 

30-
40% 

40-
50% 

50-
60% 

60-
70% 

70-
80% 

80-
90% 

≥≥≥≥90
% 

1 324 1 0 0 0 0 0 0 0 0 0 
2 1308 1 0 0 0 0 0 0 0 0 0 
3 38 0.46 0.49 0.04 0 0 0 0 0 0 0 
4 144 0.96 0.01 0.01 0.00 0 0 0 0 0 0 
5 26 0 0.74 0.04 0.09 0.06 0.02 0.01 0.02 0 0 
6 105 0.95 0.04 0.01 0 0 0 0 0 0 0 
7 64 0.98 0.01 0 0 0 0 0 0 0 0 
8 92 0.95 0.05 0 0 0 0 0 0 0 0 
9 43 0.70 0.15 0.11 0.04 0.01 0 0 0 0 0 

10 24 0.54 0.12 0.25 0.05 0.02 0.01 0 0 0 0 
11 75 0.91 0.09 0.01 0 0 0 0 0 0 0 
12 1231 1 0 0 0 0 0 0 0 0 0 
13 231 1 0 0 0 0 0 0 0 0 0 
14 368 1.00 0.00 0 0 0 0 0 0 0 0 
15 568 1 0 0 0 0 0 0 0 0 0 

Avg 291 0.83 0.11 0.03 0.01 0.00 0.00 0.01 0.01 0 0 
 

4.2. Test of Simulated Viruses 

Here we evaluate the utility of user clique violations (independent of other modeling 

techniques) for viral propagation detection. We simulate viruses by inserting “dummy” 

emails into an email archive following a propagation strategy that has been observed 

from numerous real viruses seen in the wild. The first 80% of emails sent from each 

account is deemed the profile period used for deriving user cliques associated with that 

account. The remaining 20% of the emails are used during the testing phase where the 

dummy emails simulating the propagation are inserted.  

For this simulation, it is not critical exactly when and how often viral emails are sent 

out. That is, we ignore the propagation rate entirely; determining whether or not a 

recipient set violates existing user cliques is independent of the timing of the email in 

question. However, during the simulation/test phase, user cliques are updated on a daily 

basis and the timing of email is affected slightly. Such effects are still more or less 

negligible, as having viral emails that are sent later in time is tantamount to having a 

longer training phase and a shorter test phase. 

In terms of modeling attack strategies, we test the effectiveness of the user clique 

violation model against various sizes of a viral email recipient list. For illustrative 

purposes, we assume that a virus would fetch email addresses from the address book of 

an infected user to propagate itself. In reality, email addresses could be obtained via 

others means, such as scanning the inbox, sent folder and email archives. Without loss of 

generality, the simulation has the virus propagating itself to recipients chosen at random. 



However, the usefulness of user-clique violation detection in practice depends on how a 

virus obtains the target email addresses. For example, a virus obtaining addresses from an 

inbox and replying to respective senders and everyone else in the message may not be 

detected easily, depending upon how compatible they are with existing user cliques. (This 

implies that the virus would imitate or mimic the user’s behavior; avoiding this mimicry 

attack involves other security mechanisms and is the subject of ongoing work to be 

reported in a future paper.) 

Herein lies the reason for False Positives produced by this model. The other models 

we explore below mitigate these mistakes by modeling the user’s email frequency 

distribution. 

As we can see from the ROC curve in Figure 5, the false positive rate is invariant with 

respect to the size of the recipient list. This is expected, as this rate is defined as the 

number of false positives over the number of normal emails, and both of these quantities 

do not vary with respect to how viral emails are sent under our simulation setting. It is 

interesting to note that the true positive detection increases dramatically as the size of the 

recipient lists in a viral email grows from 1 to 2 to 3 and then approaches 100% gradually 

as the list size further increases (Figure 5).  This result is intuitive; we should not expect 

that there would be many user clique violations if a virus sends an email to only one 

recipient at a time. The fact that this number is not 0, as one might have thought, deserves 

some mention. This could happen because certain email addresses appear in an address 

book before any email is sent to them.   

 
Fig. 5. Test of simulated viruses. Parameter: Varying number of recipients per attack 

email 

While a virus may try to thwart our detection effort by sending itself to one address at 

a time, it will inevitably have to send many separate emails to achieve the same 



propagation speed. In doing so, it is likely a different level of threshold would be 

triggered by another model that is tuned to the user’s outbound email frequency. Thus, 

we combine the user clique detection model with other methods of detection, such as 

Hellinger Distance described in the next section, to mitigate this error.  

Alternatively, as demonstrated below - the Backward/Forward Scanning algorithm - 

we may delay email transmission to gather evidence of clique violations among a 

sequential set of similar or equivalent emails indicative of a propagation. The TP and FP 

detection rates dramatically improve under this strategy as well. 

 

5. NON-STATIONARY USER PROFILES 

Most email accounts follow certain trends, which can be modeled by an underlying 

distribution. As a practical example, many people will typically email a few addresses 

very frequently, while emailing many others infrequently. Day to day interactions with a 

limited number of peers usually results in some predefined groups of emails being sent. 

Other contacts communicated to on a less than daily basis have a more infrequent email 

exchange behavior. These patterns can be learned through an analysis of a user’s email 

archive over a set of sequential emails. For some users, 500 emails may occur over 

months, for others over days. The duration of these email transmissions is not material for 

the profile we now consider.   

Almost every user of an email system develops a unique pattern of email emission to 

a specific list of recipients, each having their own frequency of occurrence (with respect 

to the number of emails). Modeling every user's idiosyncrasies enables the system to 

detect malicious or anomalous activity in the account. This is similar to what happens in 

credit card fraud detection, where current behavior violates some past behavior patterns. 

It is important to note that a user’s email pattern is not static. The frequency 

distribution computed by EMT accommodates the user’s change in frequency that may 

occur during the profile period, whether the user goes on vacation, is out sick, or is in a 

flurry of activity to make a deadline for submission. These changes are measured and 

modeled as we describe next.  

 

5.1. Profile of a user 

We analyze the user account's activity in terms of recipient frequency. Figure 6 displays 

the frequency at which the user sends emails to all the recipients communicated to in the 

past. Each point on the x-axis represents one recipient and the corresponding height of 

the bar measures the frequency of emails sent to this recipient as a percentage. (The 



display is an actual distribution from a volunteer email account. All others have been 

found to follow the same type of distribution.) 

 
Fig. 6. Recipient Frequency 

This bar chart is sorted in decreasing order, and usually appears as a nice convex 

curve with a strong skew; a long low tail on the right side, and a very thin spike at the 

start on the left side. This frequency bar chart can be modeled with either a Zipf 

distribution, or a DGX distribution (Discrete Gaussian Exponential distribution), which is 

a generalized version of the Zipf distribution. This family of distributions characterize 

some specific human behavioral patterns, such as word frequencies in written texts, or 

URL frequencies in Internet browsing [4].  In brief, its main trait is that few objects 

receive a large part of the flow, while many objects receive a very small part of the flow. 

The rank-frequency version of Zipf's law states that )(rf ∝ r/1 , where )(rf  is the 

occurrence frequency versus the rank r, in logarithmic-logarithmic scales.  The 

generalized Zipf distribution is defined as )(rf ∝ θ)/1( r , where the log-log plot can be 

linear with any slope. Our tests indicate that the log-log plots are concave, and thus 

require the usage of the DGX distribution for a better fit [4]. 

We also analyze the number of distinct recipients and attachments. However, we use 

“records” instead of emails. For example, if a user sends one email, to B, and CC’s that 

email to C, D and E, these are four records in the database recording these 

communication events. Because a virus may send to several victims via one email (by 

CC’ing to everyone), or several emails (one by one), by using “records” we consider both 

cases within the model. 

Figure 7 contains several curves that visualize the variability of the user's emission of 

emails. The statistics calculated are the number of distinct recipients and the number of 



messages with attachments. The first type of curve uses a rolling window of 50 (or 20) 

records to calculate the number of distinct recipients. These values are ordered by time. 

For example, in Figure 6, this user has 750 records, and all of them are sorted by time. At 

the location 200 in the chart, the value of the curve, with the rolling window size of 50, is 

10 (see the highest plot). This means that in the past 50 records there are 10 different 

recipients of the user’s outbound email. What this analysis means is that the higher this 

plot approaches 50, the wider the range of recipients the selected user sends emails to 

over time. (The user is thus conducting many conversations with many people.) On the 

other hand, if the metric is low, it means that the user predominantly sends messages to a 

small group of people. 

 
Fig. 7. Analysis of recipient and attachment 

We also plot a curve (the middle dashed line) using 20 as the window size instead of 

50. This metric has a faster reaction to anomalous behavior, while the previous one using 

blocks of 50 shows the longer-term behavior. The short-term profile can be used as the 

first level of alert, the longer-term one acting to confirm any detected anomalous 

frequency change.  

