
Some slides adapted from

Linguistic Generation

Statistical Generation

Conceptual:
◦ What to say
◦ How to organize

Linguistic
◦ How to say it

Words?
Syntactic structure

Content
Planner

Micro
Planner

Sentence
Generator

Lexicon

Grammar

Presentation
Plan

Ontology

Data

Sentences

Parsing
Input = sentence
Output = parse tree

Generation
Output = sentence
Input = parse tree?

Syntactic
Agent = The President
Pred = pass
Patient = tax bailout plain
When = yesterday

◦ The President passed the tax bailout plan
◦ The tax bailout plan was passed by the President
◦ The tax bailout plan was passed
◦ It was the President who passed the tax bailout plan
◦ It was the tax bailout plan the President passed.
Constraints?

Bought vs sell
Kathy bought the book from Joshua.
Joshua sold the book to Kathy.

Erudite vs. wise
The erudite old man taught us ancient history.
The wise old man taught us ancient history.

Polarity vs. “plus/minus”
Insert the battery and check the polarity.
Insert the battery and make sure the plus lines up with the plus.

Edged out vs. beat
The Denver Nuggets edged out the Boston Celtics 102-101
The Denver Nuggets beat the Boston Celtics with a narrow
margin 102-101.

Constraints?

Syntax
Allow one to select
Allow the selection

Semantics
Rebound vs. point in basketball

Lexical
“grab a rebound” vs. “score a point” and not vice versa

Domain
IBM rebounded from a 3 day loss.
Magic grabbed 20 rebounds.

Pragmatics
A glass half-full
A glass half-empty

Inter-lexical (e.g., collocations)

Cross-ranking (content units are not
isomorphic with linguistic units)

Wall Street indexes opened strongly. (time in
verb, manner as adverb)
Stock indexes surged at the start of the
trading day. (time as PP, manner in verb)
The Denver Nuggets beat the Boston Celtics
with a narrow margin, 102-101. (game result
in verb, manner in PP)
The Denver Nuggets edged out the Boston
Celtics 102-101. (game result and manner in
verb)

Content
Planner

Micro
Planner

Sentence
Generator

Lexicon

Grammar

Presentation
Plan

Ontology

Data

Sentences

Lexical
choice

Function plays as important a role as syntax
Pragmatics, semantics are represented equally with
syntactic features, constitutents

Unification is used to enrich the input with
constraints from the grammar

Input is recursively unified with grammar
Top-down process

Functional Descriptions (FDs) as a feature
structure

Data structure that is partial and structured

Input and grammar are both specified as
functional descriptions

((alt GSIMPLE (
;; a grammar always has the same form: an alternative
;; with one branch for each constituent category.

;; First branch of the alternative
;; Describe the category clause.
((cat clause)
(agent ((cat np)))
(patient ((cat np)))
(pred ((cat verb-group)

(number {agent number})))
(cset (pred agent patient))
(pattern (agent pred patient))

;; Second branch: NP
((cat np)
(head ((cat noun) (lex {^ ^ lex})))
(number ((alt np-number (singular plural))))
(alt (;; Proper names don't need an article

((proper yes)
(pattern (head)))

;; Common names do
((proper no)
(pattern (det head))
(det ((cat article) (lex "the")))))))

;; Third branch: Verb
((cat verb-group)
(pattern (v))
(aux none)
(v ((cat verb) (lex {^ ^ lex}))))

))

Input to generate: The system advises John.

I1 = ((cat clause)
(tense present)
(pred ((lex "advise")))
(agent ((lex "system") (proper no)))
(patient ((lex "John"))))

((cat clause)
(tense present)
(pred ((lex "advise")

(cat verb-group)
(number {agent number})
(PATTERN (V))
(AUX NONE)
(V ((CAT VERB) (LEX {^ ^ LEX})))))

(agent ((lex "system") (proper no)
(cat np)
(HEAD ((CAT NOUN) (LEX {^ ^ LEX})))
(NUMBER SINGULAR)
(PATTERN (DET HEAD))
(DET ((CAT ARTICLE) (LEX "the")))))

(patient ((lex "John")
(cat np)
(HEAD ((CAT NOUN) (LEX {^ ^ LEX})))
(NUMBER SINGULAR)
(PROPER YES)
(CSET (HEAD))
(PATTERN (HEAD))))

(cset (pred agent patient))
(pattern (agent pred patient)))

Identify the pattern feature in the top level: for I1, it is (pattern
(agent action affected)).
If a pattern is found:
◦ For each constituent of the pattern, recursively linearize the constituent.

