
Low-Level Linguistic Controls for Style Transfer and Content
Preservation

Katy Gero[ Chris Kedzie[ Jonathan Reeve] Lydia Chilton[
Columbia University

[Dept. of Computer Science, ]Dept. of English and Comparative Literature
katy@cs.columbia.edu, kedzie@cs.columbia.edu,
jpr2152@columbia.edu, chilton@cs.columbia.edu

Abstract

Despite the success of style transfer in image
processing, it has seen limited progress in nat-
ural language generation. Part of the prob-
lem is that content is not as easily decoupled
from style in the text domain. Curiously, in
the field of stylometry, content does not fig-
ure prominently in practical methods of dis-
criminating stylistic elements, such as author-
ship and genre. Rather, syntax and function
words are the most salient features. Draw-
ing on this work, we model style as a suite
of low-level linguistic controls, such as fre-
quency of pronouns, prepositions, and subor-
dinate clause constructions. We train a neu-
ral encoder-decoder model to reconstruct ref-
erence sentences given only content words and
the setting of the controls. We perform style
transfer by keeping the content words fixed
while adjusting the controls to be indicative of
another style. In experiments, we show that
the model reliably responds to the linguistic
controls and perform both automatic and man-
ual evaluations on style transfer. We find we
can fool a style classifier 84% of the time, and
that our model produces highly diverse and
stylistically distinctive outputs. This work in-
troduces a formal, extendable model of style
that can add control to any neural text genera-
tion system.

1 Introduction

All text has style, whether it be formal or infor-
mal, polite or aggressive, colloquial, persuasive,
or even robotic. Despite the success of style trans-
fer in image processing (Gatys et al., 2015, 2016),
there has been limited progress in the text domain,
where disentangling style from content is particu-
larly difficult.

To date, most work in style transfer relies on the
availability of meta-data, such as sentiment, au-
thorship, or formality. While meta-data can pro-

vide insight into the style of a text, it often con-
flates style with content, limiting the ability to per-
form style transfer while preserving content. Gen-
eralizing style transfer requires separating style
from the meaning of the text itself.

For example, in the digital humanities and
its subfield of stylometry, content doesn’t figure
prominently in practical methods of discriminat-
ing authorship and genres, which can be thought
of as style at the level of the individual and popula-
tion, respectively. Rather, syntactic and functional
constructions are the most salient features.

We build on work from literary scholars using
computational techniques for analysis. In partic-
ular we draw on stylometry: the use of surface
level features, often counts of function words, to
discriminate between literary styles. Stylometry
first saw success in attributing authorship to the
disputed Federalist Papers (Mosteller and Wal-
lace, 2007), but is recently used by scholars to
study things such as the birth of genres (Under-
wood, 2016) and the change of author styles over
time (Reeve, 2019). The use of function words is
likely not the way writers intend to express style,
but they appear to be downstream realizations of
higher-level stylistic decisions.

We hypothesize that surface-level linguistic fea-
tures, such as counts of personal pronouns, prepo-
sitions, and punctuation, are an excellent defini-
tion of style, as borne out by their use in the digital
humanities, and our own style classification exper-
iments. We propose a controllable neural encoder-
decoder model in which these features are mod-
elled explicitly as decoder feature embeddings. In
training, the model learns to reconstruct a text us-
ing only the content words and the linguistic fea-
ture embeddings. We can then transfer arbitrary
content words to a new style without parallel data
by setting the low-level style feature embeddings
to be indicative of the target style.



This paper makes the following contributions:

• A formal model of style as a suite of control-
lable, low-level linguistic features that are in-
dependent of content.

• An automatic evaluation showing that our
model fools a style classifier 84% of the time.

• A discussion of a human evaluation with En-
glish literature experts, including recommen-
dations for the ‘vampires in space’ dilemma.

2 Related Work

2.1 Style Transfer with Parallel Data
Following in the footsteps of machine translation,
style transfer in text has seen success by using par-
allel data. Jhamtani et al. (2017) use modern trans-
lations of Shakespeare plays to build a modern-
to-Shakespearan model. Rao and Tetreault (2018)
compile parallel data for formal and informal sen-
tences, allowing them to successfully use various
machine translation techniques. While parallel
data may work for very specific styles, the diffi-
culty of finding parallel texts dramatically limits
this approach.

