Low-Level Linguistic Controls for Style Transfer and Content Preservation

Katy Gero\(^b\) Chris Kedzie\(^b\) Jonathan Reeve\(^d\) Lydia Chilton\(^b\)
Columbia University
\(^b\)Dept. of Computer Science, \(^d\)Dept. of English and Comparative Literature
katy@cs.columbia.edu, kedzie@cs.columbia.edu, jpr2152@columbia.edu, chilton@cs.columbia.edu

Abstract

Despite the success of style transfer in image processing, it has seen limited progress in natural language generation. Part of the problem is that content is not as easily decoupled from style in the text domain. Curiously, in the field of stylometry, content does not figure prominently in practical methods of discriminating stylistic elements, such as authorship and genre. Rather, syntax and function words are the most salient features. Drawing on this work, we model style as a suite of low-level linguistic controls, such as frequency of pronouns, prepositions, and subordinate clause constructions. We train a neural encoder-decoder model to reconstruct reference sentences given only content words and the setting of the controls. We perform style transfer by keeping the content words fixed while adjusting the controls to be indicative of another style. In experiments, we show that the model reliably responds to the linguistic controls and perform both automatic and manual evaluations on style transfer. We find we can fool a style classifier 84% of the time, and that our model produces highly diverse and stylistically distinctive outputs. This work introduces a formal, extendable model of style that can add control to any neural text generation system.

1 Introduction

All text has style, whether it be formal or informal, polite or aggressive, colloquial, persuasive, or even robotic. Despite the success of style transfer in image processing (Gatys et al., 2015, 2016), there has been limited progress in the text domain, where disentangling style from content is particularly difficult.

To date, most work in style transfer relies on the availability of meta-data, such as sentiment, authorship, or formality. While meta-data can provide insight into the style of a text, it often conflates style with content, limiting the ability to perform style transfer while preserving content. Generalizing style transfer requires separating style from the meaning of the text itself.

For example, in the digital humanities and its subfield of stylometry, content doesn’t figure prominently in practical methods of discriminating authorship and genres, which can be thought of as style at the level of the individual and population, respectively. Rather, syntactic and functional constructions are the most salient features.

We build on work from literary scholars using computational techniques for analysis. In particular we draw on stylometry: the use of surface level features, often counts of function words, to discriminate between literary styles. Stylometry first saw success in attributing authorship to the disputed Federalist Papers (Mosteller and Wallace, 2007), but is recently used by scholars to study things such as the birth of genres (Underwood, 2016) and the change of author styles over time (Reeve, 2019). The use of function words is likely not the way writers intend to express style, but they appear to be downstream realizations of higher-level stylistic decisions.

We hypothesize that surface-level linguistic features, such as counts of personal pronouns, prepositions, and punctuation, are an excellent definition of style, as borne out by their use in the digital humanities, and our own style classification experiments. We propose a controllable neural encoder-decoder model in which these features are modelled explicitly as decoder feature embeddings. In training, the model learns to reconstruct a text using only the content words and the linguistic feature embeddings. We can then transfer arbitrary content words to a new style without parallel data by setting the low-level style feature embeddings to be indicative of the target style.
This paper makes the following contributions:

- A formal model of style as a suite of controllable, low-level linguistic features that are independent of content.
- An automatic evaluation showing that our model fools a style classifier 84% of the time.
- A discussion of a human evaluation with English literature experts, including recommendations for the ‘vampires in space’ dilemma.

2 Related Work

2.1 Style Transfer with Parallel Data

Following in the footsteps of machine translation, style transfer in text has seen success by using parallel data. Jhamtani et al. (2017) use modern translations of Shakespeare plays to build a modern-to-Shakespearan model. Rao and Tetreault (2018) compile parallel data for formal and informal sentences, allowing them to successfully use various machine translation techniques. While parallel data may work for very specific styles, the difficulty of finding parallel texts dramatically limits this approach.

2.2 Style Transfer without Parallel Data

There has been a decent amount of work on this approach in the past few years (Zhao et al., 2018; Fu et al., 2018), mostly focusing on variations of an encoder-decoder framework in which style is modeled as a monolithic style embedding. The main obstacle is often to disentangle style and content. However, it remains a challenging problem.