Another type of curve is the number of messages with attachment(s), per block of 50 

records (the lowest dashed line). It shows the average ratio of emails with attachments 

versus emails without attachments, and any sudden spike of emails sent with attachments 

will be detected on the plot as a significant spike. The profile displays a fingerprint of a 

specific user's email frequency behavior. The most common malicious intrusion can be 

detected very fast by the metrics. For instance, a Melissa-type virus would be detected 

since the curves will increase rapidly to 50, 20 and 50, respectively. 

 



5.2. Chi Square Test of Recipient Frequency 

We test the hypothesis that the recipient frequencies are identical over two different time 

frames by a Chi Square test. Obviously, recipient frequencies are not constant over a long 

time horizon, as users will add new recipients and drop old ones. It can be informative for 

behavioral modeling though, to analyze the variability of frequencies over two near time 

frames. 

We compare two time periods of activity for the same user. The idea is to treat the 

first period as the true distribution corresponding to the user under normal behavior, 

while the second time period is used to evaluate whether or not the user’s frequencies 

have changed, providing evidence that perhaps a malicious activity is taking place. 

Generally, we operate under the usual 1/5 - 4/5 ratio between testing and training sets. 

For example, we use 1000 records as a training-testing set, 200 recent records are 

selected as the testing range, while the previous 800 are the training range. Note that the 

“testing range” represents a user’s new incoming or outgoing emails, and the “training 

range” represents the previous normal behavior used to generate the profile. 

Assuming that the observed frequencies corresponding to the first, longer time frame 

window are the true underlying frequencies, the Chi Square statistic enables us to 

evaluate how likely the observed frequencies from the second time frame are drawn from 

that same distribution [14]. The Chi Square formula is 
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where )(iX is the number of observations for recipient i  in the testing range, )(ip is 

the true frequency calculated from the training range, n is the number of observations in 

the testing range, and k is the number of recipients during the training period. There are 

1−k  degrees of freedom.  

The p-value represents the probability that the frequencies in both time frames come 

from the same distribution. In order to get an idea of the variability of the frequencies 

under real conditions, we used a sample of 37,556 records from 8 users. We ran two 

batches of calculations. First, we used a training period size of 400 records and a testing 

period size of 100 records; for each user, we started at the first record, calculated the p-

value, then shifted the two windows by steps of 10 records until the end of the log was 

reached, each time calculating the p-value. Secondly, we reproduced the same experiment, 

but with a training period size of 800 records, and a testing period size of 200 records.  

We thus collected a total of 7,947 p-values, and the histogram is shown in Figure 8. 



 
Fig. 8. P-value plot 

Under the hypothesis that the frequencies are constant, the histogram is expected to be 

a flat line. On the contrary, this histogram is characterized by a very large concentration 

of p-values between 0 and 5%, and a large (but less large) concentration between 95 and 

100%, while p-values in the range of 5 to 95% are under-represented. Intuitively, most of 

the time, frequencies change significantly (in a statistical sense) between two consecutive 

time frames; this is why 60% of the p-values are below 5% (as a low p-value indicates a 

very high chance that the frequencies have changed between two time frames). Email 

users tend to modify their recipient frequencies quite often (at least the 8 volunteers). On 

the other hand, there are non-negligible times when those frequencies stay very stable (as 

13% of the p-values are above 95%, indicating strong stability). As the frequencies have 

been found to be so variable under normal circumstances, the Chi Square test itself could 

not be used to reliably detect an abnormal email behavior. Instead we utilize the 

Hellinger Distance metric, a related metric that evaluates changes in frequency over two 

frequency distributions.   

  

5.3. Hellinger Distance 

Our first tests using the Chi-square statistic revealed that the frequencies cannot be 

assumed to be constant between two consecutive time frames for a given user. We 

postulate, though, that what is specific to every user is how variable their frequency 

changes are over time. We model this user behavior by calculating a measure between 

two frequency tables.   

We use the Hellinger Distance for this purpose, as this metric is efficient in 

comparing two probability distributions of frequencies. It is defined as  
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where []pf  is the array of normalized frequencies for the training set (profiling 

period), []tf for the testing set, n is the total number of distinct recipients/senders 

observed during both periods. We define the Hellinger testing window size as the range 

of emails that are tested, while the training range size is a multiple of that, usually 4. The 

arrays of frequencies is defined as,  

ppp wsiNif /)(][ = , and  ttt wsiNif /)(][ = , 

where wsp is the Hellinger training window size, wst  is the Hellinger testing window 

size, piN )(  and tiN )(  are the number of times that the current recipient (in the case for 

outbound traffic), or sender (for inbound traffic) of the emails appears in the range wsp 

and wst, for the profiling period p and testing period t, respectively, of emails being 

evaluated. This is computed for both inbound and outbound email traffic. Figure 9 

displays an example for a user from our group of volunteers who provided their email 

archive. 

 
Fig. 9. The Hellinger distance of a typical User 

The Hellinger distance plot shows the distance between training and testing sets 

plotted over the entire email history of the user. For example, if a user has 2500 outbound 

records and the window size is 100, the plots starts at the 500th record, and measures the 

distance between the frequencies corresponding to the first 400 records, versus the emails 

corresponding to the next 100 records; these two windows, of 400 (training) and 100 

(testing) records, respectively, are then rolled forward over the entire email history of the 

user, by steps of one record. At each step, a Hellinger distance is calculated between the 

given training window of 400 records, and the corresponding testing window of 100 

records. 



What this plot tells us is that when a burst in email activity occurs, the recipient 

frequencies have been changing significantly. This statistic provides evidence of either a 

highly variable user, or a possible viral propagation.  

 

5.4. Evaluation techniques using simulated viruses and threshold settings 

As real email data with real embedded viral emails are very difficult to obtain [29] (and 

dangerous and possibly illegal to generate), we injected “dummy” viruses into a real 

email log file as described above. A set of parameters introduces randomness in the 

process, in order to mimic real conditions and explore boundary conditions: the time at 

which the virus starts, the number of corrupted emails sent by the virus and its 

propagation rate.  

For testing purposes, all the recipients of such “dummy” corrupted records are picked 

randomly from the address list of a selected user. In reality, where addresses are obtained 

and how they are combined can be a crucial issue for a virus to successfully propagate 

itself without being detected. The simulated recipient list of the virus can be set to be all 

distinct addresses, as most viruses seem to do. But not all viruses would send an email 

only once to each target recipient account. In our simulation, each “dummy” record 

contains one attachment, but no information about the attachment is provided or used.  

(Recall, our focus here is to demonstrate the value of behavior models, as an adjunct to 

content-based analyses.) For our purposes, we do not need to know the content of the 

message, its size, and the size and content of the attachments. So, these techniques may 

be general enough that they encompass polymorphic viruses as well (where content 

analysis or scanners may fail).   

The experiments use a combination of three plots, Hellinger Distance, “number of 

distinct recipients”, and the “number of attachments”. Figure 10 displays plots detailing 

the profile of one user in our archive.  Our intuition is that when a virus is executed, its 

propagation will cause each plot to grow, i.e. it will not “simulate” the user’s real 

frequency distribution. We use a threshold logic to detect “abnormal” growth of these 

plots.   



 
Fig. 10. Three evaluating models.  

Solid lines: Calculated value, Dash lines: Threshold 

We use two types of thresholds to determine when a “burst” occurs, a threshold 

proportional to the standard deviation of the plots, and a threshold based upon the 

changing “trend” revealed by the Hellinger Distance, both conditioned on a window size 

of prior plotted values. An email is deemed viral if any model deems it to be viral 

according to the threshold settings.  

We believe it may be necessary to calibrate the threshold settings on a per user basis. 

For this study, we did not implement specific “user calibration”; rather we aim to 

establish a baseline of performance over all users to reveal whether user specific 

thresholds might be needed. 

The first threshold is the value of the plot at some point adjusting it by a factor 

proportional to the standard deviation of the average value of the plot calculated from the 

previous n values of the plot. Thus, the threshold is dynamic, essentially proportional to 

one standard deviation from the mean for the recent user’s behavior. The threshold value 

is defined as  
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 where ][iT  is the threshold value at  location i,  ][ jV is the value of the plots at 

location j, α is a constant that is set to 0.1, the function st(a, b) returns the standard 

deviation in the range ],[ ba , n is the window size, and j = i – shift. We need a shift 

value to calculate the threshold using the prior range of data. Without the shift value, the 

threshold would be always higher than the original value since ][iT  is always greater 

than ][iV .  

The second threshold was developed by observing the trends of the three plotted 

statistics.  When both the “number of distinct recipients” and the “number of 

attachments” plots grow (the values increase), and when the slope of the “Hellinger 

Distance” model grows, this range of emails is marked as suspicious. This means that the 



“slope” acts as a threshold for the Hellinger Distance model, but is used only when both 

plots (number of recipients and number of emails with attachments) exceed their 

threshold. Hellinger Distance thus severs as a “confirmation” of the other two models.  

