Word Relations and Word Sense Disambiguation

Slides adapted from Dan Jurafsky, Jim Martin and Chris Manning

Homework Questions? Schedule

- Next week
 - Finish semantics
 - Begin machine learning for NLP
 - Review for midterm
- Midterm
 - October 27th
 - Will cover everything through semantics
 - A sample midterm will be posted
 - Includes multiple choice, short answer, problem solving
- October 29th
 - Bob Coyne and Words Eye: Not to be missed!
- Class outing to Where the Wild Things Are Either Friday Oct. 23rd or Sunday Oct. 25th. Sign sheet or send email if interested.

Three Perspectives on Meaning

- 1. Lexical Semantics
 - The meanings of individual words
- 2. Formal Semantics (or Compositional Semantics or Sentential Semantics)
 - How those meanings combine to make meanings for individual sentences or utterances

3. **Discourse or Pragmatics**

- How those meanings combine with each other and with other facts about various kinds of context to make meanings for a text or discourse
- Dialog or Conversation is often lumped together with Discourse

Outline: Comp Lexical Semantics

- Intro to Lexical Semantics
 - Homonymy, Polysemy, Synonymy
 - Online resources: WordNet
- Computational Lexical Semantics
 - Word Sense Disambiguation
 - Supervised
 - Semi-supervised
 - Word Similarity
 - Thesaurus-based
 - Distributional

Preliminaries

- What's a word?
 - Definitions we've used over the class: Types, tokens, stems, roots, inflected forms, etc...
 - Lexeme: An entry in a lexicon consisting of a pairing of a form with a single meaning representation
 - Lexicon: A collection of lexemes

Relationships between word meanings

- Homonymy
- Polysemy
- Synonymy
- Antonymy
- Hypernomy
- Hyponomy
- Meronomy

Homonymy

- Lexemes that share a form
 - Phonological, orthographic or both
- But have unrelated, distinct meanings
- Clear example:
 - Bat (wooden stick-like thing) vs
 - Bat (flying scary mammal thing)
 - Or bank (financial institution) versus bank (riverside)
- Can be homophones, homographs, or both:
 - Homophones:
 - Write and right
 - Piece and peace

Homonymy causes problems for NLP applications

- Text-to-Speech
 - Same orthographic form but different phonological form
 - bass vs bass
- Information retrieval
 - Different meanings same orthographic form
 - QUERY: bat care
- Machine Translation
- Speech recognition

Polysemy

- The bank is constructed from red brick I withdrew the money from the bank
- Are those the same sense?
- Or consider the following WSJ example
 - While some banks furnish sperm only to married women, others are less restrictive
 - Which sense of bank is this?
 - Is it distinct from (homonymous with) the river bank sense?
 - How about the savings bank sense?

Polysemy

- A single lexeme with multiple related meanings (bank the building, bank the financial institution)
- Most non-rare words have multiple meanings
 - The number of meanings is related to its frequency
 - Verbs tend more to polysemy
 - Distinguishing polysemy from homonymy isn't always easy (or necessary)

Metaphor and Metonymy

- Specific types of polysemy
- Metaphor:
 - Germany will pull Slovenia out of its economic slump.
 - I spent 2 hours on that homework.
- Metonymy
 - The White House announced yesterday.
 - This chapter talks about part-of-speech tagging
 - Bank (building) and bank (financial institution)

How do we know when a word has more than one sense?

- ATIS examples
 - Which flights serve breakfast?
 - Does America West serve Philadelphia?
- The "zeugma" test:
 - ?Does United serve breakfast and San Jose?