Perhaps the most successful is Lample et al. (2019), who use a de-noising auto encoder and back translation to learn style without parallel data. Tikhonov and Yamshchikov (2018) outline the benefits of automatically extracting style, and suggest there is a formal weakness of using linguistic heuristics. In contrast, we believe that monolithic style embeddings don’t capture the existing knowledge we have about style, and will struggle to disentangle content.

2.3 Controlling Linguistic Features

Several papers have worked on controlling style when generating sentences from restaurant meaning representation (Oraby et al., 2018; Deriu and Cieliebak, 2018). In each of these cases, the diversity in outputs is quite small given the constraints of the meaning representation, style is often constrained to interjections (like “yeah”), and there is no original style from which to transfer.

Ficler and Goldberg (2017) investigate using stylistic parameters and content parameters to control text generation using a movie review dataset. Their stylistic parameters are created using word-level heuristics and they are successful in controlling these parameters in the outputs. Their success bodes well for our related approach in a style transfer setting, in which the content (not merely content parameters) is held fixed.

2.4 Stylometry and the Digital Humanities

Style, in literary research, is anything but a stable concept, but it nonetheless has a long tradition of study in the digital humanities. In a remarkably early quantitative study of literature, Mendenhall (1887) charts sentence-level stylistic attributes specific to a number of novelists. Half a century later, Fucks (1952) builds on earlier work in information theory by Shannon (1948), and defines a literary text as consisting of two “materials”: “the vocabulary, and some structural properties, the style, of its author.”

Beginning with Mosteller and Wallace (2007), statistical approaches to style, or stylometry, join the already-heated debates over the authorship of literary works. A notable example of this is the “Delta” measure, which uses z-scores of function word frequencies (Burrows, 2002). Craig and Kinney (2009) find that Shakespeare added some material to a later edition of Thomas Kyd’s The Spanish Tragedy, and that Christopher Marlowe collaborated with Shakespeare on Henry VI.

3 Models

3.1 Preliminary Classification Experiments

The stylometric research cited above suggests that the most frequently used words, e.g. function words, are most discriminating of authorship and
Table 2: Accuracy of five classifiers trained using trigrams with fasttext, for all test data and split by genre. Despite heavy ablation, the Ablated NVA classifier has an accuracy of 75%, suggesting syntactic and functional features alone can be fully predictive of style.

1Curiously, these are most often the kinds of words that are manually removed for text classification.

2www.gutenberg.org

3Specifically, Robin Sloan’s OCR’ed corpus: https://archive.org/details/scifi-corpus

Table 3: All controls, their source, and examples. Punctuation doesn’t include end punctuation.

The Content only classifier is also quite successful, at 80% accuracy. This indicates that these stylistic genres are distinctive at both the content level and at the syntactic level.

3.2 Formal Model of Style

Given that non-content words are distinctive enough for a classifier to determine style, we propose a suite of low-level linguistic feature counts (henceforth, controls) as our formal, content-blind definition of style. The style of a sentence is represented as a vector of counts of closed word classes (like personal pronouns) as well as counts of syntactic features like the number of SBAR non-terminals in its constituency parse, since clause structure has been shown to be indicative of style (Allison et al., 2013). Controls are extracted heuristically, and almost all rely on counts of predefined word lists. For constituency parses we use the Stanford Parser (Manning et al., 2014). Table 3 lists all the controls along with examples.

Reconstruction Task Models are trained with a reconstruction task, in which a distorted version of a reference sentence is input and the goal is to output the original reference.

Figure 2 illustrates the process. Controls are calculated heuristically. All words found in the control word lists are then removed from the refer-
ence sentence. The remaining words, which represent the content, are used as input into the model, along with their POS tags and lemmas.

In this way we encourage models to construct a sentence using content and style independently. This will allow us to vary the stylistic controls while keeping the content constant, and successfully perform style transfer.

3.3 Neural Architecture

We implement our feature controlled language model using a neural encoder-decoder with attention (Bahdanau et al., 2014), using 2-layer unidirectional gated recurrent units (GRUs) for the encoder and decoder (Cho et al., 2014).