2.2 Style Transfer without Parallel Data
There has been a decent amount of work on this
approach in the past few years (Zhao et al., 2018;
Fu et al., 2018), mostly focusing on variations of
an encoder-decoder framework in which style is
modeled as a monolithic style embedding. The
main obstacle is often to disentangle style and con-
tent. However, it remains a challenging problem.

Perhaps the most successful is Lample et al.
(2019), who use a de-noising auto encoder and
back translation to learn style without parallel
data. Tikhonov and Yamshchikov (2018) outline
the benefits of automatically extracting style, and
suggest there is a formal weakness of using lin-
guistic heuristics. In contrast, we believe that
monolithic style embeddings don’t capture the ex-
isting knowledge we have about style, and will
struggle to disentangle content.

2.3 Controlling Linguistic Features
Several papers have worked on controlling style
when generating sentences from restaurant mean-
ing representation (Oraby et al., 2018; Deriu and
Cieliebak, 2018). In each of these cases, the diver-
sity in outputs is quite small given the constraints

Train Dev Test
Style Words/Sent Words/Sent Words/Sent

Sci-fi 7.1M/344k .9M/43k .9M/43k
Phil 1.2M/120k .15M/15k .15M/15k
Gothic .4M/74k .05M/9k .05M/9k

Table 1: The size of the data across the three different
styles investigated.

of the meaning representation, style is often con-
strained to interjections (like “yeah”), and there is
no original style from which to transfer.

Ficler and Goldberg (2017) investigate using
stylistic parameters and content parameters to con-
trol text generation using a movie review dataset.
Their stylistic parameters are created using word-
level heuristics and they are successful in control-
ling these parameters in the outputs. Their suc-
cess bodes well for our related approach in a style
transfer setting, in which the content (not merely
content parameters) is held fixed.

2.4 Stylometry and the Digital Humanities

Style, in literary research, is anything but a sta-
ble concept, but it nonetheless has a long tra-
dition of study in the digital humanities. In a
remarkably early quantitative study of literature,
Mendenhall (1887) charts sentence-level stylistic
attributes specific to a number of novelists. Half a
century later, Fucks (1952) builds on earlier work
in information theory by Shannon (1948), and de-
fines a literary text as consisting of two “materi-
als”: “the vocabulary, and some structural proper-
ties, the style, of its author.”

Beginning with Mosteller and Wallace (2007),
statistical approaches to style, or stylometry, join
the already-heated debates over the authorship of
literary works. A noteable example of this is the
“Delta” measure, which uses z-scores of function
word frequencies (Burrows, 2002). Craig and Kin-
ney (2009) find that Shakespeare added some ma-
terial to a later edition of Thomas Kyd’s The Span-
ish Tragedy, and that Christopher Marlowe collab-
orated with Shakespeare on Henry VI.

3 Models

3.1 Preliminary Classification Experiments

The stylometric research cited above suggests that
the most frequently used words, e.g. function
words, are most discriminating of authorship and



Classifier all scifi goth phil

All 0.86 0.86 0.87 0.84
Content only 0.80 0.78 0.80 0.84
Ablated N 0.81 0.80 0.85 0.83
Ablated NV 0.80 0.83 0.77 0.72
Ablated NVA 0.75 0.73 0.72 0.80

Table 2: Accuracy of five classifiers trained using tri-
grams with fasttext, for all test data and split by genre.
Despite heavy ablation, the Ablated NVA classifier has
an accuracy of 75%, suggesting synactic and functional
features alone can be fully predictive of style.

literary style.1 We investigate these claims us-
ing three corpora that have distinctive styles in
the literary community: gothic novels, philosophy
books, and pulp science fiction, hereafter sci-fi.

We retrieve gothic novels and philosophy books
from Project Gutenberg2 and pulp sci-fi from In-
ternet Archive’s Pulp Magazine Archive3. We par-
tition this corpus into train, validation, and test sets
the sizes of which can be found in Table 1.

