
One-Class Training for Masquerade Detection
Ke Wang Salvatore J. Stolfo

Computer Science Department, Columbia University
500 West 120th Street, New York, NY, 10027

{kewang, sal}@cs.columbia.edu

Abstract

We extend prior research on masquerade detection
using UNIX commands issued by users as the audit
source. Previous studies using multi-class training
requires gathering data from multiple users to train
specific profiles of self and non-self for each user. One-
class training uses data representative of only one user.
We apply one-class Naïve Bayes using both the multi-
variate Bernoulli model and the Multinomial model, and
the one-class SVM algorithm. The result shows that one-
class training for this task works as well as multi-class
training, with the great practical advantages of collecting
much less data and more efficient training. One-class
SVM using binary features performs best among the one-
class training algorithms.

1. Introduction

The Masquerade attack may be one of the most serious
security problems. It commonly appears as spoofing,
where an intruder impersonates another person and uses
that person’s identity, for example, by stealing their
passwords or forging their email address. Masqueraders
can be insiders or outsiders. As an outsider, the
masquerader may try to gain superuser access from a
remote location and can cause considerable damage or
theft. A simpler insider attack can be executed against an
unattended machine within a trusted domain. From the
system’s point of view, all of the operations executed by
an insider masquerader may be technically legal and
hence not detected by existing access control or
authentication schemes. To catch such a masquerader, the
only useful evidence is the operations he executes, i.e., his
behavior. Thus, we can compare one user’s recent
behavior against their profile of typical behavior and
recognize a security breach if the user’s recent behavior
departs sufficiently from his profiled behavior, indicating
a possible masquerader.

The insider problem in computer security is shifting the
attention of the research and commercial community from
intrusion detection at the perimeter of network systems.
Research and development is going on in the area of
modeling user behaviors in order to detect anomalous
misbehaviors of importance to security; for example, the
behavior of user-issued OS commands as represented in

this paper, and in email communications [17].
Considerable work is ongoing in certain communities to
detect not only impersonation, but also author
identification. For example, Sedelow [16] and Vel [18]
are two examples bracketing the length of time this topic
has existed in the literature.

The masquerade problem is a challenging problem. If
the masquerader can mimic the user’s behavior
successfully, he won’t be detected. In addition, if the user
himself is behaving much differently than his trained
profile, the detector will misclassify him as masquerader,
which may cause annoying false alarms. There have been
several attempts to solve this problem using command line
sequences, [14] and [9]. The best results so far reported
are 60-70% accuracy with a false positive rate as low as 1-
2%. The profiles were computed using supervised
machine learning algorithms that classify training data
acquired from multiple user. These approaches considered
training user profiles as a multi-class supervised learning
task where data gathered on a user is treated as an
example of one-class, i.e. a distinct user.

In this paper, we consider a different approach with
substantial practical advantage. We examine the task of
profiling a user by modeling his data exclusively, without
using examples from other users, and achieving good
detection performance and minimal false positive rates.
We also consider alternative machine learning algorithms
that may be employed for this “one-class” training
approach.

One-class training means that we only use the user’s
own legitimate examples of commands they issue to build
the user’s self profile. Previous work uses both positive
and negative examples to build both self and non-self
profiles, except for Maxion [9], who considers the
problem of determining how vulnerable a user’s behavior
may be to mimicry attack. Here we extend this technique
using one-class SVM. This is important in many contexts,
especially when the only information available is the
history of the user’s activities. If a one-class training
algorithm can achieve similar performance to that
exhibited by a multi-class approach, we may provide a
significant benefit in real security applications; much less
data is required, and training can proceed independently
of any other user. The study reported in this paper
indicates that indeed one-class training algorithms
perform equally well as two class training approaches.

This self profile idea is similar to the widely used
“anomaly detection” techniques in intrusion detection
system [eg. 2, 3]. For example, the anomaly detector of
IDES [8] uses established normal usage profiles, which is
the expected behavior, to identify any large usage
deviation as a possible attack. Several methods have been
used to model the normal data, for example, decision trees
[7], neural network [4], and sparse Markov Transducers
[2], and Markov chains [19]. In this paper, we applied
one-class Naïve Bayes and one-class SVM algorithms to
the masquerade dataset of UNIX system call sequences.