In Figure 10, the test “dummy” emails simulating viral emails are injected at location 

300. In the two rightmost curves we see a “burst”. However, in the Hellinger Distance 

plot on the left, it’s not confirmed as a “burst” since in this period of time the user’s 

changing behavior is not abnormal. Recall the Hellinger function. The Hellinger distance 

expresses the change in the user’s behavior.  There are four trends that the Hellinger 

metric may reveal as shown in Table 2. The columns are the user behavior indicating the 

number of recipients that the user usually sends to. 

Table 2. User behavior vs. Hellinger Distance 

 
The curves graphically represent different user behaviors during periods of time when 

viral emails may appear. In region A, the user is changing his/her behavior rapidly, and a 

viral propagation with many recipients would be more difficult to detect. These would be 

detected towards the end of the period when the slope of the Hellinger plot changes to 

zero. In region B, when the user’s behavior is stable, viral propagations are more 

noticeable. In region D, a stable user behavior provides the means of detecting a viral 

propagation more easily. However, in region C, nothing can be found easily. A stable 

user who sends to lots of different recipients is the best victim of a virus. This situation 

means the user’s normal behavior is akin to a virus propagation! He or she always sends 

emails to all the people he or she knows. 

5.4.1 Results and Discussion 

The dataset used for this independent test is an archive of 15 users, totaling 20,301 

emails. The parameters that were randomly generated at each simulation were the time of 

the injected viral emails and the list of recipients (taken from the address list of each 

selected user). The parameters that were controlled were the propagation rate, the number 

of corrupted records sent, and the window size (of the Hellinger distance metric). In total, 

about 500,000 simulations were performed.  



As expected, a slower propagation rate (longer inter-departure time) makes detection 

harder. Each email record corresponding to a virus email inserted into the archive 

becomes less “noticeable” among the entire email flow. As can be seen in Figure 11, the 

performance gets worse when the inter-departure time increases; that is to say slow and 

stealthy propagations are hard to detect. 

 
Fig. 11. Varying inter-departure time 

The Hellinger window size is the most important parameter. We plot the TP rate as a 

function of window size in Figure 12 to evaluate the sensitivity of the model to this 

parameter. In this test, the inter-departure time is 30 minutes. The performance is best 

when the window size is the same as the number of dummy records inserted into the 

archive. The reason is that, for example, when the window size is 50 and there are 20 

injected viral records (the number of injected viral records is less than window size), 

these records do not occupy a very significant portion of the 50 records. The model may 

not determine that they are suspicious. On the other hand, if there are 100 injected 

records and the first 50 are detected, these 50 dummy records will be treated as normal 

records in the next round of Hellinger training. As a consequence, the system will likely 

model the first 50 as normal and not be able to detect any abnormality. 

 
Fig. 12. Increasing  Hellinger window size produces lower detection rates. 



In summary, we achieved very reasonable results with the Hellinger distance model. 

However, there are still three problems. First, we assumed that we had enough normal 

records before and after the inserted viral emails to develop sufficient statistics modeling 

the user and detecting the propagation. We also assume in this simulation that we can 

analyze all the records (both dummy and normal) at the same time, which is not practical. 

We cannot block a user’s email for a long time, for instance, a few hours. However, we 

may store a record of the emails and detect the propagation after the fact, but perhaps still 

in sufficient time to forewarn the recipients that they likely have received a viral email in 

their inbox from the recently detected infected victim. 

Second, it’s difficult to optimize the Hellinger window size, as it depends on the viral 

strategy used. In practice, we can overcome this by blocking all outgoing emails once we 

detect a virus. The question is then how can we detect the first instance of the virus 

propagation?   

Third, the false positive rate is about 15%, which cannot be reduced in this model 

easily. Thus, to achieve a better detector, this method has to be used in combination with 

other models. The first two issues will be addressed in the next section. 

 

6. COMBINING USER CLIQUE AND HELLINGER DISTANCE 

The Hellinger distance model is the result of analyzing the aggregate behavior of a 

sequence of emails. As such, it would not react immediately when a viral email 

appears. Similarly, it would keep setting off alarms for a short while after a batch of viral 

emails has already been sent out. On the other hand, the user cliques model could detect a 

suspicious viral email upon its first appearance. It is worth mentioning that every time an 

email with a new address appears in the user’s inbox, the user clique model will treat it as 

a violation. In short, Hellinger analyzes the trend of users’ behavior by analyzing a buffer 

of email records of their recent behavior, while the user clique method is oriented 

towards detection of individual viral emails at that moment in time when they are sent or 

received. Ideally, combining these models may achieve better overall detection 

performance. 

 

6.1 Backward/Forward Scanning algorithm 

The intuitive reasoning here is quite simple. When sufficient evidence for a viral 

propagation has been detected, i.e. an email has an alert generated by both models (clique 

violation and a substantial change in the user’s email emission) it is highly likely that 

prior and subsequent emails will be part of the virus propagation. We seek to detect these 



other emails by searching a set of buffered emails (or their record of emission) inspecting 

the model outputs for each. We search prior emails for evidence of being part of the onset 

of a propagation. This evidence is simply whether one of the EMT models has deemed it 

a violation. We also search forward in time and test emails until we find an email that 

violated no model. Intuitively, therefore, the propagation has terminated, or the user has 

sent legitimate emails during the propagation. We apply this technique for both inbound 

traffic (the optimal case to prevent infection) and the outbound case when an infection 

has succeeded but we wish to limit the viral spread as quickly as possible.  

The most straightforward method to combine the user clique and Hellinger Distance 

models is to “intersect” their alert outputs. Depending upon the threshold settings, a close 

examination shows that they have different distributions of false positives. For example, 

the user clique model may generate false positives on email number 1, 3 and 5, while 

Hellinger may generate false positives on email number 2, 4 and 6. If we take the 

intersection, we can eliminate most false positives. However, a lower false positive rate 

may be achieved at the expense of a lower TP detection rate. 

We propose an alternative strategy we call the Backward/Forward Scanning algorithm. 

Emails are assumed to be buffered before they are actually sent out or, as we mentioned, 

a record of all sent emails are kept for analysis, including instances of the virus that have 

escaped without early detection. These records however inform as to where those viral 

emails were sent so new victims may be warned. This is a key feature introduced in the 

MET system.  

Such rate limiting or buffering of email could be hidden and unbeknownst to the user. 

Email may be viewed as a store and forward technology (at least one hop through the 

server). However, an egress “store for a while, then forward” strategy for email delivery 

has a practical advantage. As far as the user is concerned, the email is sent from client to 

server and is delivered by the underlying communication system at some arbitrary future 

time. Thus, the strategy of buffering and holding emails for some period of time allows 

sufficient statistics to be computed by the models and also benefits mitigation strategies 

to quarantine viral emails before their delivery, limiting exposure to the enterprise or 

enclave.  

Alternatively, a record of the recently delivered emails may also benefit early 

detection and mitigation strategies. When the system sees an alert triggered by both the 

Hellinger Distance model and the user clique model, it will examine all adjacent emails 

more closely, those preceding it and those newly sent by the client. Namely, it will trace 

(scan) all buffered emails forward and backward (or their record of delivery), starting 



from the common trigger. The trace attempts to find all sequential emails that are deemed 

suspicious by the user clique model and will end once a harmless email, as viewed by 

user cliques, is encountered.  The system then marks all those emails found along the 

trace as suspicious. The algorithm schema below lists the main steps in this algorithm. 

The input test emails denoted T, are ordered by time. The output is a bit vector R where 

bit i is set indicating T[i] is deemed viral.  

The backward/forward scanning algorithm 
 
1. Let T be the ordered list of test emails, which are sorted by time.  
2. The length of T = n. 
3. Let C be the alerts generated by the Clique model from T and H be the alerts generated 

by the Hellinger Model from T. 
4. For each email T[i], i=1, ..., n,  H[i] = true, if the Hellinger model scored the email 

as anomalous. Likewise, C[i], i=1, ..., n records whether an email had been issued an alert 
by the Clique violation model. 

5. Let R be the result alerts. 
6. Let i and j be the reference of the first and last emails on testing day, respectively. 
7. FOR k = i to j 

IF C[k] = true and H[k] = true 
 R[k] = true 
 last_position = k 
  

k = last_position -1  //backward 
 WHILE k >= i and C[k] = true and H[k] = false 
  R[k] = true  
  k = k-1 
  
 k = last_position + 1 //forward 
 WHILE k <= j and C[k] = true and H[k] = false 
  R[k] = true  
  k = k+1 
ELSE 

   R[k] = false 
   k = k+1 
 RETURN R 

 

Figure 13 is a graphical view of this Backward/Forward Scanning algorithm. Each 

email in the sequence is denoted by “x” or “o”, depending on whether or not there is an 

alert associated with it. In this example, we have 18 emails, labeled from #1 to #18. 