In order to validate the above claims, we train
five different classifiers to predict the literary style
of sentences from our corpus. Each classifier
has gradually more content words replaced with
part-of-speech (POS) tag placeholder tokens. The
All model is trained on sentences with all proper
nouns replaced by ‘PROPN’. The models Ablated
N, Ablated NV, and Ablated NVA replace nouns,
nouns & verbs, and nouns, verbs, & adjectives
with the corresponding POS tag respectively. Fi-
nally, Content-only is trained on sentences with all
words that are not tagged as NOUN, VERB, ADJ
removed; the remaining words are not ablated.

We train the classifiers on the training set, bal-
ancing the class distribution to make sure there
are the same number of sentences from each style.
Classifiers are trained using fastText (Joulin et al.,
2017), using tri-gram features with all other set-
tings as default. Table 2 shows the accuracies of
the classifiers.

The styles are highly distinctive: the All classi-
fier has an accuracy of 86%. Additionally, even
the Ablated NVA is quite successful, with 75% ac-
curacy, even without access to any content words.

1Curiously, these are most often the kinds of words that
are manually removed for text classification.

2www.gutenberg.org
3Specifically, Robin Sloan’s OCR’ed corpus: https://

archive.org/details/scifi-corpus

Control Source Example

S parse n/a
SBAR parse n/a
ADVP parse n/a
FRAG parse n/a
conjunction word list and, or, yet, but
determiner word list the, an, this
3rdNeutralPer word list they, their, it
3rdFemalePer word list she, her
3rdMalePer word list he, his
1stPer word list I, my, we
2ndPer word list you, your
3rdPer word list they, she, he
helperVerbs word list be, am, could
negation word list no, not
simple prep word list for, despite
position prep word list above, down
punctuation word list , ; : - (

Table 3: All controls, their source, and examples.
Punctuation doesn’t include end punctuation.

The Content only classifier is also quite successful,
at 80% accuracy. This indicates that these stylistic
genres are distinctive at both the content level and
at the syntactic level.

3.2 Formal Model of Style

Given that non-content words are distinctive
enough for a classifier to determine style, we pro-
pose a suite of low-level linguistic feature counts
(henceforth, controls) as our formal, content-blind
definition of style. The style of a sentence is repre-
sented as a vector of counts of closed word classes
(like personal pronouns) as well as counts of syn-
tactic features like the number of SBAR non-
terminals in its constituency parse, since clause
structure has been shown to be indicative of style
(Allison et al., 2013). Controls are extracted
heuristically, and almost all rely on counts of pre-
defined word lists. For constituency parses we use
the Stanford Parser (Manning et al., 2014). Table 3
lists all the controls along with examples.

Reconstruction Task Models are trained with a
reconstruction task, in which a distorted version
of a reference sentence is input and the goal is to
output the original reference.

Figure 2 illustrates the process. Controls are
calculated heuristically. All words found in the
control word lists are then removed from the refer-

www.gutenberg.org
https://archive.org/details/scifi-corpus
https://archive.org/details/scifi-corpus


ence sentence. The remaining words, which repre-
sent the content, are used as input into the model,
along with their POS tags and lemmas.

In this way we encourage models to construct
a sentence using content and style independently.
This will allow us to vary the stylistic controls
while keeping the content constant, and success-
fully perform style transfer.

3.3 Neural Architecture

We implement our feature controlled language
model using a neural encoder-decoder with atten-
tion (Bahdanau et al., 2014), using 2-layer uni-
directional gated recurrent units (GRUs) for the
encoder and decoder (Cho et al., 2014).

The input to the encoder is a sequence of
M content words, along with their lemmas, and
fine and coarse grained part-of-speech (POS)
tags,4 i.e. X.,j = (x1,j , . . . , xM,j) for j ∈
T = {word, lemma, fine-pos, coarse-pos}. We
embed each token (and its lemma and POS)
before concatenating, and feeding into the en-
coder GRU to obtain encoder hidden states,
ci = gru(ci−1, [Ej(Xi,j), j ∈ T ] ;ωenc) for i ∈
1, . . . ,M, where initial state c0, encoder GRU
parameters ωenc and embedding matrices Ej are
learned parameters.