In previous work, we believe there were several
methodological flaws in the manner in which data was
acquired and used. The “Schonlau dataset” from [14]
presents each user’s command line data with a varying
number of artificially created masquerade command
blocks, ranging from 0 to 24, out of a total of 100
command blocks to be classified. The previous work only
considered the average performance of a given method
when it is applied to all of the 50*100 blocks of
commands issued by the 50 users. However, since the
masquerade blocks are “randomly” inserted into each
user’s data by using some other user’s command block,
each user’s data has a different number of masquerade
blocks, and the content of these masquerade blocks all
differ. This data is not a good baseline to compare the
effectiveness of alternative detection methods because one
method might be better at detecting certain forms of
masquerade attack while others are not. Unfortunately,
since the distribution of such masquerade blocks appear
many times in the dataset, some algorithms appear to have
better performance over others, while, in practice or in
other contexts, this finding may not be true. To better
compare the alternative methods proposed in this work,
we follow the exhaustive “1v49” evaluation methodology
from [9], which will be described in detail in the section
about the experimental methodology and results. The
ROC score [5] is used to compare several one-class
training methods under different false positive rate
restrictions. This approach provides a better view to
indicate which algorithm is better for most users.

Even though one machine learning algorithm may
perform better than another in terms of detection and false
positive rate, our most important finding is that one-class
training can indeed perform as well as multi-class training.
Even so, the overall performance of both approaches
indicates that there is much room for improvement.

The rest of the paper is organized as follows. Section 2
describes the dataset we used in our research and provides
a review of recent work, and Section 3 discusses the one-
class Naïve Bayes and one-class SVM methods. Section 4
describes the experimental setting and our results, and
Section 5 concludes the paper with our analysis and
findings.

2. Recent Work

Schonlau et al. [14] and Maxion [9] provide a dataset
collected from keyboard commands on a UNIX platform.
The dataset is publicly available at
http://www.schonlau.net. Unfortunately, there are neither
timestamps nor other detailed command line arguments
available in the Schonlau dataset. Hence, the dataset in
question consists simply of sequential “truncated”
commands issued by each of 70 users. Each user is
represented by 15,000 commands, collected over time
from a few days to a few months. They randomly chose 50
users to serve as intrusion target, and the remaining 20
users as masqueraders. The first 5,000 commands of each
user are “clean data” (legitimately issued by the user), and
the next 10,000 commands of the target users were
randomly injected with commands issued by the 20
masquerade users, apparently none of whom are any of the
50 users. The commands are grouped into blocks, with
100 commands per block. The commands in one block are
either all clean or all masquerade attacks, called “dirty
blocks”. The task studied in [14] is to accurately classify
the “dirty” blocks as masquerade commands, while
classifying the clean blocks as belonging to the user. From
this point of view, this problem is very similar to a text
classification problem, where the commands may be
regarded as words or tokens in a document that is to be
classified. Their work identifies six masquerade-detection
schemes. They are: Bayes 1-Step Markov, Hybrid Multi-
Step Markov, Incremental Probabilistic Action Modeling
(IPAM), Uniqueness, Sequence-Match, and Compression.
These masquerade detection methods were directly
applied to this dataset; the first 5000 commands were used
for training, and the remaining 10000 commands were
inserted and used for testing, where each were processed
in blocks of 100 commands. Testing and training were
performed on a per block basis. The paper by Maxion [9]
presents a clear and concise review of these six methods.
The strategies behind each of these methods are quite
different, but the results show that no method completely
dominates another using cluster analysis and ROC curves.

Maxion [9] improved upon Schonlau’s result by
applying the Naïve Bayes classification algorithm using
the “bag of words” features. Naïve Bayes has been used in
text classification for a long time and proved to be very
efficient in this context as well. Naïve Bayes was also
used in the earlier work [15] on classifying malicious code
attachments in email messages. Maxion presents a
detailed analysis of the origins of the classification error,
revealing why some users are good masquerades and
others are not. That paper designed another experiment,
called “1v49”, to perform this error analysis. We also use
the “1v49” experimental setting in our work, but here it is

used to compare the performance of different classifiers
when applied to multiple classes.

The results for these reviewed methods are displayed in
Table 1 and serve as a baseline for comparison.