Synonyms

- Word that have the same meaning in some or all contexts.
 - filbert / hazelnut
 - couch / sofa
 - big / large
 - automobile / car
 - vomit / throw up
 - Water / H₂0
- Two lexemes are synonyms if they can be successfully substituted for each other in all situations
 - If so they have the same **propositional meaning**

Synonyms

- But there are few (or no) examples of perfect synonymy.
 - Why should that be?
 - Even if many aspects of meaning are identical
 - Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
- Example:
 - Water and H₂0

Some more terminology

- Lemmas and wordforms
 - A lexeme is an abstract pairing of meaning and form
 - A lemma or citation form is the grammatical form that is used to represent a lexeme.
 - *Carpet* is the lemma for *carpets*
 - *Dormir* is the lemma for *duermes*.
 - Specific surface forms *carpets, sung, duermes* are called wordforms
- The lemma *bank* has two **senses**:
 - Instead, a bank can hold the investments in a custodial account in the client's name
 - But as agriculture burgeons on the east **bank**, the river will shrink even more.
- A sense is a discrete representation of one aspect of the meaning of a word

Synonymy is a relation between senses rather than words

- Consider the words *big* and *large*
- Are they synonyms?
 - How **big** is that plane?
 - Would I be flying on a large or small plane?
- How about here:
 - Miss Nelson, for instance, became a kind of **big** sister to Benjamin.
 - ?Miss Nelson, for instance, became a kind of large sister to Benjamin.
- Why?
 - *big* has a sense that means being older, or grown up
 - *large* lacks this sense

Antonyms

- Senses that are opposites with respect to one feature of their meaning
- Otherwise, they are very similar!
 - dark / light
 - short / long
 - hot / cold
 - up / down
 - in / out
- More formally: antonyms can
 - define a binary opposition or at opposite ends of a scale (*long/short, fast/slow*)
 - Be reversives: rise/fall, up/down

Hyponymy

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
 - *car* is a hyponym of *vehicle*
 - *dog* is a hyponym of *animal*
 - *mango* is a hyponym of *fruit*
- Conversely
 - *vehicle* is a hypernym/superordinate of *car*
 - *animal* is a hypernym of *dog*
 - *fruit* is a hypernym of *mango*

superordinate	vehicle	fruit	furniture	mammal
hyponym	car	mango	chair	dog

Hypernymy more formally

• Extensional:

- The class denoted by the superordinate
- extensionally includes the class denoted by the hyponym
- Entailment:
 - A sense A is a hyponym of sense B if being an A entails being a B
- Hyponymy is usually transitive
 - (A hypo B and B hypo C entails A hypo C)

II. WordNet

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary
 - Versions for other languages are under development

Category	Unique Forms
Noun	117,097
Verb	11,488
Adjective	22,141
Adverb	4,601

WordNet

Where it is:

<u>http://wordnetweb.princeton.edu/perl</u> <u>/webwn</u>

Format of Wordnet Entries

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- 5. freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet.

bass¹, deep⁶ - (having or denoting a low vocal or instrumental range)
 "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

WordNet Noun Relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 ightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 ightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 ightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$
1			

WordNet Verb Relations

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From a verb (event) to a specific manner elaboration of that verb	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$\mathit{snore}^1 ightarrow \mathit{sleep}^1$
Antonym	Opposites	$increase^1 \iff decrease^1$