(That means linearize agent, pred and patient).
◦ The linearization of the FD is the concatenation of the linearizations of the

constituents in the order prescribed by the pattern feature.
If no pattern is found:
◦ Find the lex feature of the FD, and depending on the category of the

constituent, the morphological features needed. For example, if the FD is
of (cat verb), the features needed are: person, number, tense.

◦ Send the lexical item and the appropriate morphological features to the
morphology module. The linearization of the fd is the resulting string. For
example, for (lex="advise") when the features are the default values (as
they are in I1), the result is advises. When the FD does not contain a
morphological feature, the morphology module provides reasonable
defaults.

((cat clause)
(agent ((cat np)))
(patient ((cat np)))
(alt (

((focus {agent})
(voice active)
(pred ((cat verb-group)

(number {agent number})
(cset (action agent affected))
(pattern (agent action affected)))

((focus {patient})
(voice passive)
(verbs ((cat verb-group)

(aux ((lex “be”)
(number {patient number}))

(pastp ({pred}
(tense pastp)))

(pattern (aux pastp))))
(by-agent {agent})
(pattern (patient verbs by-agent))))

Problem: What does the input to realization
look like?

Wouldn’t it be easier to automatically learn
output?

What does it take to scale up linguistic grammars?

Subject-verb agreement
I am vs. I are vs. I is

Corpus counts (Langkilde-Geary, 2002)

I am 2797
I are 47
I is 14

Choice of determininer
a trust vs. an trust vs. the trust

Corpus counts (Langkilde-Geary, 2002)
A trust 394
An trust 0
The trust 1356
A trusts 2
An trusts 0
The trusts 115

Over-generate and prune

Automatically acquire grammar from a corpus
(if a phrase structure grammar is needed)

Exploit general-purpose tools and resources
when possible & appropriate

Tokenizers
Part-of-speech taggers
Parsers, Penn Treebank
WordNet, VerbNet

General strategy:
◦ Generate multiple candidate sentences with some

permissive strategy
Some sentences may be very ungrammatical!
Very many sentences (millions) may be
generated
◦ Assign scores to the candidate sentences using a

corpus-based language model
◦ Output the highest-ranking sentence(s)

I is not able to betray their trust .
I cannot betray trust of them .
I cannot betray the trust of them .
I am not able to betray their trust .
I will not be able to betray the trust of them .
I will not be able to betray their trust .
I cannot betray their trust .
I cannot betray trusts of them .
I are not able to betray their trust .
I cannot betray a trust of them .s

1. I cannot betray their trust .
2. I will not be able to betray their trust .
3. I am not able to betray their trust .
4. I are not able to betray their trust .
5. I is not able to betray their trust .
6. I cannot betray the trust of them .
7. I cannot betray trust of them .
8. I cannot betray a trust of them .
9. I cannot betray trusts of them .
10.I will not be able to betray the trust

1. I cannot betray their trust .
2. I will not be able to betray their trust .
3. I am not able to betray their trust .
4. I are not able to betray their trust .
5. I is not able to betray their trust .
6. I cannot betray the trust of them .
7. I cannot betray trust of them .
8. I cannot betray a trust of them .
9. I cannot betray trusts of them .
10.I will not be able to betray the trust

Early, influential statistical realization
algorithm
◦ Langkilde & Knight (1998)
◦ Hatzivassiloglou & Knight (1995)

Uses an overgenerate and prune strategy

Input: Abstract Meaning Representation (AMR)
Based on Penman Sentence Plan Language (See Kasper 1989,
Langkilde & Knight 1998)

Example AMR: (m1 / |dog<canid|)
m1 is an instance of |dog<canid| -- derived from WordNet
Might be realized “ the dog” , “ the dogs” , “ a dog” , “ dog”
,...