The input to the encoder is a sequence of M content words, along with their lemmas, and fine and coarse grained part-of-speech (POS) tags, i.e. $X = (x_1, \ldots, x_M)$ for $j \in \mathcal{T} = \{\text{word, lemma, fine-pos, coarse-pos}\}$. We embed each token (and its lemma and POS) before concatenating, and feeding into the encoder GRU to obtain encoder hidden states, $c_i = \text{gru}(c_{i-1}, [E_j(x_{i,j}), j \in \mathcal{T}]; \omega_{\text{enc}})$ for $i \in 1, \ldots, M$, where initial state c_0, encoder GRU parameters ω_{enc} and embedding matrices E_j are learned parameters.

The decoder sequentially generates the outputs, i.e. a sequence of N tokens $y = (y_1, \ldots, y_N)$, where all tokens y_i are drawn from a finite output vocabulary V. At each decoder step, we update the decoder GRU hidden state h_i, using the previous hidden state h_{i-1}, the concatenation of the previously generated output token y_i, and a suite of K control features $z = (z_1, \ldots, z_K)$, i.e. $\rho_i = [E_{\text{dec}}(y_{i-1}), C_1(z_1), \ldots, C_K(z_K)]$ and $h_i = \text{gru}(h_{i-1}, \rho_i; \omega_{\text{dec}})$, where embedding matrices E_{dec}, C_k and decoder GRU parameters ω_{dec} are learned parameters. Crucially, the control features z remain fixed for all generation steps $i = 1, \ldots, N$. Using the decoder hidden state h_i we then attend to the encoder context vectors c_j, i.e. $\alpha_{i,j} \propto \exp \left\{ V^\top \tanh \left(W^\top \begin{bmatrix} c_j \\ h_i \end{bmatrix} \right) \right\}$, before passing h_i and the attention weighted context $\bar{c}_i = \sum_{j=1}^M \alpha_{i,j} c_j$ into a single hidden-layer perceptron with softmax output to compute the next token prediction probability,

$$o_i = \tanh \left(U^\top \begin{bmatrix} h_i \\ \bar{c}_i \end{bmatrix} + u \right)$$

$$p(y_i|y_{<i}, X) \propto \exp \left\{ V_{y_i}^\top o_i + v_{y_i} \right\}.$$

where W, U, V and u, v, ν are parameter matrices and vectors respectively.

The z_k represent binned counts of the low-level features described in subsection 3.2. We bin counts in 22 buckets, where counts 0-20 each have their own bin/embedding; counts greater than 20 are assigned to the 22th embedding.

We use embedding sizes of 128, 128, 64, and 32 for token, lemma, fine, and coarse grained POS embedding matrices respectively. Output token embeddings E_{dec} have size 512, and 50 for the control feature embeddings. We set 512 for all GRU and perceptron output sizes. We refer to this model as the StyleEQ model.

Baseline Genre Model

We compare the above model to a similar model, where rather than explicitly represent K features as input, we have $K = 1$ features in the form of a genre embedding, i.e. we learn a genre specific embedding for each of the gothic, scifi, and philosophy genres. To generate in a specific style, we simply set the appropriate embedding. We use genre embeddings of size 850 which is equivalent to the total size of the K feature embeddings in the StyleEQ model.

Training

We train both models with minibatch stochastic gradient descent with a learning rate of 0.25, weight decay penalty of 0.0001, and batch size of 64. We also apply dropout with a drop rate of 0.25 to all embedding layers, the GRUs, and perceptron hidden layer. We train for a maximum of 200 epochs, using validation set BLEU score (Papineni et al., 2002) to select the final model iteration for evaluation.

Selecting Controls for Style Transfer

In the Baseline model, style transfer is straightforward: select a different genre embedding. In contrast, the StyleEQ model requires selecting the suite of controls. Although there are a variety of ways to do this, we use a method that encourages a diversity of outputs.

4We use the Penn Treebank (Marcus et al., 1994) and Universal Dependencies (de Marneffe et al.) tags for the fine and coarse-grained POS respectively.

5We think of the suite of feature controls as knobs akin to a parametric equalizer (EQ) on a HiFi-stereo.
The vampires were hunting in outer space.