WordNet Hierarchies

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                  => living thing, animate thing,
                     => whole, unit
                        => object, physical object
                           => physical entity
                              => entity
               => causal agent, cause, causal agency
                  => physical entity
                     => entity
Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                  => physical entity
                     => entity
```

How is "sense" defined in WordNet?

- The set of near-synonyms for a WordNet sense is called a synset (synonym set); it's their version of a sense or a concept
- Example: chump as a noun to mean
 - 'a person who is gullible and easy to take advantage of'

{chump¹, fool², gull¹, mark⁹, patsy¹, fall guy¹, sucker¹, soft touch¹, mug²}

- Each of these senses share this same gloss
- Thus for WordNet, the meaning of this sense of chump <u>is</u> this list.

Word Sense Disambiguation (WSD)

Given

- a word in context,
- A fixed inventory of potential word senses
- decide which sense of the word this is.
 - English-to-Spanish MT
 - Inventory is set of Spanish translations
 - Speech Synthesis
 - Inventory is homographs with different pronunciations like *bass* and *bow*
 - Automatic indexing of medical articles
 - MeSH (Medical Subject Headings) thesaurus entries

Two variants of WSD task

- Lexical Sample task
 - Small pre-selected set of target words
 - And inventory of senses for each word
- All-words task
 - Every word in an entire text
 - A lexicon with senses for each word
 - Sort of like part-of-speech tagging
 - Except each lemma has its own tagset

Approaches

Supervised

Semi-supervised

- Unsupervised
 - Dictionary-based techniques
 - Selectional Association
- Lightly supervised
 - Bootstrapping
 - Preferred Selectional Association

Supervised Machine Learning Approaches

- Supervised machine learning approach:
 - a training corpus of ?
 - used to train a classifier that can tag words in new text
 - Just as we saw for part-of-speech tagging, statistical MT.
- Summary of what we need:
 - the tag set ("sense inventory")
 - the training corpus

- A set of **features** extracted from the training corpus
- A classifier

Supervised WSD 1: WSD Tags

What's a tag?

WordNet Bass

The noun ``bass" has 8 senses in WordNet

- 1. bass (the lowest part of the musical range)
- 2. bass, bass part (the lowest part in polyphonic music)
- 3. bass, basso (an adult male singer with the lowest voice)
- 4. sea bass, bass (flesh of lean-fleshed saltwater fish of the family Serranidae)
- 5. freshwater bass, bass (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
- 6. bass, bass voice, basso (the lowest adult male singing voice)
- 7. bass (the member with the lowest range of a family of musical instruments)
- 8. bass -(nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Inventory of sense tags for bass

WordNet	Spanish	Roget	
Sense	Translation	Category	Target Word in Context
bass ⁴	lubina	FISH/INSECT	fish as Pacific salmon and striped bass and
bass ⁴	lubina	FISH/INSECT	produce filets of smoked bass or sturgeon
bass ⁷	bajo	MUSIC	exciting jazz bass player since Ray Brown
bass ⁷	bajo	MUSIC	play bass because he doesn't have to solo

Supervised WSD 2: Get a corpus

- Lexical sample task:
 - *Line-hard-serve* corpus 4000 examples of each
 - Interest corpus 2369 sense-tagged examples
- All words:
 - Semantic concordance: a corpus in which each open-class word is labeled with a sense from a specific dictionary/thesaurus.
 - SemCor: 234,000 words from Brown Corpus, manually tagged with WordNet senses
 - SENSEVAL-3 competition corpora 2081 tagged word tokens

Supervised WSD 3: Extract feature vectors

- Weaver (1955)
- If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words. [...] But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word. [...] The practical question is : ``What minimum value of N will, at least in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?"

dishes

bass

- washing *dishes*.
- simple *dishes* including
- convenient *dishes* to
- of *dishes* and

- free *bass* with
- pound *bass* of
