DETAILS FUSE System Architecture
Columbia University
Contract Number: D11PC20153

PI: Kathleen McKeown
Technical Lead: Suvarna Bothe
Software Engineer: Arfath Pasha

1. Architecture Motivation

The DETAILS architecture design was motivated by two concerns: efficiency and modularity. This
project involves processing very large corpora of very long full text documents, and investigating the
use of potentially computationally intensive natural language, network and time series features over
that corpora. As such, it was necessary to develop a robust architecture capable of handling both the
large scale of the input corpora as well as the complexity and diversity of techniques to be applied
to that corpora. Equally important to these efficiency goals was designing a system flexible enough
to support the ongoing research of the team. Since the FUSE problem invites techniques from a
variety of domains, it was necessary to make a system that allowed researchers to independently
develop and test components to compute new features as well as allowing them to enable or disable
other components on the fly.

While we designed the architecture with all collections in mind, the midterm evaluation system
was configured to run with Elsevier and WOS documents only.

2. Input Data

Our input data were a set of corpora of scientific documents provided by IARPA; Web of Science,
Elsevier, Open Access, and Nature. Web of Science (Reuters, 2013) is the largest collection, con-
taining 48 million records. It is a collection of metadata records with abstracts culled from full text
documents by Thompson Reuters. Elsevier is a full text corpus containing 3.8 million records pro-
vided by Elsevier Science B.V. (B.V., 2013) Open Access is a collection of 220,000 full-text records
obtained by crawling the web, and is mostly drawn from PubMed articles. Nature is a collection of
200,000 full text records from the Nature Publishing Group (Group, 2013)(Group, 2013).

Since our input data is drawn from such a large collection of different sources with varying
formats and conventions, we developed a central point at which we process documents and trans-
form them into a single, uniform internal representation. We also handle text that is badly formatted
or contains OCR errors in this step, taking advantage of the Parscit tool (Councill, Giles, & Kan,
2008).

3. Architecture Design
3.1 Pipeline

Our pipeline is broken down into three general steps: Shard Generation, Document Level Process-
ing, and Shard Level Processing. In the first step, we iteratively select a collection of documents, or
shard, that is relevant to the current entity. This selection is driven by the needs of the shard level
processing components. In the second step, each document in each shard is processed individually
using our core NLP pipeline. The third and final step involves the processing of the documents
at the shard level. The Spring Framework is used to manage the modular enabling or disabling of
components on the fly by researchers (Johnson et al.,)

Online Process (Pipeline)

ing: request shard(s N
Shard level processing: asanEdEd (s) shard Generation:
.] shard | Pineli get from mem cache, or
Entity | Sl el FIpE e "— generate shard(s) and update cache
Jamir processed
shard(s) Document ids
ML decision

o Document Level Processing (NLP Pipeline):

Predictions v Get from Faf cache, or
+ 4——~| Justification and Summary | process documents and update Faf cache

Justification

Figure 1: The main pipeline used for online processing. It contains three high level stages - shard
generation, document level processing and shard level processing. The system accepts
entities as input and provides a prediction and justification as its output.

3.2 Shard Generation

Motivated by the idea that science is done in individual articles, the shard generation process is
designed to take an input entity, either an author, document or term, and compute a set of shards;
each shard is a set of documents related to that entity. In a nod to the modular nature of the system,
the set of shards computed on each run of the system is determined by the shard level processing
components being invoked. Shards are cached in memory and do not need to be recomputed if
required again in future iterations or in the processing of another entity.

The goal of the shard generation step is to winnow down the entire “55 million document col-
lection to a smaller set of documents that are actually relevant to the current term being requested.
In some sense, each shard is designed to provide the components requesting it the answer to some
question, i.e. “Can I have all documents with this term in the abstract?” or ‘“Please give me all
documents published by this author and all documents cited by those documents.”

The shards are generated using one of two methods - Exact Match and Expand One. Exact
Match generates a single exact document that matches the entity name when the entity is a docu-
ment. When the entity is a term, a set of documents that contain the term in the abstract or title
is generated. Expand One generates an initial shard utilizing the Exact Match method and then
expands the matched nodes in the shard by one in its citation graph.

For the midterm evaluation system, we restricted generation of shards to be the same for all
componnets, using Exact Match for term entities and Expand One for document entities.

The shard generation step relies heavily on our back-end database and index, described in 4.1
and 4.3, respectively, to perform searches over the full corpora of documents. This allows us to scan
the entire corpora and pick our subset efficiently using both full-text search, with the index, and
relational queries, with the database.

3.3 Document Level Processing

With a goal towards more offline processing, we separate out all of the processing that can be done
on a single document without reference to other documents into a separate step. This is primarily
our NLP pipeline. Once a document has been processed, it is stored in persistent memory. Since
this processed data does not reference any of the other documents in the shard, we can also do some
of the processing in an offline preprocessing step before computing entities. This allows us to use
the available computational resources more efficiently during the online process.

