
Support Vector Machine
(and Statistical Learning Theory)

Tutorial

Jason Weston
NEC Labs America

4 Independence Way, Princeton, USA.
jasonw@nec-labs.com



1 Support Vector Machines: history

• SVMs introduced in COLT-92 by Boser, Guyon & Vapnik. Became

rather popular since.

• Theoretically well motivated algorithm: developed from Statistical

Learning Theory (Vapnik & Chervonenkis) since the 60s.

• Empirically good performance: successful applications in many

fields (bioinformatics, text, image recognition, . . . )



2 Support Vector Machines: history II

• Centralized website:www.kernel-machines.org .

• Several textbooks, e.g. ”An introduction to Support Vector

Machines” by Cristianini and Shawe-Taylor is one.

• A large and diverse community work on them: from machine

learning, optimization, statistics, neural networks, functional

analysis, etc.



3 Support Vector Machines: basics
[Boser, Guyon, Vapnik ’92],[Cortes & Vapnik ’95]

-

++

+ +
+

- - - -

margin

margin

Nice properties:convex, theoretically motivated, nonlinear with kernels..



4 Preliminaries:

• Machine learning is about learning structure from data.

• Although the class of algorithms called ”SVM”s can do more, in this

talk we focus on pattern recognition.

• So we want to learn the mapping:X 7→ Y, wherex ∈ X is some

object andy ∈ Y is a class label.

• Let’s take the simplest case: 2-class classification. So:x ∈ Rn,

y ∈ {±1}.



5 Example:

Suppose we have 50 photographs of elephants and 50 photos of tigers.

vs.

We digitize them into 100 x 100 pixel images, so we havex ∈ Rn where

n = 10, 000.

Now, given a new (different) photograph we want to answer the question:

is it an elephant or a tiger? [we assume it is one or the other.]



6 Training sets and prediction models

• input/output setsX , Y
• training set(x1, y1), . . . , (xm, ym)

• ”generalization”: given a previously seenx ∈ X , find a suitable

y ∈ Y.

• i.e., want to learn a classifier:y = f(x, α), whereα are the

parameters of the function.

• For example, if we are choosing our model from the set of

hyperplanes inRn, then we have:

f(x, {w, b}) = sign(w · x + b).



7 Empirical Risk and the true Risk

• We can try to learnf(x, α) by choosing a function that performs well

on training data:

Remp(α) =
1
m

m∑
i=1

`(f(xi, α), yi) = Training Error

where` is the zero-oneloss function, `(y, ŷ) = 1, if y 6= ŷ, and 0

otherwise.Remp is called theempirical risk.

• By doing this we are trying to minimize the overall risk:

R(α) =
∫

`(f(x, α), y)dP (x, y) = Test Error

where P(x,y) is the (unknown) joint distribution function ofx andy.



8 Choosing the set of functions

What aboutf(x, α) allowingall functions fromX to {±1}?

Training set(x1, y1), . . . , (xm, ym) ∈ X × {±1}
Test setx̄1, . . . , x̄m̄ ∈ X ,

such that the two sets do not intersect.

For anyf there existsf∗:

1. f∗(xi) = f(xi) for all i

2. f∗(xj) 6= f(xj) for all j

Based on the training data alone, there is no means of choosing which

function is better. On the test set however they give different results. So

generalization is not guaranteed.

=⇒ a restriction must be placed on the functions that we allow.



9 Empirical Risk and the true Risk

Vapnik & Chervonenkis showed that an upper bound on the true risk can

be given by the empirical risk + an additional term:

R(α) ≤ Remp(α) +

√
h(log( 2m

h + 1) − log(η
4 )

m

whereh is the VC dimension of the set of functions parameterized byα.

• The VC dimension of a set of functions is a measure of theircapacity

or complexity.

• If you can describe a lot of different phenomena with a set of

functions then the value ofh is large.

[VC dim = the maximum number of points that can be separated in all

possible ways by that set of functions.]



10 VC dimension:

The VC dimension of a set of functions is the maximum number of points

that can be separated in all possible ways by that set of functions. For

hyperplanes inRn, the VC dimension can be shown to ben + 1.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxx

x

x

x

x

x

x
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

x

x

x



11 VC dimension and capacity of functions

Simplification of bound:

Test Error≤ Training Error+ Complexity of set of Models

• Actually, a lot of bounds of this form have been proved (different

measures of capacity). The complexity function is often called a

regularizer.