The decoder sequentially generates the outputs,
i.e. a sequence of N tokens y = (y1, . . . , yN ),
where all tokens yi are drawn from a finite out-
put vocabulary V . At each decoder step, we up-
date the decoder GRU hidden state hi, using the
previous hidden state hi−1, the concatention of
the previously generated output token yi, and a
suite of K control features z = (z1, . . . , zK),
i.e. ρi = [Edec(yi−1), C1(z1), · · · , CK(zK)]
and hi = gru (hi−1, ρi;ωdec) , where embed-
ding matrices Edec, Ck and decoder GRU pa-
rameters parameters ωdec are learned parame-
ters. Crucially, the control features z remain
fixed for all generation steps i ∈ 1, . . . , N .
Using the decoder hidden state hi we then at-
tend to the encoder context vectors cj , i.e.

αi,j ∝ exp

{
νᵀ tanh

(
W ᵀ

[
cj
hi

])}
, before

passing hi and the attention weighted context c̄i =∑M
j=1 αi,jcj into a single hidden-layer perceptron

with softmax output to compute the next token

4We use the Penn Treebank (Marcus et al., 1994) and Uni-
versal Dependencies (de Marneffe et al.) tagsets for the fine
and coarse-grained POS respectively.

prediction probability,

oi = tanh

(
Uᵀ
[
hi
c̄i

]
+ u

)
p(yi|y<i, X) ∝ exp

{
V ᵀ
yioi + vyi

}
.

where W,U, V and u, v, ν are parameter matrices
and vectors respectively.

The zk represent binned counts of the low-
level features described in subsection 3.2. We bin
counts in 22 buckets, where counts 0-20 each have
their own bin/embedding; counts greater than 20
are assigned to the 22th embedding.

We use embedding sizes of 128, 128, 64, and
32 for token, lemma, fine, and coarse grained POS
embedding matrices respectively. Output token
embeddings Edec have size 512, and 50 for the
control feature embeddings. We set 512 for all
GRU and perceptron output sizes. We refer to this
model as the StyleEQ model.5 See Figure 1 for a
visual depiction of the model.

Baseline Genre Model We compare the above
model to a similar model, where rather than ex-
plicitly represent K features as input, we have
K = 1 features in the form of a genre embed-
ding, i.e. we learn a genre specific embedding for
each of the gothic, scifi, and philosophy genres. To
generate in a specific style, we simply set the ap-
propriate embedding. We use genre embeddings
of size 850 which is equivalent to the total size of
the K feature embeddings in the StyleEQ model.

Training We train both models with minibatch
stochastic gradient descent with a learning rate of
0.25, weight decay penalty of 0.0001, and batch
size of 64. We also apply dropout with a drop rate
of 0.25 to all embedding layers, the GRUs, and
preceptron hidden layer. We train for a maximum
of 200 epochs, using validation set BLEU score
(Papineni et al., 2002) to select the final model it-
eration for evaluation.

Selecting Controls for Style Transfer In the
Baseline model, style transfer is straightforward:
select a different genre embedding. In contrast,
the StyleEQ model requires selecting the suite of
controls. Although there are a variety of ways to
do this, we use a method that encourages a diver-
sity of outputs.

5We think of the suite of feature controls as knobs akin to
a parametric equalizer (EQ) on a HiFi-stereo.
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Figure 1: A schematic depiction of our style control model.

Figure 2: How a reference sentence from the dataset is
prepared for input to the model. Controls are calculated
heuristically, and then removed from the sentence. The
remaining words, as well as their lemmatized versions
and part-of-speech tags, are used as input separately.

In order to ensure the controls match the refer-
ence sentence in magnitude, we first find all sen-
tences in the target style with the same number of
words as the reference sentence. Then, we add the
following constraints: the same number of proper
nouns, the same number of nouns, the same num-
ber of verbs, and the same number of adjectives.
From the remaining sentences, we randomly se-
lect however many we desire to output, and cal-
culate the controls for those sentences. We then
use the controls of these ‘sibling’ sentences as
the controls in the model. The output sentences
are then reranked using the length normalized log-
likelihood under the model.

4 Automatic Evaluations

4.1 BLEU Scores & Perplexity

In Table 4 we report BLEU scores for reconstruc-
tion of test set sentences from their content and
feature representations, as well as the model per-
plexities of the reconstruction. For both mod-
els, we use beam decoding with a beam size of
eight. Beam candidates are ranked according to
their length normalized log-likelihood. On these

Model BLEU Perplexity

Baseline 25.07 4.60
StyleEQ 30.04 3.33

Table 4: Test set reconstruction BLEU score and per-
plexity (in nats).

automatic measures we see that StyleEQ is better
able to reconstruct the original sentences. In some
sense this evaluation is mostly a sanity check, as
the feature controls contain more locally specific
information than the genre embeddings, which say
very little about how many specific function words
one should expect to see in the output.