- and bass player
- his bass while

- In our house, everybody has a career and none of them includes washing dishes," he says.
- In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying several simple dishes, including braised pig's ears and chcken livers with green peppers.
- Post quick and convenient dishes to fix when your in a hurry.
- Japanese cuisine offers a great variety of dishes and regional specialties

- We need more good teachers right now, there are only a half a dozen who can play the free bass with ease.
- Though still a far cry from the lake's record 52pound bass of a decade ago, "you could fillet these fish again, and that made people very, very happy." Mr. Paulson says.
- An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations again.
- Lowe caught his bass while fishing with pro Bill Lee of Killeen, Texas, who is currently in 144th place with two bass weighing 2–09.

Feature vectors

- A simple representation for each observation (each instance of a target word)
 - Vectors of sets of feature/value pairs
 - I.e. files of comma-separated values
 - These vectors should represent the window of words around the target

How big should that window be?

Two kinds of features in the vectors

- Collocational features and bag-of-words features
 - Collocational
 - Features about words at specific positions near target word
 - Often limited to just word identity and POS
 - Bag-of-words
 - Features about words that occur anywhere in the window (regardless of position)
 - Typically limited to frequency counts

Examples

- Example text (WSJ)
 - An electric guitar and bass player stand off to one side not really part of the scene, just as a sort of nod to gringo expectations perhaps
 - Assume a window of +/-2 from the target

Examples

- Example text
 - An electric guitar and bass player stand off to one side not really part of the scene, just as a sort of nod to gringo expectations perhaps
 - Assume a window of +/-2 from the target

Collocational

- Position-specific information about the words in the window
- guitar and bass player stand
 - [guitar, NN, and, CC, player, NN, stand, VB]
 - $\circ \mathsf{Word}_{n-2,} \mathsf{POS}_{n-2,} \mathsf{word}_{n-1,} \mathsf{POS}_{n-1,} \mathsf{Word}_{n+1} \mathsf{POS}_{n+1} \dots$
 - In other words, a vector consisting of
 - [position n word, position n part-of-speech...]

Bag-of-words

- Information about the words that occur within the window.
- First derive a set of terms to place in the vector.
- Then note how often each of those terms occurs in a given window.

Co-Occurrence Example

- Assume we've settled on a possible vocabulary of 12 words that includes guitar and player but not and and stand
- guitar and bass player stand
 - [0,0,0,1,0,0,0,0,0,1,0,0]
 - Which are the counts of words predefined as e.g.,
 - [fish,fishing,viol, guitar, double,cello...

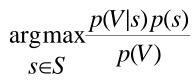
Classifiers

- Once we cast the WSD problem as a classification problem, then all sorts of techniques are possible
 - Naïve Bayes (the easiest thing to try first)
 - Decision lists
 - Decision trees
 - Neural nets
 - Support vector machines
 - Nearest neighbor methods...

Classifiers

- The choice of technique, in part, depends on the set of features that have been used
 - Some techniques work better/worse with features with numerical values
 - Some techniques work better/worse with features that have large numbers of possible values
 - For example, the feature the word to the left has a fairly large number of possible values

Naïve Bayes



- $\hat{s} = \underset{s \in S}{\operatorname{arg max}} p(s|V), \text{ or } \underset{s \in S}{\operatorname{arg max}} \frac{p(V|s)p(s)}{p(V)}$ Where s is one of the senses S possible for a word w and V the input vector of feature values for w
- Assume features *independent*, so probability of V is the product of probabilities of each feature, given s, so

$$p(V|s) = \prod_{j=1}^{n} p(v_j|s)$$

$$p(V) \text{ same for any } \hat{s}$$

$$p(V) \text{ same for any } \hat{s}$$

$$p(V) \text{ same for any } \hat{s}$$

j=1

- How do we estimate p(s) and p(v_j|s)?