In order to ensure the controls match the reference sentence in magnitude, we first find all sentences in the target style with the same number of words as the reference sentence. Then, we add the following constraints: the same number of proper nouns, the same number of nouns, the same number of verbs, and the same number of adjectives. From the remaining sentences, we randomly select however many we desire to output, and calculate the controls for those sentences. We then use the controls of these ‘sibling’ sentences as the controls in the model. The output sentences are then reranked using the length normalized log-likelihood under the model.

4 Automatic Evaluations

4.1 BLEU Scores & Perplexity

In Table 4 we report BLEU scores for reconstruction of test set sentences from their content and feature representations, as well as the model perplexities of the reconstruction. For both models, we use beam decoding with a beam size of eight. Beam candidates are ranked according to their length normalized log-likelihood. On these automatic measures we see that StyleEQ is better able to reconstruct the original sentences. In some sense this evaluation is mostly a sanity check, as the feature controls contain more locally specific information than the genre embeddings, which say very little about how many specific function words one should expect to see in the output.

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.07</td>
<td>4.60</td>
</tr>
<tr>
<td>StyleEQ</td>
<td>30.04</td>
<td>3.33</td>
</tr>
</tbody>
</table>

Table 4: Test set reconstruction BLEU score and perplexity (in nats).

4.2 Feature Control

Designing controllable language models is often difficult because of the various dependencies between tokens; when changing one control value it may effect other aspects of the surface realization. For example, increasing the number of conjunctions may effect how the generator places prepositions to compensate for structural changes in the sentence. Since our features are deterministically recoverable, we can perturb an individual control value and check to see that the desired change was realized in the output. Moreover, we can check the amount of change in the other non-perturbed features to measure the independence of the controls.

We sample 50 sentences from each genre from the test set. For each sample, we create a perturbed control setting for each control by adding δ to the original control value. This is done for $\delta \in \{-3, -2, -1, 0, 1, 2, 3\}$, skipping any settings where the new control value would be negative.

Table 5 shows the results of this experiment. The Exact column displays the percentage of generated texts that realize the exact number of con-
Table 5: Percentage rates of Exact, Direction, and Atomic feature control changes. See subsection 4.2 for explanation.

<table>
<thead>
<tr>
<th>Control</th>
<th>Exact</th>
<th>Direction</th>
<th>Atomic</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>18.99</td>
<td>43.34</td>
<td>23.86</td>
</tr>
<tr>
<td>SBAR</td>
<td>24.22</td>
<td>41.41</td>
<td>18.16</td>
</tr>
<tr>
<td>ADVP</td>
<td>20.78</td>
<td>27.65</td>
<td>21.96</td>
</tr>
<tr>
<td>FRAG</td>
<td>24.47</td>
<td>26.60</td>
<td>19.71</td>
</tr>
<tr>
<td>conjunction</td>
<td>93.56</td>
<td>98.75</td>
<td>11.43</td>
</tr>
<tr>
<td>determiner</td>
<td>81.11</td>
<td>95.67</td>
<td>16.98</td>
</tr>
<tr>
<td>3rdNeutralPer</td>
<td>40.70</td>
<td>78.56</td>
<td>16.98</td>
</tr>
<tr>
<td>3rdFemalePer</td>
<td>32.77</td>
<td>65.53</td>
<td>12.62</td>
</tr>
<tr>
<td>3rdMalePer</td>
<td>36.20</td>
<td>75.72</td>
<td>9.27</td>
</tr>
<tr>
<td>1stPer</td>
<td>79.47</td>
<td>94.48</td>
<td>12.80</td>
</tr>
<tr>
<td>2ndPer</td>
<td>78.01</td>
<td>96.69</td>
<td>13.48</td>
</tr>
<tr>
<td>3rdPer</td>
<td>29.08</td>
<td>70.92</td>
<td>10.56</td>
</tr>
<tr>
<td>helperVerbs</td>
<td>69.92</td>
<td>90.23</td>
<td>12.30</td>
</tr>
<tr>
<td>negation</td>
<td>68.85</td>
<td>93.21</td>
<td>12.88</td>
</tr>
<tr>
<td>simple prep</td>
<td>49.32</td>
<td>77.74</td>
<td>19.86</td>
</tr>
<tr>
<td>position prep</td>
<td>47.18</td>
<td>79.42</td>
<td>19.42</td>
</tr>
<tr>
<td>punctuation</td>
<td>84.83</td>
<td>91.71</td>
<td>13.05</td>
</tr>
</tbody>
</table>

Table 4.3 Automatic Classification

For each model we look at the classifier prediction accuracy of reconstructed and transferred sentences. In particular we use the Ablated NVA classifier, as this is the most content-blind one.