To perform the document level processing, we use the UIMA framework developed at IBM
(Ferrucci & Lally, 2004). After processing in UIMA, we transfer the results into our own internal
format, known as File Annotation Framework (Faf), and store them in a database. The process-
ing occurs as a pipeline, with the order and specific list of components to run determined by the
researcher.

During document level processing, indicator values are produced by the following components:
concept detection, relation extraction, argumentative zoning and citation sentiment. These are all
run by the core NLP system.

Both concept detection and relation extraction comprise the information extraction component.
Concept detection identifies concepts such as genes, algorithms, or problems, while relation ex-
traction detects more complex text structures, such as novelty claims, funding information, and the
purpose of a dataset in a paper.

Argumentative zoning is a technique for automatically annotating the rhetorical structure of
a scientific paper (Teufel, 2010). Our system component is a maximum entropy-based sequence
classifier that labels each sentence in a document with one of six labels: Own, Background, Contrast,
Basis, Aim and Other.

The citation sentiment component is a Support Vector Machine classifier that labels each citation-
containing sentence in the document as bearing Positive, Negative or Neutral sentiment towards the
cited paper(s).

3.4 Shard level processing

After shard generation has returned a set of shards, and all of the documents in those shards have
been processed by document level processing, the collection is passed to the shard level processing.
This is the level at which our network analysis, time series analysis, and aggregate analysis of
document level features occurs. Each component here is designed to take the set of computed
shards and, potentially, the results of previous components, and compute features that will support
a decision about the prominence of the given entity.

Aggregate features corresponding to indicators are produced for each shard. Some of them
correspond to features produced at the document level.

For instance, one of the document level indicators that the system produces in the relation extrac-
tion component informs whether the document includes a claim of novelty (e.g., a new approach
to solve a problem, a new family of genes or proteins, among others). Another set of indicators
come from the concepts that have been detected in text. Specifically, we produce indicators for each
concept type indicating the proportion of mentions of a type in the shard. For instance, if a shard
includes documents with 2 mentions of algorithms and 1 mention of genes, then the indicators will
report that 66% of the concepts correspond to algorithms, while the remaining 33% corresponds
to genes. The argumentative zoning and citation sentiment produce both total counts and average
proportions for each label they define, aggregated over all sentences in the shard that mention the
entity. For example, one AZ feature for a document entity is the proportion of sentences assigned
the label Background out of all sentences containing a citation to the entity,

Some of these correspond to features produced only at the shard level. For example, the au-
thor collaboration network and the citation network for the shard are produced along with network
metrics that represent the importance of these two indicators. We cache the global citation network
for the entire document collection in advance and during run-time, only read the projection of the
citation network on the shard documents from this cache. The author collaboration network is gen-
erated on the fly. We compute several metrics on these network. For example, we compute the Watts
Strogatz clustering coefficients for both networks, which is a measure of tendency of the nodes in
these networks to form clusters.

The time-series component is applied to all aggregated features collected by other components.
It is responsible for tracking the aggregated features over time and computing new temporal features
that can show the impact of underlying indicators over time. These features are generated on the
fly and they are fed to the emergence component. A simple example of a time-series feature is
the slope of the best-fitted linear function. With this feature we can detect whether the underlying
feature tracked over time has an upwards or downwards trend.

There are two components that do not fit this paradigm, EmergenceDetection and Justification.
EmergenceDetection takes all of the previously computed features and makes a decision about the
prominence of the input entity. Justification takes the input features and the EmergenceDetection
decision and produces a human readable justification of our system’s result.

To support Justification in its goal, we built a system whereby the shard-level components talk to
each other in arbitrarily-typed features; moreover, each of those features must contain reference to
the feature or data that generated it. This produces clear trails of evidence for Justification to follow
in its work. The data referenced is either a paper, or in the case of the NLP features, a specific
sentence from that paper.

4. Caching and offline processing

Due to the large size of the corpora this system needs to process, it was necessary to build a system
that was designed to cache as efficiently as possible. Our main unit of storage is a single document.
This allows us the flexibility to see the same document in two different sets of documents but only
process it once, regardless of context. We can also process documents before running the system in
an offline step by iterating through documents in the collection. Since the document level processing
is designed to process anything not in cache on the fly, offline processing can be done whenever
experimentation is not occurring. The system stores the results of its analysis on documents into a
SQL database.

Offline Processes
Documents
| Metadata Resolver | | Lucene | NLP Plpellne
Metadata Database Index Faf cache

Figure 2: Offline processing of data to save processing time in the online process.

4.1 Database

Much of the metadata in a scientific article is highly structured information, and is well suited
to storage in a relational database. We use MySQL as our database of choice (MySQL, 2006).
There are two databases in our infrastructure, one of which contains only metadata, and the other
contains the results of caching document level processed data. Our metadata database is designed
to the specific metadata we find in the corpora we process. The database to store our document
level processing is dynamically generated based on the components that have been run on a given
document.