������������������������������	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
��	 �
 � ��
 � ��� ��� � �
 �� ��

 ���� ��� � �� ��� �
 ����

Method Hits False Positives

N. Bayes (updating) 61.5% 1.5%

N. Bayes (no Upd.) 66.2% 4.6%

Uniqueness 39.4% 1.4%

Hybrid Markov 49.3% 3.2%

1-step Markov 69.3% 6.7%

IPAM 41.4% 2.7%

Sequence Matching 36.8% 3.7%

Compression 34.2% 5.0%

3. Machine learning methods

3.1. Learning task

For this masquerade detection problem, the learning
task is to build a classifier that can accurately detect the
masquerade commands while not misclassifying the user’s
legitimate commands as a masquerade. Using the
Schonlau dataset, which is organized as a set of blocks of
100 commands, the learning task is to compute a binary
classifier whose input is a block of 100 commands and
whose output is a classification of that block as either
generated by a masquerader or not. The target
classification is to detect the masquerader’s command
blocks. Hence, the masqueraders’ data are positive
examples, while the user’s legitimate data are treated as
negative examples. Thus, a true positive outcome is a
masquerade block of 100 commands, while a false
positive outcome is a block of commands legitimately
issued by the user but misclassified as a masquerade. In
the following description, we call the masquerade blocks
positive examples and call the legitimate blocks, those
issued by the user himself, negative examples. One-class
training means that a classifier is computed using only
negative examples of the user himself as training data to
build the classifier, which will be used to classify both
positive and negative data. Thus, the task is to positively
identify masqueraders, but not to positively identify a
particular user.

3.2. One-class or two class

Previous work considered the problem as a multi-class
supervised training exercise. The dataset contains data for
50 users. For each user, a specific class, the first 5000
commands are treated as negative examples, while the
data from the other 49 users are treated as positive
examples. It is reasonable to assume the negative
examples, which belong to the same user, were treated
consistently, while the positive examples used in training
belong to another user. For the masquerade problem, it is
probably impossible and unreasonable to estimate how an
attacker would behave. Thus, treating sets of other users’
data as positive examples provides a substantive bias (to
those users’ behavior who probably was not behaving
maliciously). We next present the means of implementing
one-class training for Naïve Bayes classifier and for SVM,
using only data from a single user when training a
classifier to profile a distinct user.

3.3. Naïve Bayes Classifier

The Naïve Bayes classifier [12] is a simple and

efficient supervised learning algorithm, which has been
proved to be very effective in text classification, and many
other applications. It is based on Bayes’ rule,

)(
)|()(

)|(
dp

udPup
dup =

which calculates the probability of a class given an
example. Applied to the masquerade problem, it calculates
the likelihood that a command block belongs to a
masquerader (non-self), or some legitimate user. Different
commands ic , which are used as features here, are

assumed independent from each other. This is the Naïve
part of this method.

There are two common models used in Naïve Bayes
Classifier, one is the multi-variate Bernoulli model, and
the other is the multinomial model [11]. In the multi-
variate Bernoulli event model, a vector of binary attributes
is used to represent a document (in our case, a block of
100 commands), indicating whether the command occurs
or doesn’t occur in the document. The multinomial model
uses the number of command occurrences to represent a
document, which is called “bag-of-words” approach,
capturing the word frequency information in documents.
According to McCallurn [11]’s result, multi-variate
Bernoulli model performs better for small vocabulary size,
and the multinomial model usually performs better at
larger vocabulary size. Because the vocabulary size (the
number of distinct commands) of this masquerade
problem is 856, which is a moderate in size, we want to
compare both of these models for this problem.

Multi-variate Bernoulli model
Using the multi-variate Bernoulli Model, a command
block d is represented as a binary

vector))(),...,(),((21 dbdbdbd m=
→

, with)(dbi set to 1 if

the command ic occurs at least once in this block. Here

m is the total number of features, i.e., the number of
distinct commands. Given)|(ucp i , which is the

probability estimated for command ic for user u in the

training data, we can compute)|(udp of the test block
d as:

=)|(udp

)))|(1))((1()|()((
1

∏
=

−−+
m

i
iiii ucpdbucpdb (1)

where)|(ucp i is estimated with a Laplacean prior:

)(2
),(1

)|(
uN
ucN

ucp i
i +

+= (2)

)(uN is the number of training examples for user u ,

while),(ucN i is the number of documents containing the

command ic for user u .