4.2 Feature Control

Designing controllable language models is often
difficult because of the various dependencies be-
tween tokens; when changing one control value it
may effect other aspects of the surface realization.
For example, increasing the number of conjunc-
tions may effect how the generator places prepo-
sitions to compensate for structural changes in the
sentence. Since our features are deterministically
recoverable, we can perturb an individual control
value and check to see that the desired change was
realized in the output. Moreover, we can check the
amount of change in the other non-perturbed fea-
tures to measure the independence of the controls.

We sample 50 sentences from each genre from
the test set. For each sample, we create a per-
turbed control setting for each control by adding
δ to the original control value. This is done for
δ ∈ {−3,−2,−1, 0, 1, 2, 3}, skipping any settings
where the new control value would be negative.

Table 5 shows the results of this experiment.
The Exact column displays the percentage of gen-
erated texts that realize the exact number of con-



Control Exact Direction Atomic

S 18.99 43.34 23.86
SBAR 24.22 41.41 18.16
ADVP 20.78 27.65 21.96
FRAG 24.47 26.60 19.71
conjunction 93.56 98.75 11.43
determiner 81.11 95.67 16.98
3rdNeutralPer 40.70 78.56 8.97
3rdFemalePer 32.77 65.53 12.62
3rdMalePer 36.20 75.72 9.27
1stPer 79.47 94.48 12.80
2ndPer 78.01 96.69 13.48
3rdPer 29.08 70.92 10.56
helperVerbs 69.92 90.23 12.30
negation 68.85 93.21 12.88
simple prep 49.32 77.74 19.86
position prep 47.18 79.42 19.42
punctuation 84.83 91.71 13.05

Table 5: Percentage rates of Exact, Direction, and
Atomic feature control changes. See subsection 4.2 for
explanation.

trol features specified by the perturbed control.
High percentages in the Exact column indicate
greater one-to-one correspondence between the
control and surface realization.

The Direction column specifies the percent-
age of cases where the generated text produces a
changed number of the control features, that while
not exactly matching the specified value of the per-
turbed control, does change from the original in
the same direction. High percentages in Direction
mean that we could roughly ensure desired surface
realizations by modifying the control by a larger δ.

Finally, the Atomic column specifies the per-
centage of cases where the generated text with the
perturbed control only realizes changes to that spe-
cific control, while other features remain constant.
High percentages in the Atomic column indicate
this feature is only loosely coupled to the other
features and can be changed without modifying
other aspects of the sentence.

Controls such as conjunction, determiner, and
punctuation are highly controllable, with Exact
rates above 80%. But with the exception of the
constituency parse features, all controls have high
Direction rates, many in the 90s. These results in-
dicate our model successfully controls these fea-
tures. The fact that the Atomic rates are relatively
low is to be expected, as controls are highly cou-

pled – e.g. to increase 1stPer, it is likely another
pronoun control will have to decrease.

4.3 Automatic Classification

For each model we look at the classifier predic-
tion accuracy of reconstructed and transferred sen-
tences. In particular we use the Ablated NVA clas-
sifier, as this is the most content-blind one.

Both the Baseline and StyleEQ produce 16 can-
didate output sentences. We look at three differ-
ent methods for selection: all, which uses all out-
put sentences; top, which selects the top ranked
sentence based on the score from the model; and
oracle, which selects the sentence with the high-
est classifier likelihood for the intended style. The
reason for the third method, which indeed acts as
an oracle, is that the StyleEQ model appeared to
have far more diversity than the Baseline, and we
wanted to investigate its best outputs.

In Table 6 we see the results. Note that for
both models, the all and top classification accu-
racy tends to be quite similar, though for the Base-
line they are often almost exactly the same when
the Baseline has little to no diversity in the outputs.

However, the oracle introduces a huge jump in
accuracy for the StyleEQ model, especially com-
pared to the Baseline. It’s important to note that
neither model uses the classifier in any way except
to select the sentence from 16 candidate outputs.