 - p(s_i) is max. likelihood estimate from a sensetagged corpus (count(s_i,w_j)/count(w_j)) – how likely is bank to mean 'financial institution' over all instances of bank?
 - P(v_j|s) is max. likelihood of each feature given a candidate sense (count(v_j,s)/count(s)) how likely is the previous word to be 'river' when the sense of bank is 'financial institution'
- Calculate \$\frac{\sigmas = \argmax p(s) \frac{\begin{pmatrix}{ll} p(v_j | s)}{\sigmas j=1}\$ for each possible sense and take the highest scoring sense as the most likely choice

Naïve Bayes Test

On a corpus of examples of uses of the word line, naïve Bayes achieved about 73% correct

Good?

Decision Lists: another popular method

A case statement....

Rule		Sense
fish within window	\Rightarrow	bass ¹
striped bass	\Rightarrow	bass ¹
guitar within window	\Rightarrow	bass ²
bass player	\Rightarrow	bass ²
piano within window	\Rightarrow	bass ²
tenor within window	\Rightarrow	bass ²
sea bass	\Rightarrow	$bass^1$
play/V bass	\Rightarrow	bass ²
river within window	\Rightarrow	$bass^1$
violin within window	\Rightarrow	bass ²
salmon within window	\Rightarrow	bass ¹
on bass	\Rightarrow	bass ²
bass are	\Rightarrow	$bass^1$

Learning Decision Lists

- Restrict the lists to rules that test a single feature (1-decisionlist rules)
- Evaluate each possible test and rank them based on how well they work.
- Glue the top-N tests together and call that your decision list.

Yarowsky

 On a binary (homonymy) distinction used the following metric to rank the tests

 $\frac{P(\text{Sense}_1 | Feature)}{P(\text{Sense}_2 | Feature)}$

This gives about 95% on this test...

WSD Evaluations and baselines

- In vivo versus in vitro evaluation
- In vitro evaluation is most common now
 - Exact match accuracy
 - % of words tagged identically with manual sense tags
 - Usually evaluate using held-out data from same labeled corpus
 - Problems?
 - Why do we do it anyhow?
- Baselines
 - Most frequent sense
 - The Lesk algorithm

Most Frequent Sense

- Wordnet senses are ordered in frequency order
- So "most frequent sense" in wordnet = "take the first sense"
- Sense frequencies come from SemCor

Freq	Synset	Gloss
338	plant ¹ , works, industrial plant	buildings for carrying on industrial labor
207	plant ² , flora, plant life	a living organism lacking the power of locomotion
2	plant ³	something planted secretly for discovery by another
0	plant ⁴	an actor situated in the audience whose acting is rehearsed but
		seems spontaneous to the audience

Ceiling

- Human inter-annotator agreement
 - Compare annotations of two humans
 - On same data
 - Given same tagging guidelines
- Human agreements on all-words corpora with Wordnet style senses
 - 75%-80%

Unsupervised Methods WSD: Dictionary/Thesaurus methods

- The Lesk Algorithm
- Selectional Restrictions

Simplified Lesk

The **bank** can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

given the following two WordNet senses:

bank ¹	Gloss:	a financial institution that accepts deposits and channels the money into	
		lending activities	
	Examples:	"he cashed a check at the bank", "that bank holds the mortgage on my	
		home"	
bank ²	Gloss:	sloping land (especially the slope beside a body of water)	
	Examples:	"they pulled the canoe up on the bank", "he sat on the bank of the river	
		and watched the currents"	

Original Lesk: pine cone

- pine 1 kinds of evergreen tree with needle-shaped leaves
 - 2 waste away through sorrow or illness
- cone 1 solid body which narrows to a point
 - 2 something of this shape whether solid or hollow
 - 3 fruit of certain evergreen trees

Corpus Lesk

- Add corpus examples to glosses and examples
- The best performing variant

Disambiguation via Selectional Restrictions

"Verbs are known by the company they keep"

- Different verbs select for different thematic roles wash the *dishes* (takes washable-thing as patient) serve delicious *dishes* (takes food-type as patient)
- Method: another semantic attachment in grammar
 - Semantic attachment rules are applied as sentences are syntactically parsed, e.g.

 $VP \rightarrow V NP$

V→ serve <theme> {theme:food-type}

Selectional restriction violation: no parse

- But this means we must:
 - Write selectional restrictions for each sense of each predicate – or use <u>FrameNet</u>