Multinomial model

Using the standard bag-of-words approach, each
command block is represented by a feature

vector))(),...,(),((21 dndndnd m=
→

, where)(dni is the

number of times command ic appears in the command

block d . Similarly, given)|(ucp i , which is the frequency

count computed for command ic for user u in the training

data, we can compute)|(udp of the test block d as:

∏
=

=
m

i

dn
i

iucpudp
1

)())|(()|((3)

where)|(ucp i is derived from:

mdn

dn
ucp m

i

uN

j ji

uN

j ji

i
*)(

)(
)|(

1

)(

1

)(

1

α

α

+

+
=
� �

�

= =

= (4)

Here α is used for smoothing, which controls the
sensitivity to previously unseen commands. (This implies
there is a non-zero probability any command may be
issued by any user.) We set it to 0.01 following [9].

One-class Naïve Bayes

Adapting the above algorithm to one-class Naïve
Bayes, which uses only positive examples for training, is
very simple. We only compute)|(ucp i for useru ’s self

profile. For the non-self profile, we can assume each

command has equal probability m/1 , which is essentially
random. Thus, given a test d , we can compare

)|(selfdp with)|(nonselfdp . The larger the ratio of

)|(selfdp to)|(nonselfdp , the more likely this
command block d is from the user u .

Applying the one-class Naïve Bayes algorithm to our
specific dataset is also quite simple. Since each test
document (a block of commands) has a fixed number of
100 commands, the probability of “non-self” is the same
for all tested blocks. Since we do not have to compute the
probability of non-self; we may compare the probability
of being “self” to a threshold in order to decide whether
this block is a masquerade block or not. Furthermore, we
can easily adjust the threshold to control the false positive
and detection rate.

3.4. One-class support vector machine

Support Vector Machines (SVM) have been shown to
be highly effective in text classification as well [6], among
other important learning tasks. They are maximal-margin
classifiers, rather than probabilistic as is Naïve Bayes. In
the two-class formulation, the basic idea is to map feature
vectors to a high dimensional space and to compute a
hyperplane that not only separates the training vectors
from different classes, but also maximizes this separation
by making the margin as large as possible.

Scholkopf et al. [13] proposed a method to adapt the
SVM algorithm for one-class SVM, which only use
examples from one-class, instead of multiple classes, for
training. The one-class SVM algorithm first maps input
data into a high dimensional feature space via a kernel
function and treats the origin as the only example from
other classes. It then iteratively finds the maximal margin
hyperplane that best separates the training data from the
origin.

Considering that our training data set Xxxx ∈
�

,...,, 21 ,

Φ is the feature mapping FX → to a high-dimensional
space, we can define the kernel function as:

))()((),(yxyxk Φ⋅Φ=
Using kernel functions, the feature vectors need not be

computed explicitly, greatly improving computational
efficiency since we can directly compute the kernel values
and operate on their images. Some common kernels are
linear, polynomial, and radial basis function (rbf) kernels:
Linear Kernel:)(),(yxyxk ⋅=

P-th order polynomial kernel: pyxyxk)1(),(+⋅=

rbf kernel:
22 2/||||),(σyxeyxk −−=

Now, solving the one-class SVM problem is equivalent
to solving the dual quadratic programming (QP) problem:

�
ij

jiji xxk),(
2
1

min αα
α

subject to .1,
1

0 =≤≤ �
i

ii v
αα

�

where iα is a Lagrange multiplier, which can be thought

of as a weight on example ix , and ν is a parameter that

controls the trade-off between maximizing the number of
data points contained by the hyperplane and the distance
of the hyperplane from the origin.

After solving for iα , we can use a decision function to

classify data. The decision function is:

� −=
i ii xxkxf)),(sgn()(ρα

where the offset ρ can be recovered by

),(ijj j xxk�= αρ .

In our work, we used the LIBSVM 2.4 [1] available at
http://www.csie.ntu.tw/~cjlin/libsvm for our experiments.
LIBSVM is an integrated tool for support vector
classification and regression that implemented Sholkopf’s
algorithm for one-class SVM. We used the default rbf
kernel and the default values of the parameters for one-
class SVM.

Another problem to consider for one-class SVM is how
to represent the features. We used both a word count
representation and a binary representation, which are
equivalent to the multinomial model and multi-variate
Bernoulli model of Naïve Bayes algorithm, respectively.
The vectors are normalized to length 1.

4. Evaluation

We conducted two sets of experiments. The first
experiment repeats the experimental methodology of [14].
We show that the performance of one-class training is
almost the same as the performance of multi-class training.
This is a significant finding on its own.

The second experiment aims to compare the
performance of the two one-class training algorithms
when applied to multiple users. Following [9], we will call
the first the SEA experiment, which is from the authors’
names in [14], Schonlau et al. The second experiment is
called 1v49, because we trained using only one user’s data
and tested on all other 49 user’s data.