These emails are buffered (stored) and analyzed by both models. The alerts generated by 

the user clique model are in the first row. The suspicious emails with alerts are #4 to #11, 

#16 and #17. The alerts generated by the Hellinger Distance model are in the second row, 

and the suspicious emails are #7, #8, #9, #13 and #14. 



 
Fig. 13. A graphical view of the buffer scanning method.   

The algorithm proceeds as follows. In the first step, we find the first alert triggered by 

both models. In this case email #7 is detected. We then inspect the model outputs for each 

of the adjacent emails prior to #7 and find #4, #5 and #6 have model outputs that 

triggered alerts by the user clique model, but not by the Hellinger Distance model. We 

thus generate alerts for each of these as the first set of outputs by this buffer scanning 

method.  

In the second step, we scan forward, those emails occurring after #7. Here we find 

emails #8 and #9 have alerts triggered by both models, but #10 does not.  We check the 

model outputs for those immediately following emails occurring after #10 for which one 

model has generated an alert. Stepping forward, we capture #10 and #11, but terminate at 

email #12, which has generated no alerts for either model. Finally, we clear all the alerts 

that are not triggered by both models after # 11 deeming these as False Positives. We 

next report results using this strategy. 

 

6.2 Tests of simulated virus propagations 

The dataset for this independent test, both inbound and outbound emails spanning a time 

frame between 2001-01-01 and 2002-12-31, includes 53163 emails from 15 users, and 

8% of these emails contain attachments. The distributions for these users are depicted in 

Table 3. EMT computes one user’s model in less than 5 seconds, and each model output 

requires at most 1M byte of space. 

 

 

 



Table 3. testing dataset 
 Outbound Inbound 

Users # of 
Emails 

# of 
Records 

# of records 
with 

attachment 

# of 
Emails 

# of 
Records 

# of records 
with 

attachment 
1 1526 3849 270 3739 3929 325 
2 6723 9509 309 8334 8461 925 
3 678 678 21 523 579 50 
4 400 1059 7 543 544 10 
5 128 547 0 209 276 12 
6 188 513 18 506 518 26 
7 456 726 33 693 721 29 
8 207 708 6 352 354 12 
9 261 890 122 345 398 51 

10 211 588 4 619 671 12 
11 188 595 14 388 420 29 
12 5577 11447 1347 7203 7647 937 
13 507 1484 191 680 711 161 
14 2519 3917 107 2365 2431 251 
15 3396 5198 281 3699 3877 454 

 

We treat the first 80% of the email data as each user’s normal behavior (training data) 

and inject a batch of “dummy records” into the last 20% (testing data). We test 100 times 

for each user, generate the dummy emails at a random location (time), and take the 

average of the results over all runs for the three different users. Results for each user are 

displayed in Tables 4 - 11. Naturally, only emails with attachments are tested by the EMT 

models since only these can contain viruses. Thus, for clarity, the TP rate is the 

percentage of dummy emails deemed correctly to be viral, and the FP rate is the 

percentage of “normal” user emails with attachments that are mislabeled by EMT as viral.  

During the test phase, we train and test the email data on a daily basis. For example, 

on the first day of the eleventh month, we put all the data (on that day) into the buffer. 

Then we use the training data to test whether the emails are suspicious depicting 

abnormal behaviors. We then move forward on a day by day basis for testing. After an 

individual test day, we assume the user will review and confirm the normal and viral data. 

Then, we will update the database, which is training data (i.e. add the normal emails for 

next daily test and drop viral emails). 

The parameters that are controlled are the propagation rate and the number of 

recipients in a single dummy email. The first parameter is one of the most important 

issues in the Hellinger simulation (section 5.4). The second parameter is more pertinent 

to user cliques. Having more recipients in a single email makes it easier for the user 

clique model to detect a violation. Both inbound and outbound emails are tested. 

However, we divide the results, because a user’s behavior of inbound and outbound 

emails may be different. 



Another important issue is the Hellinger window size (Hellinger Distance, see section 

5.3, 5.4). Since it is impossible a priori to choose a single and perfect Hellinger window 

size in the general case for all users, we change it by evaluating the size of data (records) 

each day for each user. The window size is meaningless if it is too small or too large. If 

it’s too small, each email has too much of an influence on the statistics and each email 

may look like a virus. If it’s too large, the training data would not be enough to establish 

sufficient statistics and a small number of virus emails could easily go undetected. In our 

simulation, we set the window size to the average number of daily emails sent by each 

user, bounded below by 20 and above by 100. Optimally calibrating this parameter for 

each user is the subject of ongoing research.  

We first test and measure the outbound email from a user account to detect the onset 

of a viral propagation from an early victim. Varying the number of recipients in a single 

virus email yields a very interesting result. The upper-left plot of Figure 14 displays the 

average of the results. The TP rate increases with the size of the recipient list in a 

simulated viral email rapidly approaching 100%. This means a virus email is easy to 

detect if it propagates itself to many email addresses (for example, 9) and sends them in a 

single email or at the same time. We found that with just three recipients in a single email, 

the average TP rate is about 90%. The reason FP hovers around 8% and is almost 

invariant with respect to virus strategy is rooted in the definition of FP, the number of 

false positives divided by the total number of non-viral emails with attachments. Only the 

numerator depends on the properties of the emails being tested by the models. In addition, 

the alarm is triggered due to clique violations and Hellinger violation. The same false 

alerts are always triggered, regardless of the viral propagation strategy. We find that each 

user model exhibits a different TP rate and FP rate.   

The first test reveals encouraging results. However, this is because we set a high 

propagation rate in our simulated “dummy” emails. The inter-departure time used is 

uniformly distributed between 0 and 10 minutes in this test. The next test varies this 

propagation rate. 

In this independent test, the number of recipients in a single email is set to 4.  Similar 

to the propagation rate test in section 5.4, the detection rate gets worse when the inter-

departure time increases (the upper-right plot of Figure 14 and Tables 6 and 7) (i.e. the 

virus is stealthily propagating at a very slow rate). If this happens in the real world, once 

we detect the first virus (with long inter-departure time), we would likely have enough 

time to mitigate its effects, since it propagates slowly. Thus, the issue here again is how 

best to detect the first virus in a new propagation.   



Fortunately, on average, the models in both tests do detect the first or second dummy 

email. In the last row of Tables 4 and 6, we see that Backward/Forward Scanning 

algorithm can accurately detect the first viral emails, but alas these have already escaped 

to their new targets. 

We next consider the results achieved by EMT for inbound email; the optimal case to 

prevent viral propagations from entering an enclave or attacking a victim in the first place. 

The parameters for the inbound test of EMT are the same as the outbound test. The 

results are displayed in the lower plots of Figure 14, and Tables 8 through 11. 

Here we aim to detect an inbound email with an attachment from a sender that is 

unusual. Notice, in the lower-left plot of Figure 14 inbound emails with a single recipient 

have a very low TP rate. For the user data on hand, it is NOT unusual that inbound emails 

have only one recipient. When the number of recipients increases, and clique violations 

appear, the detection rate naturally grows, but with a fairly stable FP rate. Notice too in 

the lower-right plot of Figure 14 that the rate of receipt of viral emails affects detection 

performance. Fast arrival times are easy to detect inbound viral propagations. Slow rates 

decrease performance markedly. We may mitigate these FP rates in the same fashion as 

outbound traffic. By inspecting sequences of inbound emails destined to a user over a 

period of time, we increase the likelihood of detecting the inbound viral traffic. Moreover, 

because each user may a distinct behavior from other users and a user’s behavior may 

change rapidly over time, we can also measure the dynamic activity of users by using 

statistics capturing cyclic interaction patterns [7] to achieve better performance. 

Table 4. Outbound Detection Rate (TP). Parameter: varying number 

of recipients in a single email. Miss: the average number of virus mails 

missed before a propagation is detected. 
 1 2 3 4 5 6 7 8 9 

User 1 0.0 0.935 0.984 1.0 1.0 0.972 0.996 0.996 0.992 
User 2 0.0 0.92 1.0 0.996 1.0 1.0 0.996 1.0 1.0 
User 3 0.0 0.616 0.924 0.996 0.98 1.0 1.0 0.992 0.996 
User 4 0.0 0.424 0.672 0.856 0.972 0.936 0.944 0.996 0.98 
User 5 0.0 0.328 0.496 0.748 0.916 0.968 0.956 0.948 0.992 
User 6 0.0 0.58 0.812 0.952 0.968 0.9 0.952 0.972 0.952 
User 7 0.0 0.924 0.988 0.996 0.992 1.0 0.996 1.0 1.0 
User 8 0.0 0.82 0.984 0.996 0.988 1.0 0.976 0.98 0.992 
User 9 0.0 0.528 0.756 0.892 0.968 0.964 0.988 1.0 1.0 

User 10 0.0 0.56 0.904 0.94 0.992 1.0 1.0 1.0 0.996 
User11 0.0 0.692 0.976 0.94 0.992 0.988 0.996 0.996 0.98 
User 12 0.0 0.996 0.976 0.972 0.984 1.0 0.992 0.992 1.0 
User 13 0.0 0.904 0.988 0.996 1.0 0.992 1.0 1.0 1.0 
User 14 0.0 0.964 0.98 0.992 0.988 0.992 0.984 0.988 1.0 
User 15 0.0 0.956 0.988 0.976 0.996 1.0 1.0 0.996 1.0 

Avg. 0.0 0.743 0.888 0.95 0.982 0.981 0.985 0.99 0.992 
Miss NA 1.48 1.02 0.38 0.14 0.147 0.147 0.067 0.08 

 



Table 5. Outbound False Positive (FP). Parameter: varying number 

of recipients in a single email. 