4.2 Entity Resolution

One of the biggest challenges facing the use of our metadata database is the resolution of specific
named entities within our corpora. For the resolution of author entities within Web Of Science,
we utilize a dataset computed based on the methods in Wick et. al.(Wick, Singh, & McCallum,
2012) For resolving articles, institutions, venues, grants and authors outside of Web of Science we
use an implementation of the Duke deduplication system (discriminative hierarchical model for fast
coreference at large scale, 2012).

4.3 Index

In addition to the highly structured information contained in the metadata, each article also contains
a large amount of unstructured information in it’s main text and abstract. A full-text index was
necessary to allow our system to search this information efficiently, and we chose to use Lucene to
implement this index (Lucene, 2012). The index allows keyword search over the full text, abstract,
title, and several other metadata fields, as well as more complicated queries combining these fields.

5. Parallelization and System Performance

The system’s online process is parallelized with the use of a load balancer that converts incoming
requests into batched jobs that can be evenly distributed to pipelines running on multiple machines
on the network. The results from the pipelines are collected and merged by the load balancer before
being sent to the requesting entity. Each pipeline also takes advantage of Java’s support for multi-
core optimization to further enhance processing speed.

The system has been tested on a distributed system containing eight Linux Virtual Machines
(VM). Each VM was configured to have four Intel Xeon processors rated at 2.66GHz. The pipelines
and load balancer were set up to run on six of the eight VMs and the databases were set up to run
on the remaining two VMs. The system took 2-5 minutes to process one entity per pipeline. The
pipelines ran faster when they were able to benefit from cache lookups during the shard generation
and document processing stages. They ran slower when some or all of the shards had to be generated
and/or some or all of the documents in these shards had to be processed and the respective stores
updated.

The system requires about a terabyte of storage space for the data processed from 55 million
documents.

Parallelized System

Pipeline Ej

Metadata Database

= O

Index

(]

Faf cache

Pipeline

Entity Load Balancer

Pipeline

1T

Figure 3: The parallelized system made up of a load balancer and a number of pipelines.

6. Appendix - Software dependencies

Apache Commons

Berkeley Parser

ClearTK

Duke

JUNG

LibLinear

Lucene

MySQL

OpenNLP

Parallel Colt

Parscit

R

Scala

Second String

Semafor

Simmetrics

Spring Framework

Stanford Chinese Word Segmenter
Stanford dependency parsing
Stanford Part-of-Speech Tagger
UIMA

uimafit

Weka

References

(2012). Duke..
B.V,, E. S. (2013). Elsevier...

http://www.apache.org/licenses/LICENSE-2.0 (Apache 2.0)
http://code.google.com/p/berkeleyparser/ (GPL V 2.0)
http://code.google.com/p/cleartk/ (BSD)

http://code.google.com/p/duke/ (Apache 2.0)
http://jung.sourceforge.net/license.txt
https://github.com/bwaldvogel/liblinear-java/blob/master/pom.xml (BSD)
http://www.apache.org/licenses/LICENSE-2.0.html (Apache 2.0)
http://www.mysql.com/about/legal/licensing/index.html
http://www.apache.org/licenses/LICENSE-2.0 (Apache 2.0)
https://sites.google.com/site/piotrwendykier/software/parallelcolt (LGPL V2.1)
http://www.gnu.org/copyleft/lesser.html
http://www.r-project.org/Licenses/AGPL-3 (GPL 3.0)
http://www.scala-lang.org/node/146

http://secondstring.sourceforge.net/ (University of Illinois/NCSA Open Source L
http://code.google.com/p/semafor-semantic-parser/(GPL v3)
http://www.aktors.org/technologies/simmetrics/ (GPL)
http://www.apache.org/licenses/LICENSE-2.0 (Apache 2.0)
http://nlp.stanford.edu/software/index.shtml (GPL V 2.0)
http://nlp.stanford.edu/software/index.shtml (GPL V 2.0)
http://nlp.stanford.edu/software/index.shtml (GPL V 2.0)
http://uima.apache.org/license.html
http://www.apache.org/licenses/LICENSE-2.0 (Apache 2.0)
http://www.cs.waikato.ac.nz/ml/weka/index.html (GPL V3)

Councill, I. G., Giles, C. L., & Kan, M.-Y. (2008). Parscit: an open-source crf reference string

parsing package.. In LREC.
Ferrucci, D., & Lally, A. (2004).

Uima: an architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering, 10(3-4),

327-348.

Group, N. P. (2013). Nature publishing group...

Johnson, R., et al.

Spring framework reference documentation 3.0. 2004-2010.

See

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html.

Lucene, A. (2012). Apache lucene..

MySQL, A. (2006). Mysql 5.0 reference manual. Bestandteil des Programnmpaketes.
Reuters, T. (2013). Web of science. 2012..

Teufel, S. (2010). The Structure of Scientific Articles: Applications to Citation Indexing and Sum-
marization. CSLI Publications, Stanford, CA.

Wick, M., Singh, S., & McCallum, A. (2012). A discriminative hierarchical model for fast corefer-
ence at large scale. In Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics: Long Papers-Volume 1, pp. 379-388. Association for Computational
Linguistics.