4.1. SEA Experiment

Recall that in this experiment, the first 5,000
commands of a user serve as positive examples, and the
first 5,000 commands of all the other 49 users serve as
negative examples. The resultant classifier is tested on the
rest of the 10,000 commands of the user. These have

inserted “dirty” command blocks under a probability
distribution from other users besides the 50 users whose
commands were trained on. For our one-class algorithm,
the test data remains the same, but we only use one user’s
training data (the first 5,000 commands) as negative
examples for training; there are no positive examples used
at all to compute the classifier. First we compare the
Naïve Bayes classifier using the multi-variate Bernoulli
model and the multinomial model. Then we compare the
one-class training algorithms against the multi-class
training algorithms. All the classification algorithms we
tested do no updating during the test of any parameters
because we want to compare the pure performance of each
of them. Maxion [9] used an empirically pre-fixed
threshold to update the classifier during the experiment,
which is not an intrinsic characteristic of the classification
algorithm.

� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � �� �� � ��� ��� 	 � � � � � �� �
 � �� � ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 ��� �� � �� �
 � � ��

 �����
 �
�
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ����
 �� � �� � ���� � ����� � ����� � �� � ��� � �������� ��� � ����� �������� ��� � ����� �������� ��� � ����� �������� ��� � ����
� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � �� � ��!� �" � � ��

 � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 � ����� �� � !�� ����� �� � !�� ����� �� � !�� ����� �� � !�
��
 � �� ��� ��� ����
 � �� ��� ��� ����
 � �� ��� ��� ����
 � �� ��� ��� ������

Figure 1 displays plots comparing the multi-variate
Bernoulli model and the multinomial model of Naïve
Bayes classifier. When using multi-class training, the
multinomial model is obviously better than the Bernoulli
model. But the difference is not so obvious in one-class
training, especially when the false positive rate is low. We

thus compare both models in the following 1v49
experiment.

To compare the performance of the one-class training
algorithms against the multi-class training algorithm on
the same test data, we plot the ROC curves as displayed in
Figure 1. For the multi-class training algorithm, we only
use the multinomial model Naïve Bayes algorithm as the
baseline for comparison, which is better than Bernoulli
model and has been proved to the best among the variety
of methods as described in [9]. For the one-class SVM,
we compare both the binary and word count
representations. From Figure 2, we can see that only one-
class SVM using the word count representation is a little
bit worse than the other three methods. One-class SVM
using the binary representation and one-class Naïve Bayes
achieved almost the same performance as the two class
Naïve Bayes algorithm.

We also compare in Figure 3 the performance of all the
previous algorithms from Table 1 to one-class SVM
algorithm using binary features, which is best one among
the one-class training algorithms. One-class SVM-binary
is better than most of the previous algorithms except the
two-class multinomial Naïve Bayes algorithm with
updating.

This experiment confirmed our conjecture that for
masquerade detection, one-class training is as effective as
two class training.

� �� � �� �� � �� �� � �� �� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � ��� # �� 	 � � � � � �� �
 � �� � ������� �� � ��

 ���� ��� � �
��� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ����� ���� �
 ��� �$ % & ��' � ���� �� ������

� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � ��� �� � ��� (�� 	 � � � � � �� �� � �� � � � � � � � � � ��

� ��

� ��

� ��

 � $) * � �
 �� � �� $) * � �
 �� � �� $) * � �
 �� � �� $) * � �
 �� � �
��� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 ���� ��� ������ ������ ����
 � � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ��� � �� � ����
 � ��
 ��� � � �� ���
� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �� ��� �
 �������
 ��� � �� � �� �� ��� � � ���
 � �����

4.2. 1v49 Experiment

As we have pointed out, since the dataset used had
randomly inserted masquerade blocks in each user’s test
commands (10,000 commands following the first 5,000),
each user has a different number of “dirty” blocks and the
origins of these “dirty” blocks also differ. So the result of
the SEA experiment may not illustrate the real
performance of a classification algorithm. (There are too
many unfixed parameters.) To better evaluate the
performance of a classification algorithm, we can treat
these 50 users as our selected sample of common users. If
we can prove algorithm A is better than algorithm B for
most of the 50 users, we can infer A is better than B in a
general sense.