Both the Baseline and StyleEQ produce 16 candidate output sentences. We look at three different methods for selection: all, which uses all output sentences; top, which selects the top ranked sentence based on the score from the model; and oracle, which selects the sentence with the highest classifier likelihood for the intended style. The reason for the third method, which indeed acts as an oracle, is that the StyleEQ model appeared to have far more diversity than the Baseline, and we wanted to investigate its best outputs.

In Table 6 we see the results. Note that for both models, the all and top classification accuracy tends to be quite similar, though for the Baseline they are often almost exactly the same when the Baseline has little to no diversity in the outputs.

However, the oracle introduces a huge jump in accuracy for the StyleEQ model, especially compared to the Baseline. It’s important to note that neither model uses the classifier in any way except to select the sentence from 16 candidate outputs.

What this implies is that lurking within the StyleEQ model outputs are great sentences, even if they are hard to find. In many cases, the StyleEQ model has a classification accuracy above the base rate from the test data, which is 75% (see Table 2).

5 Human Evaluation

Table 7 shows example outputs for the StyleEQ and Baseline models. From inspection we find that the StyleEQ model successfully changes syntactic constructions in stylistically distinctive ways, such as increasing syntactic complexity when transferring to philosophy, or moving to relevant pronouns when transferring to sci-fi. In contrast, the Baseline model doesn’t move far from the reference sentence, making only minor modifications such changing the type of a single pronoun.

To determine how readers would classify our transferred sentences, we recruited three English Literature PhD candidates, all of whom had passed qualifying exams that included determining both genre and era of various literary texts.
Table 6: Ablated NVA classifier accuracy using three different methods of selecting an output sentence. This is additionally split into the nine transfer possibilities, given the three source styles. The StyleEQ model produces far more diverse outputs, allowing the oracle method to have a very high accuracy compared to the Baseline model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Method</th>
<th>scifi (s)</th>
<th>philosophy (p)</th>
<th>gothic (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>all</td>
<td>.424</td>
<td>.639 .344 .301</td>
<td>.242 .818 .140</td>
</tr>
<tr>
<td>Baseline</td>
<td>top</td>
<td>.429</td>
<td>.666 .344 .301</td>
<td>.242 .819 .140</td>
</tr>
<tr>
<td>Baseline</td>
<td>oracle</td>
<td>.493</td>
<td>.851 .344 .301</td>
<td>.242 .940 .140</td>
</tr>
<tr>
<td>StyleEQ</td>
<td>all</td>
<td>.413</td>
<td>.561 .348 .322</td>
<td>.167 .803 .268</td>
</tr>
<tr>
<td>StyleEQ</td>
<td>top</td>
<td>.382</td>
<td>.573 .307 .221</td>
<td>.201 .800 .165</td>
</tr>
<tr>
<td>StyleEQ</td>
<td>oracle</td>
<td>.841</td>
<td>.804 .834 .947</td>
<td>.560 .926 .900</td>
</tr>
</tbody>
</table>

Table 7: Example outputs from both models. The StyleEQ model successfully rewrites the sentence with very different syntactic constructions that reflect style, while the Baseline model rarely moves far from the reference.

5.1 Fluency Evaluation

To evaluate the fluency of our outputs, we had the annotators score reference sentences, reconstructed sentences, and transferred sentences on a 0-5 scale, where 0 was incoherent and 5 was a well-written human sentence.

Table 8 shows the average fluency of various conditions from all three annotators. Both models have fluency scores around 3. Upon inspection of the outputs, it is clear that many have fluency errors, resulting in ungrammatical sentences.

Notably the Baseline often has slightly higher fluency scores than the StyleEQ model. This is likely because the Baseline model is far less constrained in how to construct the output sentence, and upon inspection often reconstructs the reference sentence even when performing style transfer. In contrast, the StyleEQ is encouraged to follow the controls, but can struggle to incorporate these controls into a fluent sentence.