 - Serve alone has 15 verb senses
 - Obtain hierarchical type information about each argument (using <u>WordNet</u>)
 - How many hypernyms does dish have?
 - How many words are <u>hyponyms</u> of dish?
- But also:
 - Sometimes selectional restrictions don't restrict enough (Which dishes do you like?)
 - Sometimes they restrict too much (Eat dirt, worm! I'll eat my hat!)
- Can we take a statistical approach?

Semi-supervised Bootstrapping

- What if you don't have enough data to train a system...
- Bootstrap
 - Pick a word that you as an analyst think will cooccur with your target word in particular sense
 - Grep through your corpus for your target word and the hypothesized word
 - Assume that the target tag is the right one

Bootstrapping

- For bass
 - Assume play occurs with the music sense and fish occurs with the fish sense

Sentences extracting using "fish" and "play"

We need more good teachers – right now, there are only a half a dozen who can **play** the free **bass** with ease.

An electric guitar and **bass player** stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of Fame, honors this historic night next Saturday, Harry Goodman, Mr. Goodman's brother and **bass player** at the original concert, will be in the audience with other family members.

The researchers said the worms spend part of their life cycle in such **fish** as Pacific salmon and striped **bass** and Pacific rockfish or snapper.

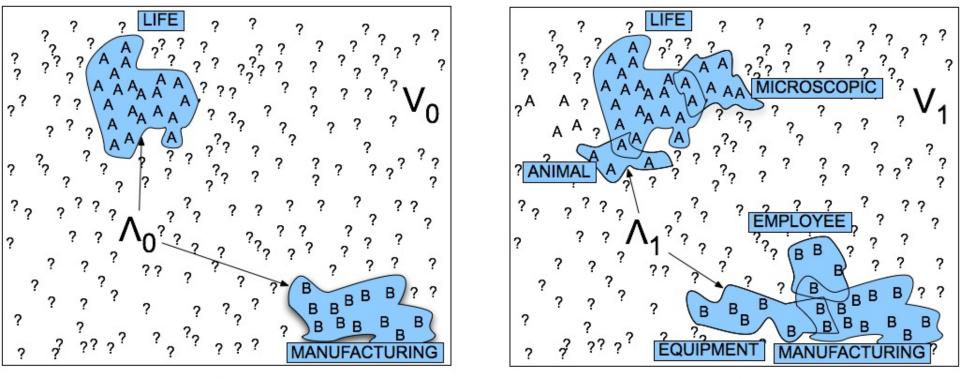
And it all started when fishermen decided the striped bass in Lake Mead were too skinny.

Though still a far cry from the lake's record 52-pound **bass** of a decade ago, "you could fillet these **fish** again, and that made people very, very happy," Mr. Paulson says.

Where do the seeds come from?

- 1) Hand labeling
- 2) "One sense per discourse":
 - The sense of a word is highly consistent within a document Yarowsky (1995)
 - True for topic dependent words
 - Not so true for other POS like adjectives and verbs, e.g. make, take
 - Krovetz (1998) "More than one sense per discourse" argues it isn't true at all once you move to fine-grained senses
- 3) One sense per collocation:
 - A word reoccurring in collocation with the same word will almost surely have the same sense.

Stages in the Yarowsky bootstrapping algorithm



(a)

(b)

Problems

- Given these general ML approaches, how many classifiers do I need to perform WSD robustly
 - One for each ambiguous word in the language
- How do you decide what set of tags/labels/senses to use for a given word?

Depends on the application

WordNet Bass

- Tagging with this set of senses is an impossibly hard task that's probably overkill for any realistic application
- 1. bass (the lowest part of the musical range)
- 2. bass, bass part (the lowest part in polyphonic music)
- 3. bass, basso (an adult male singer with the lowest voice)
- 4. sea bass, bass (flesh of lean-fleshed saltwater fish of the family Serranidae)
- 5. freshwater bass, bass (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
- 6. bass, bass voice, basso (the lowest adult male singing voice)
- 7. bass (the member with the lowest range of a family of musical instruments)
- bass -(nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Senseval History

ACL-SIGLEX workshop (1997)

- Yarowsky and Resnik paper
- SENSEVAL-I (1998)
 - Lexical Sample for English, French, and Italian
- SENSEVAL-II (Toulouse, 2001)
 - Lexical Sample and All Words
 - Organization: Kilkgarriff (Brighton)
- SENSEVAL-III (2004)
- SENSEVAL-IV -> SEMEVAL (2007)

WSD Performance

- Varies widely depending on how difficult the disambiguation task is
- Accuracies of over 90% are commonly reported on some of the classic, often fairly easy, WSD tasks (pike, star, interest)
- Senseval brought careful evaluation of difficult WSD (many senses, different POS)
- Senseval 1: more fine grained senses, wider range of types:
 - Overall: about 75% accuracy
 - Nouns: about 80% accuracy
 - Verbs: about 70% accuracy

Summary

- Lexical Semantics
 - Homonymy, Polysemy, Synonymy
 - Thematic roles
- Computational resource for lexical semantics
 - WordNet
- Task
 - Word sense disambiguation