Another example AMR:
◦ (m3 / |eat, take in|

:agent (m4 / |dog<canid| :quant plural)
:patient (m5 / |os,bone|))

◦ Might be realized as “ the dogs ate the bone” , “Dogs will
eat a bone” , “ The dogs eat bones” , “Dogs eat bone” ,...

In practice, overgeneration can produce
millions of sentences for a single input
◦ So need very compact representations or prune

aggressively
Nitrogen uses a lattice representation
◦ Lattice is an acyclic graph where each arc is labeled

with a word.
◦ A complete path from the left-most node to

rightmost node through the lattice represents a
possible expression/sentence.

Suppose realizer, looking at an AMR input, is
uncertain about definiteness and number. Can
generate a lattice fragment like this:

Generates:
The large Federal deficit fell.
A large Federal deficit fell.
An large Federal deficit fell large.
Federal deficit fell.

A large Federal deficits fell.

Set of hand-built rules link AMR patterns to
lattice fragments

Each AMR pattern is deliberately mapped to
many different realizations (overgeneration)

A lexicon describes alternative words that can
express AMR concepts.

A lexicon of 110,000 entries connects concepts
to alternative English words. Format:

Important note: no features like transitivity,
subcategorization, gradability (for adjectives), or
countability (for nouns).
◦ This is a substantial advantage for development.

Algorithm sketch: Traverse input AMR
bottomup, building lattices for the leaves
(innermost nested levels of the input) first, to
be combined at outer levels according to
relations between the leaves

(see Langkilde & Knight 1998 for details)

Result is a large lattice like...

This lattice represents 576 different sentences

Nitrogen uses a bigram/trigram language
model built from 46 million words of Wall
Street Journal text from 1987 and 1988.

As visit each state s, maintain list of most
probable sequences of words from start to s:

Extend all word sequences to predecessors of
s,recompute scores, prune down to 1000 most
probable sequences per state.

At end state, emit most probable sequence.

Do the two approaches handle the same
phenomena?

Could they be integrated?

1989 Kasper, A flexible interface for linking applications to Penman's
sentence generator
1995 Hatzivassiloglou & Knight, Unification Based Glossing
1995 Knight & Hatzivassiloglou, Two Level Many Paths Generation
1998 Langkilde & Knight, Generation that Exploits Corpus Based
Statistical Knowledge
2000 Langkilde, Forest Based Statistical Sentence Generation
2002 Langkilde-Geary, An Empirical Verification of Coverage and
Correctness for a General Purpose Sentence Generator
1998 Langkilde & Knight, The practical value of n grams in generation
2002 Langkilde & Geary, A foundation for general purpose natural
language generation sentence realization using probabilistic models of
language
2002 Oh & Rudnicky, Stochastic natural language generation for spoken
dialog systems
2000 Ratnaparkhi, Trainable methods for surface natural language
generation

	Language Generation
	Today
	Two Types of Problems
	A Language Generator
	Why isn’t generation the reverse of parsing?
	Generation = Decision making under constraints
	Lexical Choice
	Lexical Choice
	Floating Constraints
	Constraints on Lexical Choice Float
	A Language Generator
	Functional Unification Grammar
	Functional Unification
	An example grammar
	A simple input�
	Unification Output
	Linearization
	Encoding Function
	Realization with Statistics
	Implicit Linguistic Knowledge - Grammar
	Implicit Linguistic Knowledge - Grammar
	Realization with statistics:�Key Techniques
	Overgenerate and prune
	Generate multiple candidates with permissive strategy
	Assign scores using language model
	Output highest ranking sentence
	NITROGEN
	NITROGEN input format
	NITROGEN Lattices
	NITROGEN Lattices: idea
	Perhaps a better lattice
	NITROGEN lattices: generation
	NITROGEN Lexicon
	NITROGEN: Example rule
	Generation algorithm
	Slide Number 36
	Extracting high-probability�sentences from a lattice
	Questions
	References