 1 2 3 4 5 6 7 8 9 
User 1 0.122 0.122 0.1 0.115 0.113 0.096 0.11 0.11 0.101 
User 2 0.128 0.093 0.102 0.108 0.097 0.097 0.136 0.136 0.116 
User 3 0.15 0.189 0.195 0.176 0.143 0.137 0.146 0.187 0.161 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.089 0.101 0.095 0.092 0.095 0.098 0.094 0.099 0.105 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.158 0.142 0.152 0.122 0.168 0.146 0.122 0.194 0.186 

User 10 0.113 0.156 0.198 0.167 0.174 0.159 0.172 0.187 0.178 
User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.077 0.093 0.096 0.091 0.103 0.095 0.098 0.103 0.092 
User 13 0.216 0.197 0.182 0.189 0.178 0.196 0.162 0.145 0.158 
User 14 0.071 0.097 0.06 0.083 0.081 0.078 0.065 0.069 0.087 
User 15 0.016 0.025 0.031 0.031 0.029 0.033 0.025 0.032 0.026 

Avg. 0.0760        0.0810    0.0807    0.0783 0.0787 0.0757    0.0753    0.0841     0.0807 
 

Table 6. Outbound Detection Rate (TP). Parameter: varying inter-

departure time (in minutes). Miss: the average number of virus emails 

missed before a propagation is detected. 

 0 10 15 30 60 720 2880 7200 
User 1 1.0 0.968 0.996 0.988 0.992  0.988 0.812 0.86 
User 2 1.0 0.992 0.992 0.992 0.976 0.912 0.804 0.548 
User 3 1.0 0.996 0.98 0.992 0.952 0.984 0.884 0.928 
User 4 1.0 0.932 0.932 0.94 0.912 0.872 0.568 0.492 
User 5 1.0 0.816 0.712 0.724 0.812 0.764 0.448 0.336 
User 6 1.0 0.908 0.916 0.98 0.9 0.88 0.68 0.58 
User 7 1.0 0.996 0.992 0.996 0.996 0.976 0.972 0.996 
User 8 1.0 1.0 1.0 1.0 0.988 0.996 0.8 0.896 
User 9 1.0 0.928 0.908 0.88 0.924 0.92 0.696 0.7 

User 10 1.0 0.944 0.96 0.932 0.972 0.932 0.884 0.864 
User11 1.0 0.976 0.976 0.976 0.948 0.996 0.888 0.672 
User 12 1.0 0.988 0.964 0.992 0.944 0.856 0.716 0.68 
User 13 1.0 1.0 1.0 1.0 0.996 0.972 0.832 0.752 
User 14 1.0 0.992 1.0 0.996 0.992 0.912 0.784 0.644 
User 15 1.0 0.996 0.988 0.964 0.996 0.832 0.736 0.88 

Avg. 1.0 0.962 0.954 0.957 0.953 0.919 0.767 0.722 
Miss NA 0.247 0.567 0.44 0.593 0.473 1.013 1.3 

 

Table 7. Outbound False Positive (FP).  Parameter: varying inter-

departure time (in minutes). 

 0 10 15 30 60 720 2880 7200 
User 1 0.103 0.103 0.107 0.103 0.123 0.116 0.112 0.118 
User 2 0.114 0.108 0.119 0.101 0.099 0.099 0.077 0.055 
User 3 0.191 0.171 0.191 0.182 0.182 0.17 0.157 0.139 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.09 0.093 0.093 0.093 0.099 0.1 0.096 0.089 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.154 0.124 0.152 0.12 0.148 0.192 0.172 0.122 

User 10 0.215 0.109 0.163 0.089 0.161 0.145 0.198 0.176 



User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.109 0.094 0.096 0.093 0.094 0.082 0.082 0.083 
User 13 0.194 0.156 0.163 0.159 0.179 0.191 0.16 0.156 
User 14 0.086 0.077 0.071 0.089 0.084 0.053 0.064 0.056 
User 15 0.025 0.027 0.027 0.026 0.025 0.022 0.024 0.019 

Avg. 0.0854 0.0708 0.0788 0.0703 0.0796 0.0780 0.0761 0.0675 
 

Table 8. Inbound Detection Rate (TP). Parameter: varying number 

of recipients in a single email. Miss: the average number of virus 

emails missed before a propagation is detected. 

 1 2 3 4 5 6 7 8 9 
User 1 0.0 1.0 1.0 0.996 1.0 1.0 1.0 1.0 1.0 
User 2 0.0 0.984 0.992 1.0 1.0 1.0 1.0 1.0 1.0 
User 3 0.0 0.946 0.971 0.976 0.992 0.976 0.988 0.984 0.992 
User 4 0.0 0.996 1.0 0.996 1.0 0.996 1.0 1.0 1.0 
User 5 0.0 0.9 0.748 0.768 0.484 0.996 0.988 0.988 0.988 
User 6 0.0 0.992 0.996 1.0 1.0 1.0 1.0 1.0 0.996 
User 7 0.0 0.8 0.996 0.932 0.932 0.988 0.996 0.964 0.984 
User 8 0.0 0.992 0.924 0.992 1.0 1.0 1.0 0.952 0.98 
User 9 0.0 0.992 0.996 1.0 0.984 0.992 1.0 1.0 0.996 

User 10 0.0 0.88 1.0 0.992 1.0 0.996 0.992 1.0 0.996 
User11 0.0 0.976 0.992 1.0 0.944 0.96 0.996 0.996 0.988 
User 12 0.0 0.972 0.996 1.0 1.0 1.0 1.0 1.0 1.0 
User 13 0.0 0.972 1.0 0.996 0.992 0.992 0.996 0.996 0.972 
User 14 0.0 0.984 0.976 0.996 1.0 0.992 1.0 1.0 1.0 
User 15 0.0 0.988 0.984 1.0 1.0 0.996 1.0 0.992 1.0 

Avg. 0.0 0.959 0.971 0.976 0.955 0.992 0.997 0.991 0.993 
Miss NA 0.287 0.513 0.327 0.473 0.1 0.02 0.067 0.073 

 

Table 9. Inbound False Positive (FP). Parameter: varying number of 

recipients in a single email. 

 1 2 3 4 5 6 7 8 9 
User 1 0.014 0.021 0.014 0.015 0.017 0.012 0.011 0.018 0.021 
User 2 0.102 0.129 0.124 0.098 0.129 0.114 0.119 0.116 0.098 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.008 0.007 0.005 0.011 0.005 0.006 0.003 0.006 0.003 
User 5 0.013 0.02 0.009 0.014 0.014 0.013 0.02 0.022 0.014 
User 6 0.09 0.098 0.096 0.097 0.098 0.094 0.092 0.093 0.088 
User 7 0.032 0.027 0.024 0.025 0.024 0.026 0.019 0.029 0.022 
User 8 0.026 0.022 0.016 0.019 0.019 0.022 0.019 0.014 0.023 
User 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

User 10 0.006 0.007 0.007 0.007 0.007 0.005 0.007 0.004 0.008 
User11 0.021 0.02 0.02 0.02 0.035 0.021 0.023 0.02 0.021 
User 12 0.068 0.061 0.077 0.08 0.064 0.065 0.069 0.067 0.081 
User 13 0.009 0.006 0.004 0.003 0.004 0.001 0.004 0.011 0.006 
User 14 0.057 0.052 0.037 0.043 0.044 0.037 0.045 0.061 0.044 
User 15 0.021 0.024 0.024 0.028 0.023 0.023 0.023 0.019 0.026 

Avg. 0.031 0.033 0.03 0.03 0.032 0.029 0.03 0.032 0.03 
 

 

 



Table 10. Inbound Detection Rate (TP). Parameter: varying inter-

departure time (in minutes). Miss: the average number of virus emails 

missed before a propagation is detected. 