To meet this requirement, we follow the “1v49”
experiment, but for a different purpose. We use one user’s
first 5,000 commands as negative training data to compute
a classifier without any positive training data. For test data,
we use the non-masquerade blocks from the 10,000
additional commands of the same user as negative test
data, and the other 49 users’ first 5,000 commands as
positive test data. This data is also organized in blocks of
100 commands.

As we mentioned before, the same algorithm might
perform quite differently for different users. Figure 4
illustrates the difference. Figure 4 shows the ROC curve
for user 2, 20 and 40 using one-class SVM with the binary
feature representation. Such a difference occurs no matter
which algorithm has been used; the difference is
determined by the characteristic of each user.

� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
� �� � ���+ ,�	 � � �� � �� �
 �� ��� ������� ���
 ��
 ��
 �� � ���
 ��
 �� � ���
 ��
 �� � ���
 ��
 �� � � � � � � � � � �

� ��

� ��

� ��

� ��

 �$) *�$) *�$) *�$) * ��� ��� ���� ���� ���� ��� ���� ���� ���� ��� ���� ���� ���� ��� ���� ���� � ��������

To compare the different methods for multiple users,

we compute the ROC score for each user. In general, a
ROC score is the fraction of the area under the ROC curve,
the larger the better. A ROC score of 1 means perfect
detection without any false positives. Figure 5 below
shows the ROC scores for users 20 and 40 using the one-
class SVM-binary algorithm.

� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �� �� � ��� - ,� % ' �� � ��� � �� 	 � � �
 � ��� �
 �� � � �
 ��� # . �
�� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ����� � � �
 ��� + . ,� �� �� ���� �� � � ��
 � �� �� � ����� � � � ���
	 � � �� � �� ��	 � � �� � �� ��	 � � �� � �� ��	 � � �� � �� ������

Figure 6 illustrates the performance of several one-

class training algorithms as measured by ROC scores. The
figure includes results for all 50 users. From Figure 6, we
can see that one-class SVM using word-count features is
the worst among the four algorithms. At the high ROC
score region, with a ROC score higher than 0.8 (which is
what we prefer) one-class SVM using binary features
performs best among all. There is no big difference
between Naïve Byaes using the multinomial model or the
multi-variate Bernoulli model.

� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �� �� � ���/ ,�� � � ���
 � � ��� � ��� �
 0 � ���� ��� ���� �� � �
� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �� ��� �
 ���� ��� ��� � �� � �
 ��� ��� ����� � � ���� ���
 ��
 �
� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���� �� " � �� � � �� � �� �� � � ��� � � �' � ���
 � �� 	 � � �
 � ���
�� ��
 � �� ��� ��
 � �� ��� ��
 � �� ��� ��
 � �� �����

For the masquerade problem, we are more interested in

the region of the ROC curve with a low false positive rate;
otherwise, the “annoyance level” of false alarms would
render the detector useless in practical use. Therefore, we
restrict the ROC scores to the curves with false positive
lower than P, which is called the ROC-P score. For
example, if we want to restrict the false positives to be
lower than 5% of all command blocks, we can compute
ROC-5. Similar to the general ROC score, the ROC-P
score is the fraction of the area under the ROC curve
where the false positive rate is lower than P%. Figure 7,
displays an example of ROC-10, based on the ROC-
curves of users 20 and 40. Only part of the ROC curve is
drawn here to highlight the plots.

� �� � ���1 ,�	 � �� �� � ���1 ,�	 � �� �� � ���1 ,�	 � �� �� � ���1 ,�	 � � �. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 ��. �� ���
 ���# . ��� � ��
 ���+ . !�" � �� � ��
 �
�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4�� �� ���� �� � � �� �� ��
 � �� �� � ����� ����� � � �� 2 3 �. 4 ����
�� ��
 � �� ���� ���� ��
 � �� ���� ���� ��
 � �� ���� ���� ��
 � �� ���� ������

Since we can see that one-class SVM using the binary

feature is generally better than one-class SVM using the
word count feature, as depicted in Figure 6; here we only
compare the one-class SVM using the binary
representation with the multinomial model Naïve Bayes
and Bernoulli model Naïve Bayes in the following ROC-P
comparison. Figures 8 plots the comparison for ROC-5
and ROC-1, which means false positives are below 5%
and 1%, respectively. From these two plots, we can

determine that one-class SVM using the binary feature is
almost always better than the other two one-class Naïve
Bayes methods.

� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) *� �� � ��� 5 ,� � � � ���
 � � �� � $) * ��� ��� � " ��� ���� ��� � " ��� ���� ��� � " ��� ���� ��� � " ��� � � � � � � � � �
� ��

� ��

� ��

� ��

 � * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � �� * � ���� � ���� � � � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 � � ��� � ���� � � !�� � ��� � ���� � � !�� � ��� � ���� � � !�� � ��� � ���� � � !�
��
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!���
 ���� ��� � � � - 4 � �� � � �4 � ���
 �� �
 ���� �� ����!�
��������
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
 � �� ��� ��� �� �� �� � ��� � � � � �
 � �� �� � ���� � � � ���� ��
�
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � ��
 ��
 �� ��" � �� � ���� �� �� �� ��� � ��' � ���
 ��� �	 � � - !�- !�- !�- !�
	 � �	 � �	 � �	 � � ��
 � ����� ��
 � �� ���
 � ����� ��
 � �� ���
 � ����� ��
 � �� ���
 � ����� ��
 � �� �����

To compare the performance of different algorithms on

an individual user basis, we compare the ROC-P score
user by user. Figure 9 shows a user-by-user comparison of
one-class SVM using the binary feature representation and
one-class Naïve Bayes using the multinomial model, when
the false positive rate is lower than 1%. Again we can see,
for most of the 50 users, one-class SVM with binary
features is better than one-class Naïve Bayes using the
multinomial model. However, there are still some users
whose data exhibit better performance using the one-class
Naïve Bayes. This suggests that we can choose the best
algorithm to use for an individual user to improve the
whole system’s performance.

� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 ��� �� � ��� 6 ,� 7
 �� �������� �
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *�
 ��� � � � ���
 � � �� � $) *
��� ��� � �� � ���� ��� � �� � ���� ��� � �� � ���� ��� � �� � � � � � � � � � � � ��

� ��

� ��

� ��

 ���� � ��� �� ��� �� ��� �� ��� �� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��� � �� �
 � �
 �� � � �� ��
� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ��� � ���� � ����� � ��!���
 ���� ��� �� ��4 ����
 ���
 ���� ������

5. Discussion

From our work we can see that one-class SVM using
binary features performs better than one-class Naïve
Bayes and one-class SVM using word count features.

Even so, masquerade detection is a very hard problem,
and all three algorithms did not achieve very high
accuracy with near to zero false positive rates for every
user. This is partly caused by the inherent nature of the
data available and the difficulty of this problem. We
would like to reapply these methods using a richer set of
data as described by Maxion [10], incorporating command
arguments. We also believe that temporal data associated
with each user’s sequential commands will provide
considerable value as well to improve performance.

Another problem to consider for the practical utility of
these approaches is resiliency to direct attack; i.e. how
could we protect the models that were computed from, for
example, a mimicry attack by the masquerader?

In the experiments performed, we did not evaluate
feature selection. We tested one-class SVM using 100,

200, and 300 of the most frequently used UNIX
commands. Each of the results is worse than had we used
all of the available UNIX commands, whose total number
is around 870. We also conjectured that 2-gram features
(adjacent pairs of commands) would perform better than
individual commands (1-grams) as a feature. However, we
found that the results were worse when we used all of the
2-grams. In further work, we would evaluate some feature
selection methods to improve performance. For example,
we believe a selection of some features using both 1-gram
and 2-grams may improve the quality of the user profiles,
and thus the accuracy of the detector.

A system to detect masqueraders as described in this
paper should not be viewed as a single detector, but rather
as evidence to be correlated with other sensors and other
detectors. Thus, although the performance of the detectors
described herein and in prior work seemingly are not
accurate enough, when one wishes to limit false positives,
it may be wise to relax the threshold to generate higher
true positive rates. If the output of the detector were
combined with other evidence (for example, file system
access anomaly detection, or other sensors), it may be
possible to raise substantially the bar in protecting hosts
from malicious abuse.

6. Conclusion

In this paper, to solve the masquerade detection
problem, we use one-class training algorithms which only
train on a user’s clean data. It has been demonstrated that
one-class training algorithms can achieve similar
performance as multiple class methods, but require much
less effort in data collection and centralized management.
Besides masquerade detection, we believe one-class
training is also good for some other intrusion detection
problems where sample intrusion data are hard to get or
too variable to cluster.

We also give a detailed comparison of the performance
of different one-class algorithms as applied to multiple
users. The results show that for most users one-class SVM
using the binary feature representation is better than one-
class Naïve Bayes and one-class SVM using the word
count representation, especially when we want to restrict
the false positive rate to a relatively low level.