What this implies is that lurking within the
StyleEQ model outputs are great sentences, even if
they are hard to find. In many cases, the StyleEQ
model has a classification accuracy above the base
rate from the test data, which is 75% (see Table 2).

5 Human Evaluation

Table 7 shows example outputs for the StyleEQ
and Baseline models. From inspection we find that
the StyleEQ model successfully changes syntactic
constructions in stylistically distinctive ways, such
as increasing syntactic complexity when transfer-
ring to philosophy, or moving to relevant pronouns
when transferring to sci-fi. In contrast, the Base-
line model doesn’t move far from the reference
sentence, making only minor modifications such
changing the type of a single pronoun.

To determine how readers would classify our
transferred sentences, we recruited three English
Literature PhD candidates, all of whom had passed
qualifying exams that included determining both
genre and era of various literary texts.



scifi (s) philosophy (p) gothic (g)
Model Method all s→s s→p s→g p→s p→p p→g g→s g→p g→g

Baseline all .424 .639 .344 .301 .242 .818 .140 .483 .422 .437
Baseline top .429 .666 .344 .301 .242 .819 .140 .483 .422 .400
Baseline oracle .493 .851 .344 .301 .242 .940 .140 .483 .422 .750

StyleEQ all .413 .561 .348 .322 .167 .803 .268 .378 .467 .426
StyleEQ top .382 .573 .307 .221 .201 .800 .165 .458 .430 .436
StyleEQ oracle .841 .804 .834 .947 .560 .926 .900 .866 .914 .679

Table 6: Ablated NVA classifier accuracy using three different methods of selecting an output sentence. This is
additionally split into the nine transfer possibilities, given the three source styles. The StyleEQ model produces far
more diverse outputs, allowing the oracle method to have a very high accuracy compared to the Baseline model.

Setting StyleEQ output Baseline output

reference Her face had turned beet red. Her face had turned beet red.
s→s her face had turned thereto red. his face had turned out of the dissolution of the red.
s→g her face had turned to me, the realization red. her face had turned, and, with a modesty of red.
s→p in the face, had turned–that was, the realization red. his face had turned, and, with a modesty of red.

reference The desire for exclusive markets is one of the most po-
tent causes of war.

The desire for exclusive markets is one of the most po-
tent causes of war.

p→p the desire of exclusive markets is one of the most potent
causes of war.

the desire of exclusive markets is one of the most potent
causes of war.

p→s but his desire is an exclusive markets, one of the most
potent causes of war.

the desire of the exclusive markets were one of the most
potent causes of war.

p→g i am a desire of your exclusive markets, and that you are
one of the most potent causes of your war in me.

the desire of the exclusive markets were one of the most
potent causes of war.

reference a little while, and all this will appear a dream. a little while, and all this will appear a dream.
g→g but a little while, all this will appear a dream. a little while all it would appear in a dream.
g→s he wasn’t a little while all he could appear in the dream. a little while all it would appear in a dream.
g→p a little while–all that would appear to do, dream. a little while all will appear in a dream.

Table 7: Example outputs from both models. The StyleEQ model successfully rewrites the sentence with very
different syntactic constructions that reflect style, while the Baseline model rarely moves far from the reference.

5.1 Fluency Evaluation

To evaluate the fluency of our outputs, we had
the annotators score reference sentences, recon-
structed sentences, and transferred sentences on
a 0-5 scale, where 0 was incoherent and 5 was a
well-written human sentence.

Table 8 shows the average fluency of various
conditions from all three annotators. Both mod-
els have fluency scores around 3. Upon inspection
of the outputs, it is clear that many have fluency
errors, resulting in ungrammatical sentences.

Notably the Baseline often has slightly higher
fluency scores than the StyleEQ model. This is
likely because the Baseline model is far less con-
strained in how to construct the output sentence,
and upon inspection often reconstructs the refer-
ence sentence even when performing style trans-
fer. In contrast, the StyleEQ is encouraged to fol-
low the controls, but can struggle to incorporate

fluency
Sentence Type Model A1 A2 A3

Reference none 4.94 4.47 4.82

Reconstruction Baseline 3.48 3.09 4.13
StyleEQ 3.60 2.93 3.96

Transferred Baseline 3.36 4.17 3.30
StyleEQ 3.22 3.86 3.00

Table 8: Fluency scores (0-5, where 0 is incoherent) of
sentences from three annotators. The Baseline model
tends to produce slightly more fluent sentences than the
StyleEQ model, likely because it is less constrained.

these controls into a fluent sentence.
The fluency of all outputs is lower than desired.