 0 10 15 30 60 720 2880 7200 
User 1 1.0 0.996 1.0 1.0 1.0 0.992 0.904 0.744 
User 2 1.0 0.976 1.0 0.996 0.964 0.94 0.804 0.724 
User 3 1.0 0.988 0.984 0.984 0.948 0.976 0.948 0.932 
User 4 1.0 1.0 1.0 0.996 1.0 0.996 0.64 0.68 
User 5 1.0 0.988 0.976 0.992 0.956 0.952 0.892 0.86 
User 6 1.0 0.98 1.0 0.988 0.984 0.984 0.94 0.92 
User 7 1.0 0.908 0.964 0.948 0.98 0.932 0.796 0.88 
User 8 1.0 1.0 1.0 0.96 0.971 0.916 0.736 0.6 
User 9 1.0 0.996 0.996 0.996 0.984 0.932 0.768 0.392 

User 10 1.0 0.996 0.988 0.98 0.992 0.952 0.68 0.708 
User11 1.0 0.996 0.996 0.992 1.0 0.972 0.932 0.932 
User 12 1.0 0.996 1.0 0.996 0.992 0.908 0.864 0.724 
User 13 1.0 0.988 0.988 0.992 0.952 0.956 0.836 0.8 
User 14 1.0 0.98 0.984 0.987 1.0 0.96 0.748 0.7 
User 15 1.0 0.996 0.992 0.984 0.98 0.904 0.792 0.88 

Avg. 1.0 0.985 0.991 0.986 0.98 0.951 0.819 0.766 
Miss 0.0 0.287 0.113 0.247 0.306 0.313 0.96 0.827 

 

Table 11. Inbound False Positive (FP).  Parameter: varying inter-

departure time (in minutes). 

 0 10 15 30 60 720 2880 7200 
User 1 0.017 0.019 0.019 0.015 0.017 0.018 0.02 0.019 
User 2 0.117 0.099 0.124 0.121 0.116 0.125 0.102 0.082 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.002 0.008 0.005 0.011 0.001 0.01 0.007 0.005 
User 5 0.022 0.018 0.02 0.022 0.014 0.025 0.45 0.031 
User 6 0.1 0.092 0.1 0.093 0.098 0.088 0.09 0.089 
User 7 0.018 0.025 0.018 0.022 0.021 0.025 0.023 0.015 
User 8 0.015 0.02 0.022 0.019 0.023 0.016 0.019 0.02 
User 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

User 10 0.005 0.006 0.009 0.005 0.004 0.006 0.004 0.004 
User11 0.022 0.021 0.017 0.024 0.019 0.031 0.02 0.017 
User 12 0.065 0.055 0.067 0.072 0.064 0.068 0.062 0.047 
User 13 0.002 0.009 0.006 0.005 0.007 0.008 0.004 0.012 
User 14 0.043 0.04 0.044 0.062 0.061 0.064 0.063 0.033 
User 15 0.025 0.025 0.027 0.023 0.023 0.022 0.021 0.02 

Avg. 0.03 0.029 0.032 0.033 0.031 0.034 0.032 0.026 
 



 
Fig. 14. Average results of each test 

Upper-Left: Outbound test, varying number of recipients in a single email.  

Upper-Right: Outbound test, varying inter-departure time (in minutes).  

Lower-Left: Inbound test, varying number of recipients in a single email. 

 Lower-Right: Inbound test, varying inter-arrival time (in minutes). 

 

7. IMPROVING THE DETECTION OF CHANGES IN FREQUENCY 

The Hellinger distance model performs fairly well with an impressive TP rate. However, 

the FP rate may render the approach too frustrating for users who are accustomed to 

seeing no false alarms generated by their virus scanners. Combining the Hellinger model 

with the clique violation model improved the results, yet the false positives remain too 

high. Here we explore the addition of a third model, the cumulative distribution of 

emitted emails by a user in a sequence of emails. Here, we restrict the statistic to those 

emails with attachments that appear in the user’s archive.  

 

7.1 Cumulative attachment distribution  

Suppose we have a period over T days, from day 1, 2,…, T, and let Ni be the number of 

emails with attachments on day i, and Ui be the cumulative number of emails with 

attachment until day i. Thus, 
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The idea here is that a user will emit emails with attachments at a relatively low and 

constant (human-oriented) daily rate. If we take a long period of time (for example, three 

months), the slope may be a positive constant. The introduction of a viral propagation 

would manifest as a significant discontinuity in this plot. Because in the real email data in 

our database, most users don’t send emails with attachments each day, we compute the 

slope of several days (testing days), and test the slope with a previous longer period (the 

longer term profiling training days). 

Assume we have t testing days from day i to day i+t, and r training days from day j to 

day j+r. We detect this discontinuity of the user emission rate behavior over t days by 

comparing the slopes of the cumulative distribution over r days. 

rUUtUU jrjiti /)(/)( −>−∗ ++α  

where α  is the tolerance parameter for the change of the slope. The threshold α  is 

set by the following intuition. Assume a user’s normal behavior of sending emails with 

attachments will not be more than on standard deviation above the mean of the prior d 

days, i.e. let Vi = Ui + standard deviation in previous d days and Vi is the number of 

emails with attachment of the user’s normal trend on day i. For example, if on average, a 

user sends one email with an attachment every day, we expect that the user will send one 

with perhaps a few more email(s) with attachments on the next day, denoted Vi. Then, to 

compute the boundary of normal behavior, we compute: 

)/)/(()/)(( dUUdUV diidii −− −−=α  

After computing this ratio for each users’ email in our database, α  ranged between 

1.1 and 1.5. Using this formula, d can be set to any value of course. In the experiments 

reported here, d is set to 5 and α  is set to 1.2, which we shall see are acceptable values. 

If the calculated value of the data violates the inequality in our daily testing (day i+t), 

we say emails on this day are suspicious. Then we use this fact to confirm the alerts that 

may have been generated by the Hellinger and Clique models. If either of them has issued 

alerts on day i+t, we keep these alerts. If not, we cancel the alerts on day i+t.  

In Figure 15, the blue (upper) lines are the cumulative number of emails plotted day 

by day, and the red (lower) lines are likewise the cumulative number of emails with 

attachments (a strict subset of all emails emitted by the user). The left plot is a user’s 

normal email cumulative distribution. In the right plot, after we add some dummy 



simulated viral emails; the red line displays an apparent discontinuity or a burst identified 

by the green circled area. 

 
Fig. 15. Cumulative distribution analysis of emails with and without attachments. 

 

7.2 Combing all three models 

Here we test the application of the three combined models, Hellinger distance, violations 

of the cumulative distribution, and clique violations using the same Backward/Forward 

scanning algorithm described earlier in Section 6.1. The dataset for this test is the same 

data used in the previous tests described in Section 6.2, which includes 53,163 emails 

from 15 users; approximately 8% of these emails contain attachments. The detailed 

performance results are provided in Tables 12-19, and the average ROC plots are 

displayed in Figure 16.  The false positive rate has now substantially dropped down to 

0.9%. (Note, the two right side plots of Figure 16 are scaled by a factor of 103. Some 

false positives remain simply because sometimes users form new cliques, and these 

situations cause false positives, which we cannot entirely avoid without modeling the 

dynamics of clique formation. (That remains as future research with preliminary results 

reported in [7].) 

 

Table 12: Outbound Detection Rate (TP). Parameter: varying 

number of recipients in a single email. Miss: the average number of 

virus emails missed before a propagation is detected. 

 1 2 3 4 5 6 7 8 9 
User 1 0.0 0.893 1.0 1.0 0.993 1.0 0.987 1.0 1.0 
User 2 0.0 0.97 0.99 0.97 1.0 1.0 0.96 0.99 1.0 
User 3 0.0 0.595 0.9 0.93 0.93 0.93 0.925 0.965 0.96 
User 4 0.0 0.475 0.75 0.905 0.94 0.97 0.97 0.985 0.98 
User 5 0.0 0.175 0.535 0.61 0.87 0.945 0.92 0.93 0.925 
User 6 0.0 0.52 0.51 0.675 0.84 0.78 0.83 0.755 0.83 
User 7 0.0 0.93 0.97 0.99 0.985 0.985 0.99 0.99 0.985 



User 8 0.0 0.76 0.98 0.985 0.975 0.935 0.965 0.975 0.975 
User 9 0.0 0.48 0.705 0.92 0.905 0.96 0.96 0.975 0.985 

User 10 0.0 0.505 0.78 0.9 0.985 0.94 0.965 0.98 0.99 
User11 0.0 0.6 0.675 0.65 0.735 0.74 0.73 0.71 0.895 
User 12 0.0 0.96 0.95 0.99 0.95 1.0 1.0 0.98 0.95 
User 13 0.0 0.93 0.995 0.975 0.985 0.99 0.995 0.975 0.985 
User 14 0.0 0.94 0.967 0.96 0.993 1.0 0.973 1.0 1.0 
User 15 0.0 0.91 0.93 0.99 1.0 0.96 0.99 0.99 1.0 

Avg. 0.0 0.71 0.842 0.9 0.939 0.942 0.944 0.947 0.964 
Miss NA 1.03 0.608 0.453 0.292 0.383 0.196 0.327 0.177 

 

Table 13. Outbound False Positive (FP). Parameter: varying number 

of recipients in a single email. 