The fluency of all outputs is lower than desired. We expect that incorporating pre-trained language models would increase the fluency of all outputs without requiring larger datasets.
5.2 Human Classification

Each annotator annotated 90 reference sentences with their predicted style. The accuracy on this baseline task for annotators A1, A2, and A3 was 80%, 88%, and 80% respectively, giving us an upper expected bound on the human evaluation.

In discussing this task with the annotators, they noted that content is a heavy predictor of genre, and that would certainly confound their annotations. To attempt to mitigate this, we gave them two annotation tasks: which-of-3 where they simply marked which style they thought a sentence was from, and which-of-2 where they were given the original style and marked which style they thought the sentence was transferred into.

For each task, each annotator marked 180 sentences: 90 from each model, with an even split across the three genres. Annotators were presented the sentences in a random order, without information about the models. In total, each marked 270 sentences. (Note there were no reconstructions in this annotation task.)

Table 9 shows the results. In both tasks, accuracy of annotators classifying the sentence as its intended style was low. In which-of-3, scores were around 20%, below the chance rate of 33%. In which-of-2, scores were in the 50s, slightly above the chance rate of 50%. This was the case for both models. There was a slight increase in accuracy for the StyleEQ model over the Baseline for which-of-3, but the opposite trend for which-of-2, suggesting these differences are not significant.

It’s clear that it’s hard to fool the annotators. Introspecting on their approach, the annotators expressed having immediate responses based on key words – for instance any references of ‘space’ implied ‘sci-fi’. We call this the ‘vampires in space’ problem, because no matter how well a gothic sentence is rewritten as a sci-fi one, it’s impossible to ignore the fact that there is a vampire in space. The transferred sentences, in the eyes of the Ablated NVA classifier (with no access to content words), did quite well transferring into their intended style. But people are not blind to content.

5.3 The ‘Vampires in Space’ Problem

Working with the annotators, we regularly came up against the ‘vampires in space’ problem: while syntactic constructions account for much of the distinction of literary styles, these constructions often co-occur with distinctive content.

<table>
<thead>
<tr>
<th></th>
<th>which-of-3</th>
<th>which-of-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>Baseline</td>
<td>.21</td>
<td>.17</td>
</tr>
<tr>
<td>StyleEQ</td>
<td>.24</td>
<td>.20</td>
</tr>
</tbody>
</table>

Table 9: Accuracy of three annotators in selecting the correct style for transferred sentences. In this evaluation there is little difference between the models.

Stylometrics finds syntactic constructions are great at fingerprinting, but suggests that these constructions are surface realizations of higher-level stylistic decisions. The number and type of personal pronouns is a reflection of how characters feature in a text. A large number of positional prepositions may be the result of a writer focusing on physical descriptions of scenes. In our attempt to decouple these, we create Frankenstein sentences, which piece together features of different styles – we are putting vampires in space.

Another way to validate our approach would be to select data that is stylistically distinctive but with similar content: perhaps genres in which content is static but language use changes over time, stylistically distinct authors within a single genre, or parodies of a distinctive genre.

6 Conclusion and Future Work

We present a formal, extendable model of style that can add control to any neural text generation system. We model style as a suite of low-level linguistic controls, and train a neural encoder-decoder model to reconstruct reference sentences given only content words and the setting of the controls. In automatic evaluations, we show that our model can fool a style classifier 84% of the time and outperforms a baseline genre-embedding model. In human evaluations, we encounter the ‘vampires in space’ problem in which content and style are equally discriminative but people focus more on the content.

In future work we would like to model higher-level syntactic controls. Allison et al. (2013) show that differences in clausal constructions, for instance having a dependent clause before an independent clause or vice versa, is a marker of style appreciated by the reader. Such features would likely interact with our lower-level controls in an interesting way, and provide further insight into style transfer in text.
References

Marie-Catherine de Marneffe, Timothy Dozat, Natalie Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D Manning. Universal dependencies: A cross-linguistic typology.

Frederick Mosteller and David L. Wallace. 2007. Inference and Disputed Authorship: The Federalist. Center for the Study of Language and Information.