• If you take a high capacity set of functions (explain a lot) you get low

training error. But you might ”overfit”.

• If you take a very simple set of models, you have low complexity, but

won’t get low training error.



12 Capacity of a set of functions(classification)

[Images taken from a talk by B. Schoelkopf.]



13 Capacity of a set of functions(regression)

sine curve fit

y

hyperplane fit

x

true function



14 Controlling the risk: model complexity

(training error)

 S S

hh nh*1

1 S*
n

Bound on the risk

Confidence interval

Empirical risk



15 Capacity of hyperplanes

Vapnik & Chervonenkis also showed the following:

Consider hyperplanes(w · x) = 0 wherew is normalized w.r.t a set of

pointsX∗ such that:mini |w · xi| = 1.

The set of decision functionsfw(x) = sign(w · x) defined onX∗ such

that ||w|| ≤ A has a VC dimension satisfying

h ≤ R2A2.

whereR is the radius of the smallest sphere around the origin containing

X∗.

=⇒ minimize ||w||2 and have low capacity

=⇒ minimizing ||w||2 equivalent to obtaining a large margin classifier



w

◆

◆

◆

◆

●
●

●

●
● {x | <w  x> + b = 0},

<w  x> + b > 0,

<w  x> + b < 0,



,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:

<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =
w

||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆



16 Linear Support Vector Machines (at last!)

So, we would like to find the function which minimizes an objective like:

Training Error+ Complexity term

We write that as:

1
m

m∑
i=1

`(f(xi, α), yi) + Complexity term

For now we will choose the set of hyperplanes (we will extend this later),

sof(x) = (w · x) + b:

1
m

m∑
i=1

`(w · xi + b, yi) + ||w||2

subject tomini |w · xi| = 1.



17 Linear Support Vector Machines II

That function before was a little difficult to minimize because of the step
function in`(y, ŷ) (either 1 or 0).

Let’s assume we can separate the data perfectly. Then we can optimize
the following:

Minimize ||w||2, subject to:

(w · xi + b) ≥ 1, if yi = 1

(w · xi + b) ≤ −1, if yi = −1

The last two constraints can be compacted to:

yi(w · xi + b) ≥ 1

This is a quadratic program.



18 SVMs : non-separable case

To deal with the non-separable case, one can rewrite the problem as:

Minimize:

||w||2 + C
m∑

i=1

ξi

subject to:

yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0

This is just the same as the original objective:

1
m

m∑
i=1

`(w · xi + b, yi) + ||w||2

except̀ is no longer the zero-one loss, but is called the ”hinge-loss”:
`(y, ŷ) = max(0, 1 − yŷ). This is still a quadratic program!



ξ i

-

++

+ +
+

- - - -

-

+

-

margin



19 Support Vector Machines - Primal
• Decision function:

f(x) = w · x + b

• Primal formulation:

min P (w, b) =
1
2
‖w‖2︸ ︷︷ ︸

maximize margin

+ C
∑

i

H1[ yi f(xi) ]

︸ ︷︷ ︸
minimize training error

IdeallyH1 would count the number of errors, approximate with:

Hinge LossH1(z) = max(0, 1 − z)

0 z

1H (z)



20 SVMs : non-linear case

Linear classifiers aren’t complex enough sometimes. SVM solution:

Map data into a richer feature space including nonlinear features, then

construct a hyperplane in that space so all other equations are the same!

Formally, preprocess the data with:

x 7→ Φ(x)

and then learn the map fromΦ(x) to y:

f(x) = w · Φ(x) + b.



21 SVMs : polynomial mapping

Φ : R2 → R3

(x1, x2) 7→ (z1, z2, z3) := (x2
1,

√
(2)x1x2, x

2
2)

❍

❍

❍

❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕✕

✕

✕

✕

✕

✕

✕

✕

✕

x1

x2

❍
❍

❍
❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

z1

z3

✕

z2



22 SVMs : non-linear case II

For example MNIST hand-writing recognition.

60,000 training examples, 10000 test examples, 28x28.

Linear SVM has around 8.5% test error.
Polynomial SVM has around 1% test error.