 1 2 3 4 5 6 7 8 9 
User 1 0.0949    0.0949    0.0949    0.0995    0.0814 0.0814    0.0768    0.0814    0.0768 
User 2 0.0024    0.0024    0.0024    0.0024    0.0024 0.0024 0.0024 0.0024 0.0024 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.0056    0.0056    0.0056    0.0056    0.0056 0.0056 0.0056 0.0056 0.0056 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.0056    0.0056    0.0056    0.0056    0.0056 0.0056 0.0056 0.0056 0.0056 

User 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.0171    0.0171    0.0171    0.0171    0.0171    0.0171    0.0171    0.0171    0.0171    
User 13 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 
User 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 15 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 

Avg. 0.0090    0.0090    0.0090    0.0093    0.0081    0.0081    0.0078 0.0081    0.0078 
 

Table 14. Outbound Detection Rate (TP). Parameter: varying inter-

departure time (in minutes). Miss: the average number of virus emails 

missed before a propagation is detected. 

 0 10 15 30 60 720 2880 7200 
User 1 1.0 0.987 0.987 1.0 1.0 0.98 0.847 0.727 
User 2 1.0 0.98 0.99 0.99 0.95 0.94 0.81 0.77 
User 3 1.0 0.91 0.935 0.97 0.9 0.965 0.68 0.58 
User 4 1.0 0.925 0.935 0.895 0.845 0.72 0.41 0.285 
User 5 1.0 0.624 0.635 0.68 0.745 0.65 0.475 0.285 
User 6 1.0 0.74 0.78 0.665 0.825 0.894 0.715 0.405 
User 7 1.0 0.99 0.99 0.965 0.96 0.96 0.945 0.99 
User 8 1.0 0.94 0.935 0.92 0.985 0.95 0.47 0.54 
User 9 1.0 0.875 0.9 0.945 0.88 0.765 0.55 0.75 

User 10 1.0 0.89 0.975 0.94 0.91 0.96 0.82 0.87 
User11 1.0 0.745 0.895 0.94 0.87 0.91 0.87 0.685 
User 12 1.0 1.0 0.99 0.815 1.0 0.89 0.52 0.42 
User 13 1.0 0.97 0.995 0.95 0.955 0.945 0.76 0.56 
User 14 1.0 0.99 1.0 0.975 0.993 0.853 0.72 0.613 
User 15 1.0 1.0 0.97 0.98 0.97 0.86 0.86 0.85 

Avg. 1.0 0.905 0.927 0.911 0.919 0.883 0.697 0.636 
Miss 0.0 0.41 0.356 0.373 0.351 0.364 0.71 0.733 

 

 



Table 15. Outbound False Positive (FP). Parameter: varying inter-

departure time (in minutes). 

 0 10 15 30 60 720 2880 7200 
User 1 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 0.0995 
User 2 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 

User 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.0239 0.0171 0.0239 0.0171 0.0171 0.0171 0.0171 0.0171 
User 13 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 
User 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 15 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 

Avg. 0.0103 0.0098 0.0103 0.0098 0.0098 0.0098 0.0098 0.0098 
 

Table 16. Inbound Detection Rate (TP). Parameter: varying number 

of recipients in a single email. Miss: the average number of virus 

emails missed before a propagation is detected. 

 1 2 3 4 5 6 7 8 9 
User 1 0.0 0.987 0.987 0.967 1.0 1.0 1.0 1.0 1.0 
User 2 0.0 1.0 0.99 0.96 0.98 1.0 1.0 1.0 1.0 
User 3 0.0 0.955 0.97 0.94 0.91 0.945 0.975 0.975 0.98 
User 4 0.0 0.995 0.995 0.98 1.0 0.98 1.0 0.995 1.0 
User 5 0.0 0.995 0.905 0.95 0.965 0.815 0.795 1.0 0.99 
User 6 0.0 1.0 1.0 1.0 0.965 0.98 0.98 0.995 1.0 
User 7 0.0 0.79 0.885 0.98 0.935 0.945 0.955 0.965 0.995 
User 8 0.0 0.995 0.94 0.945 0.845 0.955 0.965 0.9 0.845 
User 9 0.0 0.815 0.73 0.78 0.8 0.935 0.795 0.82 0.885 

User 10 0.0 0.895 0.9 0.945 0.94 0.96 0.93 0.94 0.95 
User11 0.0 0.855 0.845 0.73 0.895 0.8 0.865 0.85 0.905 
User 12 0.0 0.99 0.98 0.98 1.0 1.0 0.98 1.0 1.0 
User 13 0.0 1.0 0.995 0.99 0.985 0.99 0.95 1.0 0.985 
User 14 0.0 0.973 0.993 0.993 0.987 1.0 0.993 1.0 1.0 
User 15 0.0 0.967 0.953 0.993 0.993 1.0 1.0 0.987 1.0 

Avg. 0.0 0.947 0.938 0.942 0.947 0.953 0.946 0.962 0.969 
Miss NA 0.246 0.394 0.398 0.41 0.34 0.368 0.236 0.227 

 

Table 17. Inbound False Positive (FP). Parameter: varying number 

of recipients in a single email. 

 1 2 3 4 5 6 7 8 9 
User 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 2 0.0478    0.0478    0.0444    0.0444    0.0410    0.0410    0.0410 0.0410 0.0410 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

User 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 0.0034 
User 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Avg. 0.0038 0.0038 0.0036 0.0036 0.0033 0.0033 0.0033 0.0033 0.0033 
 

Table 18. Inbound Detection Rate (TP). Parameter: varying inter-

arrival time (in minutes). Miss: the average number of virus emails 

missed before a propagation is detected. 

 0 10 15 30 60 720 2880 7200 
User 1 1.0 0.973 0.987 0.973 0.993 0.94 0.733 0.727 
User 2 1.0 1.0 1.0 0.98 0.98 0.79 0.78 0.64 
User 3 1.0 0.905 0.95 0.88 0.82 0.95 0.885 0.93 
User 4 1.0 0.985 0.995 1.0 0.995 0.995 0.86 0.905 
User 5 1.0 0.945 0.955 0.98 0.92 0.74 0.625 0.77 
User 6 1.0 0.99 1.0 0.98 0.995 0.97 0.755 0.76 
User 7 1.0 0.935 0.87 0.92 0.885 0.79 0.94 0.97 
User 8 1.0 0.955 0.86 0.94 0.9 0.965 0.635 0.68 
User 9 1.0 0.84 0.93 0.82 0.595 0.71 0.475 0.16 

User 10 1.0 0.97 0.885 0.885 0.92 0.79 0.705 0.75 
User11 1.0 0.795 0.935 0.77 0.645 0.915 0.885 0.805 
User 12 1.0 0.98 0.95 0.98 0.98 0.87 0.79 0.78 
User 13 1.0 0.995 0.99 0.97 0.98 0.865 0.7 0.665 
User 14 1.0 0.967 1.0 0.987 1.0 0.973 0.647 0.673 
User 15 1.0 0.973 0.973 0.953 0.96 0.813 0.72 0.707 

Avg. 1.0 0.947 0.939 0.935 0.905 0.872 0.742 0.728 
Miss 0.0 0.368 0.413 0.331 0.524 0.507 0.742 0.72 

 

Table 19. Inbound False Positive (FP). Parameter: varying inter-

arrival time (in minutes). 

 0 10 15 30 60 720 2880 7200 
User 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 2 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 
User 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 5 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 
User 6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

User 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 12 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068 
User 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
User 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Avg. 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 

 



 
Fig. 16. Average results of each test 

Upper-Left: Outbound test, varying number of recipients in a single email.  

Upper-Right: Outbound test, varying inter-departure time (in minutes).  

Lower-Left: Inbound test, varying number of recipients in a single email. Lower-

Right: Inbound test, varying inter-arrival time (in minutes). 

 

7.3 EMT Examples 

Here we demonstrate some real examples of the virus simulation test of EMT. Table 20 

displays a “dummy” injected viral email detected by the EMT models; the generated 

alerts are labeled “Y”, while “N” denotes normal. In the example, we can see that this 

user communicates with many different organizations. A virus searches the address book, 

picks up recipients randomly and sends itself four times. Each of the viral emails includes 

4 recipients, and the propagation rate (inter-departure time) is a randomly chosen 

schedule, from 0 to 30 minutes. The Hellinger model considers each sender-recipient pair 

as an individual event. An email sent to four recipients will be four records. The 

Hellinger model detects the anomalous email record after the second email (fifth record). 

