
Supplementary Material For:
Content Selection in Deep Learning Models of Summarization

A Details on Sentence Encoders

We use 200 dimenional word embeddings wi in all models. Dropout is applied to the embeddings during
training. Wherever dropout is applied, the drop probability is .25.

A.1 Details on RNN Encoder

Under the RNN encoder, a sentence embedding is defined as h = [
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GRU indicate the forward and backward GRUs respectively, each with separate parame-

ters. We use 300 dimensional hidden layers for each GRU. Dropout is applied to GRU during training.

A.2 Details on CNN Encoder

The CNN encoder has hyperparameters associated with the window sizes K ⊂ N of the convolutional
filters (i.e. the number of words associated with each convolution) and the number of feature maps
Mk ∈ N associated with each filter (i.e. the output dimension of each convolution). The CNN sentence
embedding h is computed as follows:
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where b(m,k) ∈ R and W (m,k) ∈ Rk×n�
are learned bias and filter weight parameters respectively, and

ReLU(x) = max(0, x) is the rectified linear unit activation. We use window sizes K = {1, 2, 3, 4, 5, 6}
with corresponding feature maps sizes M1 = 25,M2 = 25,M3 = 50,M4 = 50,M5 = 50,M6 = 50,
giving h a dimensionality of 250. Dropout is applied to the CNN output during training.

B Details on Sentence Extractors

B.1 Details on RNN Extractor
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learned parameters; U, V and u, v are learned weight and bias parameters. The hidden layer size of the
GRU is 300 for each direction and the MLP hidden layer size is 100. Dropout is applied to the GRUs
and to ai.



B.2 Details on Seq2Seq Extrator
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The final outputs of each encoder direction are passed to the first decoder steps; additionally, the first step
of the decoder GRUs are learned “begin decoding” vectors −→q 0 and ←−q 0 (see Figure 1.b). Each GRU has
separate learned parameters; U, V and u, v are learned weight and bias parameters. The hidden layer size
of the GRU is 300 for each direction and MLP hidden layer size is 100. Dropout with drop probability
.25 is applied to the GRU outputs and to ai.

B.3 Details on Cheng & Lapata Extractor.
The basic architecture is a unidirectional sequence-to-sequence model defined as follows:

z0 = 0; zi = GRUenc(hi, zi−1) (18)

q1 = GRUdec(h∗, zn) (19)

qi = GRUdec(pi−1 · hi−1, qi−1) (20)

ai = ReLU (U · [zi; qi] + u) (21)

pi = p(yi = 1|y<i, h) = σ (V · ai + v) (22)

where h∗ is a learned “begin decoding” sentence embedding (see Figure 1.c). Each GRU has separate
learned parameters; U, V and u, v are learned weight and bias parameters. Note in Equation 20 that
the decoder side GRU input is the sentence embedding from the previous time step weighted by its
probabilitiy of extraction (pi−1) from the previous step, inducing dependence of each output yi on all
previous outputs y<i. The hidden layer size of the GRU is 300 and the MLP hidden layer size is 100.
Dropout with drop probability .25 is applied to the GRU outputs and to ai.

Note that in the original paper, the Cheng & Lapata extractor was paired with a CNN sentence encoder,
but in this work we experiment with a variety of sentence encoders.

B.4 Details on SummaRunner Extractor.
Like the RNN extractor it starts with a bidrectional GRU over the sentence embeddings
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It then creates a representation of the whole document q by passing the averaged GRU output states
through a fully connected layer:
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A concatentation of the GRU outputs at each step are passed through a separate fully connected layer to
create a sentence representation zi, where

zi = ReLU (bz +Wz[
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←−z i]) . (26)

The extraction probability is then determined by contributions from five sources:
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where li and ri are embeddings associated with the i-th sentence position and the quarter of the document
containing sentence i respectively. In Equation 29, gi is an iterative summary representation computed
as the sum of the previous z<i weighted by their extraction probabilities,

gi =

i−1�

j=1

p(yj = 1|y<j , h) · zj . (32)

Note that the presence of this term induces dependence of each yi to all y<i similarly to the Cheng &
Lapata extractor.

The final extraction probability is the logistic sigmoid of the sum of these terms plus a bias,
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The weight matrices Wq, Wz , W (con), W (sal), W (nov), W (pos), W (qrt) and bias terms bq, bz , and b are
learned parameters; The GRUs have separate learned parameters. The hidden layer size of the GRU is
300 for each direction zi, q, and gi have 100 dimensions. The position and quartile embeddings are 16
dimensional each. Dropout with drop probability .25 is applied to the GRU outputs and to zi.

Note that in the original paper, the SummaRunner extractor was paired with an RNN sentence encoder,
but in this work we experiment with a variety of sentence encoders.



C Ground Truth Extract Summary Algorithm

Algorithm 1: ORACLEEXTRACTSUMMARYLABELS

Data: input document sentences s1, s2, . . . , sn,
human reference summary R,
summary word budget c.

1 yi := 0 ∀i ∈ 1, . . . , n // Initialize extract labels to be 0.

2 S := [ ] // Initialize summary as empty list.

3 while
�

s∈S WORDCOUNT(s) ≤ c do // While summary word count ≤ word budget.

4

/* Add the next best sentence to the summary if it will improve the ROUGE

score otherwise no improvement can be made so break. */

5

6 î = argmaxi∈{1,...,n},
yi �=1

ROUGE(S + [si], R)

7

8 if ROUGE(S + [sî], R) > ROUGE(S,R) then
9 S := S + [sî] // Add sî to the summary sentence list.

10 yî := 1 // Set the î-th extract label to indicate extraction.

11 else
12 break

Result: extract summary labels y1, . . . , yn

D Optimizer and initialization settings.

We use a learning rate of .0001 and a dropout rate of .25 for all dropout layers. We also employ gradient
clipping (−5 < ∇θ < 5). Weight matrix parameters are initialized using Xavier initialization with the
normal distribution (Glorot and Bengio, 2010) and bias terms are set to 0. We use a batch size of 32 for
all datasets except AMI and PubMed, which are often longer and consume more memory, for which we
use sizes two and four respectively. For the Cheng & Lapata model, we train for half of the maximum
epochs with teacher forcing, i.e. we set pi = 1 if yi = 1 in the gold data and 0 otherwise when computing
the decoder input pi · hi; we revert to the predicted model probability during the second half training.