5 0 4 1 9 2 1 3 1 4

3 5 3 6 1 7 2 8 6 9

4 0 9 1 1 2 4 3 2 7

3 8 6 9 0 5 6 0 7 6

1 8 7 9 3 9 8 5 9 3

3 0 7 4 9 8 0 9 4 1

4 4 6 0 4 5 6 1 0 0

1 7 1 6 3 0 2 1 1 7

9 0 2 6 7 8 3 9 0 4

6 7 4 6 8 0 7 8 3 1



23 SVMs : full MNIST results

Classifier Test Error

linear 8.4%

3-nearest-neighbor 2.4%

RBF-SVM 1.4 %

Tangent distance 1.1 %

LeNet 1.1 %

Boosted LeNet 0.7 %

Translation invariant SVM 0.56 %

Choosing a good mappingΦ(·) (encoding prior knowledge + getting right

complexity of function class) for your problem improves results.



24 SVMs : the kernel trick

Problem: the dimensionality ofΦ(x) can be very large, makingw hard to
represent explicitly in memory, and hard for the QP to solve.

The Representer theorem (Kimeldorf & Wahba, 1971) shows that (for
SVMs as a special case):

w =
m∑

i=1

αiΦ(xi)

for some variablesα. Instead of optimizingw directly we can thus
optimizeα.

The decision rule is now:

f(x) =
m∑

i=1

αiΦ(xi) · Φ(x) + b

We callK(xi, x) = Φ(xi) · Φ(x) thekernel function.



25 Support Vector Machines - kernel trick II

We can rewrite all the SVM equations we saw before, but with the

w =
∑m

i=1 αiΦ(xi) equation:

• Decision function:

f(x) =
∑

i

αiΦ(xi) · Φ(x) + b

=
∑

i

αiK(xi, x) + b

• Dual formulation:

min P (w, b) =
1
2
‖

m∑
i=1

αiΦ(xi)‖2

︸ ︷︷ ︸
maximize margin

+ C
∑

i

H1[ yi f(xi) ]

︸ ︷︷ ︸
minimize training error



26 Support Vector Machines - Dual

But people normally write it like this:

• Dual formulation:

min
α

D(α) =
1
2

∑
i,j

αi αj Φ(xi)·Φ(xj)−
∑

i

yi αi s.t.




P

i αi=0

0≤yi αi≤C

• Dual Decision function:

f(x) =
∑

i

αiK(xi, x) + b

• Kernel function K(·, ·) is used to make (implicit) nonlinear feature
map, e.g.

– Polynomial kernel: K(x, x′) = (x · x′ + 1)d.

– RBF kernel: K(x, x′) = exp(−γ||x − x′||2).



27 Polynomial-SVMs

The kernelK(x, x′) = (x · x′)d gives the same result as the explicit

mapping + dot product that we described before:

Φ : R2 → R3 (x1, x2) 7→ (z1, z2, z3) := (x2
1,

√
(2)x1x2, x

2
2)

Φ((x1, x2) · Φ((x′
1, x

′
2) = (x2

1,
√

(2)x1x2, x
2
2) · (x′2

1,
√

(2)x′
1x

′
2, x

′2
2)

= x2
1x

′2
1 + 2x1x

′
1x2x

′
2 + x2

2x
′2
2

is the same as:

K(x, x′) = (x · x′)2 = ((x1, x2) · (x′
1, x

′
2))2

= (x1x
′
1 + x2x

′
2)2 = x2

1x
′2
1 + x2

2x
′2
2 + 2x1x

′
1x2x

′
2

Interestingly, ifd is large the kernel is still only requiresn multiplications

to compute, whereas the explicit representation may not fit in memory!



28 RBF-SVMs

The RBF kernelK(x, x′) = exp(−γ||x − x′||2) is one of the most
popular kernel functions. It adds a ”bump” around each data point:

f(x) =
m∑

i=1

αi exp(−γ||xi − x||2) + b

Φ

. .
Φ(x) Φ(x')x x'

Using this one can get state-of-the-art results.



29 SVMs : more results

There is much more in the field of SVMs/ kernel machines than we could

cover here, including:

• Regression, clustering, semi-supervised learning and other domains.

• Lots of other kernels, e.g. string kernels to handle text.

• Lots of research in modifications, e.g. to improve generalization

ability, or tailoring to a particular task.

• Lots of research in speeding up training.

Please see text books such as the ones by Cristianini & Shawe-Taylor or

by Schoelkopf and Smola.



30 SVMs : software

Lots of SVM software:

• LibSVM (C++)

• SVMLight (C)

As well as complete machine learning toolboxes that include SVMs:

• Torch (C++)

• Spider (Matlab)

• Weka (Java)

All available throughwww.kernel-machines.org .