In our future work, we plan to include command
arguments, not only truncated commands, as features to
improve the accuracy of masquerade detection. As the
number of features increase, we also plan to do feature
selection to find the most informative features and to
discard those features that have no value for the target task.

Acknowledgments
This work was partially supported by DARPA contract

No. F30602-02-2-0209. We also thank Prof. Tony Jebara
for helpful suggestions and valuable comments.

Reference:

[1] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: a library

for support vector machines”, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[2] Eleazar Eskin, Wenke Lee and Salvatore J. Stolfo,
“Modeling System Calls for Intrusion Detection with
Dynamic Window Sizes”, Proceedings of DISCEX II, June,
2001.

[3] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and
Thomas A. Longstaff, “A sense of self for UNIX
processes”, In Proceedings of IEEE Symposium on Security
and Privacy, 1996.

[4] Anup K. Ghosh and Aaron Schwartzbard, “A study in
using neural networks for anomaly and misuse detection”,
In Proceedings of USENIX Security Symposium 1999

[5] M. Gribskov and N. L. Robinson, “Use of receiver
operating characteristic (ROC) analysis to evaluate
sequence matching”, Computers and Chemistry, 20(1):25–
33, 1996.

[6] Thorsten Joachims, “Text categorization with support
vector machines: Learning with many relevant features”, In
Proc. of the European Conference on Machine Learning
(ECML), pp. 137-142, 1998.

[7] W. Lee and S. J. Stolfo, “Data mining approaches for
intrusion detection”, In Proceedings of USENIX Security
Symposium 1998

[8] T. Lunt, A.Tamaru, F. Gilham, R. Jagannathan, C. Jalai,
H.S. Javitz, A. Valdes, and P.G. Neumann, “A Real-Time
Intrusion Detection Expert System," SRI CSL Tecnical
Report, SRI-CSL-90-05, June 1990.

[9] Maxion, Roy A. and Townsend, Tahlia N, “Masquerade
Detection Using Truncated Command Lines”, International
Conference on Dependable Systems and Networks (DSN-
02), pp. 219-228, Washington, D.C. 23-26 June 2002.

[10] Maxion, Roy A. “Masquerade Detection Using Enriched
Command Lines”, In International Conference on
Dependable Systems & Networks (DSN-03), pp. 5-14, San
Francisco, California, 22-25 June 2003. IEEE Computer
Society Press, Los Alamitos, California, 2003.

[11] A. McCallurn, K. Nigam, “A Comparison of Event Models
for Naive Bayes Text Classification”, AAAI-98 Workshop
on Learning for Text Categorization, 1998

[12] T. M. Mitchell, Bayesian Learning, Chapter 6 in Machine
Learning, pp. 154-200. McGraw-Hill, 1997.

[13] B. Scholkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and
R.C. Williamson, “Estimating the support of a high-
dimensional distribution”. Technique report, Microsoft
Research, MSR-TR-99-87, 1999.

[14] M. Schonlau, W. DuMouchel, W. -H. Ju, A. F. Karr, M.
Theus, and Y. Vardi, “Computer intrusion: Detecting
masquerades”, Statistical Science, 16(1):58-74, February
2001.

[15] Matthew G. Schultz, Eleazar Eskin, and Salvatore J. Stolfo,
“Malicious Email Filter - A UNIX Mail Filter that Detects
Malicious Windows Executables”, Proceedings of USENIX
Annual Technical Conference - FREENIX Track, Boston,
MA: June 2001.

[16] S. Y. Sedelow, “The Computer in the Humanities and Fine
Arts”, ACM Computing Surveys 2(2): 89-110 (1970)

[17] Salvatore J. Stolfo, Shlomo Hershkop, Ke Wang, Olivier
Nimeskern, and Chia-Wei Hu, “Behavior Profiling of
Email”, 1st NSF/NIJ Symposium on Intelligence & Security
Informatics (ISI 2003), June 2-3, 2003, Tucson, Arizona.

[18] O. De Vel, A. Anderson, M. Corney, and G. Mohay,
“Mining Email Content for Author Identification
Forensics”, SIGMOD: Special Section on Data Mining for
Intrusion Detection and Threat Analysis, December 2001.

[19] Nong Ye, “A Markov Chain Model of Temporal Behavior
for Anomaly Detection”, Proceedings of the IEEE Systems,
Man, and Cybernetics Information Assurance and Security
Workshop, 2000.