These emails are all on the same day (2002-10-09), and the cumulative attachment 

distribution indicates an unusual jump in the rate of emission on this day. So, all of the 



emails with attachments for this user on that day had alerts issued. Note, too that all of 

the emails violate the user’s normal cliques. We can also see that the backward/forward 

scanning algorithm can recover the first viral email missed by the Hellinger model. 

Table 21, however, displays a false positive. In this case the user uncharacteristically 

sent an email with an attachment to different domains never before seen in the user’s 

history. Thus, a clique violation occurred, confirmed by a high rate of email emissions on 

that day causing a false alarm. Finally, Figure 17 displays a screenshot of EMT’s GUI 

representation of this information as models are applied to email archives.  

 

Table 20. Real injected viral emails. He: Hellinge Model,  

Cu: Cumulative Analysis, Cl: Clique Model 

 He Cu Cl Combination MailRef Time Recipient 
N Y Y Y NA 2002-10-09 08:12:40 B1@baka.org 
N Y Y Y NA 2002-10-09 08:12:40 CU1@cs.columbia.edu 
N Y Y Y NA 2002-10-09 08:12:40 P1@pingnet.com 

Email 
1 

N Y Y Y NA 2002-10-09 08:12:40 P2@pingnet.com 
Y Y Y Y NA 2002-10-09 08:32:12 A1@allianttech.com 
Y Y Y Y NA 2002-10-09 08:32:12 CU2@columbia.edu 
Y Y Y Y NA 2002-10-09 08:32:12 Ta1@tamashunas.com 

Email 
2 

Y Y Y Y NA 2002-10-09 08:32:12 CU3@cs.columbia.edu 
Y Y Y Y NA 2002-10-09 08:33:59 CU4@cs.columbia.edu 
Y Y Y Y NA 2002-10-09 08:33:59 L1@lucent.com 
Y Y Y Y NA 2002-10-09 08:33:59 N2@nic.com 

Email 
3 

Y Y Y Y NA 2002-10-09 08:33:59 P3@pingnet.com 
Y Y Y Y NA 2002-10-09 08:54:41 Ot1@outpost.tanis.org 
Y Y Y Y NA 2002-10-09 08:54:41 CU5@cs.columbia.edu 
Y Y Y Y NA 2002-10-09 08:54:41 Acm1@acm.org 

Email 
3 

Y Y Y Y NA 2002-10-09 08:54:41 A2@allianttech.com 
 

Table 21. Real false positive. He: Hellinger Model, Cu:  

Cumulative Analysis, Cl: Clique Model 

He Cu Cl Combination MailRef Time Recipient 
N Y Y Y 1024036921 2002-06-14 02:42:01.0 Student1@cs.ucsb.edu 
N Y Y Y 1024036921 2002-06-14 02:42:01.0 Student2@cs.ucsb.edu 
Y Y Y Y 1024036921 2002-06-14 02:42:01.0 Employee1@ibm.com 
Y Y Y Y 1024036921 2002-06-14 02:42:01.0 CU1@columbia.edu 
Y Y Y Y 1024036921 2002-06-14 02:42:01.0 CU2@columbia.edu 
Y Y Y Y 1024036921 2002-06-14 02:42:01.0 CU3@columbia.edu 
N Y Y Y 1024036921 2002-06-14 02:42:01.0 CU4@cs.columbia.edu 
N Y Y Y 1024036921 2002-06-14 02:42:01.0 User1@icir.org 

 



  Fig. 17. EMT screen shot of viral simulation. 

 

Virus writers are constantly devising new ways of beating detection algorithms.  The 

behavior-based models presented in this paper provide an alternative to content-based 

detection methods and can serve as a foundation to detect new viruses. There are 

numerous avenues of research these techniques suggest.  Several are described in our 

concluding remarks. 

 

8. CONCLUDING REMARKS 

We have introduced in this paper several email behavior-based methods using principled 

statistical analysis techniques and described how these notions can be used in detecting 

viral email propagations. These methods complement traditional signature-based 

approaches to virus detection, and are aimed at detecting new viruses for which 

signatures have not yet been developed and deployed. This is the maximal period of 

vulnerability when a new virus does its damage.  

In general, we find that fast and broad-based viral propagations sent to many victims 

are very easy to detect using behavior based techniques without content-based analyses. 

Stealthy and slow moving propagations remain a challenge. (We hope the next generation 

of viruses do not seize upon this opportunity, but they probably will.) 



In particular, we have defined user cliques, and user email frequency behavior profiles. 

Three specific modeling techniques were combined, user cliques, Hellinger distance and 

the daily cumulative distribution of emails, to achieve high detection rates with 

remarkably good FP rates.  Tests on outbound traffic indicate that using EMT's combined 

models, a high detection rate can be achieved: 95% or more in general cases  with an FP 

rate ranging from about 0.38% in the best case to as high as 9% in the worst cases of very 

slow and stealthy propagations.  Tests on inbound traffic show similar results.  

The FP rate would translate to a different daily false alarm rate depending upon the 

user's email emission rate. In the general case, where one user's data exhibited one email 

per day with attachments, the outbound FP rate of 2% suggests that that user would have 

received one false alarm every 45 days for the outbound email. The FP rate of 1% of the 

user's inbound email suggests a false alarm once every 90 days.  

There are several areas of new research that can provide substantial improvement in 

several respects. We chose to use threshold settings for the models based upon a static 

prior period of time (the window size in Hellinger, d days in the cumulative distribution) 

and did not attempt to incorporate user-specific calibration. As noted in prior work, the 

choice of such parameters has a very big impact on detection performance (see Maxion 

[33]). Calibrating a detector and setting parameters specific to a user would logically 

improve individual detection performance for each user. Our current research includes 

strategies and techniques to best calibrate the detector for each user.  

Furthermore, detection is performed on a “per user profile” basis; we do not yet have 

performance results at the “enclave” level. This is particularly interesting in that shared 

statistics among a group of users would naturally inform a model more precisely about 

the onset of a viral propagation within an organization served by a single mailserver. Any 

infected user would naturally propagate to members of their own organization (those the 

user frequently communicates with) and the combined statistics among multiple users 

would tend to favor early detection for all users. These shared statistics would make a 

viral propagation appear faster moving than would otherwise be seen by an individual 

victim. Furthermore, it is sensible that there would be a higher likelihood of detecting 

clique violations at the enclave level where more email traffic may be inspected.  

The models used here for clique violation are not only specific to a user, they are also 

static. We chose to analyze a user’s historical cliques without modeling the dynamics of 

clique formation and expiration. Clearly, conversations with different groups of folks 

would tend to be revealed by considering the dynamics of the interaction between the 

parties to a conversation. This is the subject matter of recent work by Kleinberg [17] 



where he considers the onset of new “content”, rather than new viral propagations, by 

stochastically modeling the flow of subject lines in email streams. Our current work is 

focused on modeling dynamic clique formations [7] which would logically improve the 

performance of clique violation models that consider shorter term statistics.  

We are presently updating EMT by incorporating the MEF content-based modeling 

techniques [30]. MEF uses a Naïve Bayes classifier over attachment contents to produce 

a probability that an attachment is malicious. In this paper, all attachments were regarded 

as one type of object. We made no use of the file extension associated with the 

attachment to suggest different types of content and thus different statistics that this may 

derive. Even so, there may be no means of determining malicious content solely by file 

extension type. MEF analyzes the attachment content and outputs a score representing the 

likelihood the attachment is malicious. Our earlier worked cast the problem as a multi-

class supervised training problem where viral attachments and non-malicious attachments 

were provided as positive and negative training data, respectively. Our recent work has 

cast this as a “one-class” supervised training problem that has the practical advantage of 

training against known viruses alone. Here we intend to learn statistical models that score 

the likelihood that an attachment is malicious and combine these with the models 

explored in this paper.  

It is possible that EMT may be thwarted by viruses that mimic the user's behavior 

revealed in the user's email client sent folder. There are several defenses against this 

strategy of mimicry attack [35] that are the subject matter of our ongoing research in 

behavior-based detection. For example, we aim to integrate EMT with the FWRAP 

system [12] that detects abnormal file system accesses, such as the attempted access of 

email data by a virus or malware. 

Lastly, the focus of this paper has been on viral propagation detection as an example 

of the power of behavior-based computer security. This concept is applicable to a far 

wider range of problems, including spam detection, security policy violations, and a host 

of other detection tasks. We believe EMT thus serves as a model anomaly detection 

system for any audit stream and detection problem of interest. This work suggests a 

general framework that is the subject matter of our ongoing work. This framework posits 

that anomaly detection is best viewed and cast as a problem to optimally correlate 

multiple detectors, where each detector models normal behavior using different features 

of the audit stream. These detectors generate alerts when there are violations of volume 

and velocity statistics, anomalous values exhibited in an audit stream, and abnormal or 

inconsistent formation of vertices when viewing data in the audit stream in graph 



theoretic formulations. All of these concepts and modeling techniques are embodied in 

EMT. 
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