We expect that incorporating pre-trained language
models would increase the fluency of all outputs
without requiring larger datasets.



5.2 Human Classification

Each annotator annotated 90 reference sentences
with their predicted style. The accuracy on this
baseline task for annotators A1, A2, and A3 was
80%, 88%, and 80% respectively, giving us an up-
per expected bound on the human evaluation.

In discussing this task with the annotators, they
noted that content is a heavy predictor of genre,
and that would certainly confound their annota-
tions. To attempt to mitigate this, we gave them
two annotation tasks: which-of-3 where they sim-
ply marked which style they thought a sentence
was from, and which-of-2 where they were given
the original style and marked which style they
thought the sentence was transferred into.

For each task, each annotator marked 180 sen-
tences: 90 from each model, with an even split
across the three genres. Annotators were pre-
sented the sentences in a random order, without in-
formation about the models. In total, each marked
270 sentences. (Note there were no reconstruc-
tions in this annotation task.)

Table 9 shows the results. In both tasks, accu-
racy of annotators classifying the sentence as its
intended style was low. In which-of-3, scores were
around 20%, below the chance rate of 33%. In
which-of-2, scores were in the 50s, slightly above
the chance rate of 50%. This was the case for
both models. There was a slight increase in accu-
racy for the StyleEQ model over the Baseline for
which-of-3, but the opposite trend for which-of-2,
suggesting these differences are not significant.

It’s clear that it’s hard to fool the annotators. In-
trospecting on their approach, the annotators ex-
pressed having immediate responses based on key
words – for instance any references of ‘space’ im-
plied ‘sci-fi’. We call this the ‘vampires in space’
problem, because no matter how well a gothic sen-
tence is rewritten as a sci-fi one, it’s impossible to
ignore the fact that there is a vampire in space. The
transferred sentences, in the eyes of the Ablated
NVA classifier (with no access to content words),
did quite well transferring into their intended style.
But people are not blind to content.

5.3 The ‘Vampires in Space’ Problem

Working with the annotators, we regularly came
up against the ’vampires in space’ problem: while
syntactic constructions account for much of the
distinction of literary styles, these constructions
often co-occur with distinctive content.

which-of-3 which-of-2
Model A1 A2 A3 A1 A2 A3

Baseline .21 .17 .17 .57 .51 .58
StyleEQ .24 .20 .17 .54 .51 .48

Table 9: Accuracy of three annotators in selecting the
correct style for transferred sentences. In this evalua-
tion there is little difference between the models.

Stylometrics finds syntactic constructions are
great at fingerprinting, but suggests that these con-
structions are surface realizations of higher-level
stylistic decisions. The number and type of per-
sonal pronouns is a reflection of how characters
feature in a text. A large number of positional
prepositions may be the result of a writer focus-
ing on physical descriptions of scenes. In our at-
tempt to decouple these, we create Frankenstein
sentences, which piece together features of differ-
ent styles – we are putting vampires in space.

Another way to validate our approach would
be to select data that is stylistically distinctive but
with similar content: perhaps genres in which con-
tent is static but language use changes over time,
stylistically distinct authors within a single genre,
or parodies of a distinctive genre.

6 Conclusion and Future Work

We present a formal, extendable model of style
that can add control to any neural text generation
system. We model style as a suite of low-level
linguistic controls, and train a neural encoder-
decoder model to reconstruct reference sentences
given only content words and the setting of the
controls. In automatic evaluations, we show that
our model can fool a style classifier 84% of the
time and outperforms a baseline genre-embedding
model. In human evaluations, we encounter the
‘vampires in space’ problem in which content and
style are equally discriminative but people focus
more on the content.

In future work we would like to model higher-
level syntactic controls. Allison et al. (2013) show
that differences in clausal constructions, for in-
stance having a dependent clause before an inde-
pendent clause or vice versa, is a marker of style
appreciated by the reader. Such features would
likely interact with our lower-level controls in an
interesting way, and provide further insight into
style transfer in text.
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