CS 4705: Semantic Analysis: Syntax–Driven Semantics

Slides adapted from Julia Hirschberg
Homework:
Note POS tag corrections. Use POS tags as guide. You may change them if they hold you back.
Today

- Reading: Ch 17.2–17.4, 18.1–18.7 (cover material through today); Ch 19.1–19.5 (next time)
- Semantic Analysis: translation from syntax to FOPC
- Hard problems in semantics
Meaning derives from

- The entities and actions/states represented (predicates and arguments, or, nouns and verbs)

- The way they are ordered and related:
 - The syntax of the representation may correspond to the syntax of the sentence
 - Can we develop a mapping between syntactic representations and formal representations of meaning?
Syntax–Driven Semantics

Goal: Link syntactic structures to corresponding semantic representation to produce representation of the ‘meaning’ of a sentence while parsing it.
Specific vs. General-Purpose Rules

- *Don’t* want to have to specify for every possible parse tree what semantic representation it maps to
- *Do* want to identify general mappings from parse trees to semantic representations

One way:
- Augment lexicon and grammar
- Devise mapping between rules of grammar and rules of semantic representation
- Rule-to-Rule Hypothesis: such a mapping exists
Semantic Attachment

- Extend every grammar rule with `instructions’ on how to map components of rule to a semantic representation, e.g.
 \[S \rightarrow \text{NP VP} \{\text{VP.sem(NP.sem)}\} \]

- Each semantic function defined in terms of semantic representation of choice

- Problem: how to define semantic functions and how to specify their composition so we always get the `right’ meaning representation from the grammar
Example: McDonalds serves burgers.

- Associating constants with constituents
 - ProperNoun → McDonalds {McDonalds}
 - PluralNoun → burgers {burgers}

- Defining functions to produce these from input
 - NP → ProperNoun {ProperNoun.sem}
 - NP → PluralNoun {PluralNoun.sem}
 - Assumption: meaning representations of children are passed up to parents when non-branching (e.g. ProperNoun.sem(X) = X)

- But...verbs are where the action is
V \rightarrow \text{serves } \{ \exists (e,x,y) \ (\text{Isa}(e,\text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,y)) \} \text{ where } e = \text{event}, \ x = \text{agent}, \ y = \text{patient}\\
Will every verb needs its own distinct representation?\\
\text{McDonalds hires students.}\\
\begin{itemize}
 \item \text{Predicate(Agent, Patient)}
\end{itemize}\\
\text{McDonalds gave customers a bonus.}\\
\begin{itemize}
 \item \text{Predicate(Agent, Patient, Beneficiary)}
\end{itemize}
Once we have the semantics for each constituent, how do we combine them?

- E.g. VP → V NP \{V.sem(NP.sem)\}
- If goal for VP semantics of ‘serve’ is the representation (∃ e,x) (Isa(e,Serving) ∧ Agent(e,x) ∧ Patient(e,burger)) then
- VP.sem must tell us
 - Which variables to be replaced by which arguments?
 - How is replacement accomplished?
First... **Lambda Notation**

- Extension to First Order Predicate Calculus
 \[\lambda x \ P(x) : \lambda + \text{variable(s)} + \text{FOPC expression in those variables} \]

- Lambda reduction
 - Apply lambda-expression to logical terms to *bind* lambda-expression’s parameters to terms
 - \(\lambda x P(x) \)
 - \(\lambda x P(x)(\text{car}) \)
 - \(P(\text{car}) \)
Parameter list (e.g. x in λx) in lambda expression makes variables (x) in logical expression (P(x)) available for binding to external arguments (car) provided by semantics of other constituents

- P(x): loves(Mary,x)
- $\lambda x P(x)$car: loves(Mary,car)
Recall we have VP $\rightarrow V \ NP \ \{ V.sem(NP.sem) \}$

Target semantic representation is:
$\{ \exists (e,x,y) (Isa(e, Serving) \land Agent(e,x) \land Patient(e,y)) \}$

Define $V.sem$ as:
$\{ \lambda y \exists (e,x) (Isa(e, Serving) \land Agent(e,x) \land Patient(e,y)) \}$

Now ‘y’ will be available for binding when $V.sem$ applied to $NP.sem$ of direct object
V.sem Applied to McDonalds serves burgers

- λ application binds x to value of NP.sem (burgers)

$$\lambda y \exists (e,x) (\text{Isa}(e,\text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,y)) \text{ (burgers)}$$

- λ-reduction replaces y within λ-expression with burgers

- Value of V.sem(NP.sem) is now $\exists (e,x) (\text{Isa}(e,\text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,\text{burgers}))$
Need to define semantics for

- \(S \rightarrow \text{NP VP} \{ \text{VP.sem(NP.sem)} \} \)
- Where is the subject?
- \(\exists(e,x) (\text{Isa(e,Serving)} \land \text{Agent(e,} x) \land \text{Patient(e,burgers)})) \)
- Need another \(\lambda \)-expression in V.sem so the subject NP can be bound later in VP.sem
- V.sem, version 2
 - \(\lambda y \lambda x \exists(e) (\text{Isa(e,Serving)} \land \text{Agent(e,} x) \land \text{Patient(e,} y)) \)

But we’re not done yet....
\(\text{VP} \rightarrow \text{V NP \{V.sem(NP.sem)\}} \)

\[\lambda y \lambda x \exists(e) (\text{Isa}(e, \text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,y))(\text{burgers}) \]

\[\lambda x \exists(e) (\text{Isa}(e, \text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,\text{burgers})) \]

\(\text{S} \rightarrow \text{NP VP \{VP.sem(NP.sem)\}} \)

\[\lambda x \exists(e) \text{Isa}(e, \text{Serving}) \land \text{Agent}(e,x) \land \text{Patient}(e,\text{burgers})\}(\text{McDonald’s}) \]

\[\exists(e) \text{Isa}(e, \text{Serving}) \land \text{Agent}(e,\text{McDonald’s}) \land \text{Patient}(e,\text{burgers}) \]
What is our grammar now?

S → NP VP \{VP.sem(NP.sem)\}
VP → V NP \{V.sem(NP.sem)\}
V → serves \{\lambda x \lambda y E(e) (Isa(e,Serving) \land Agent(e,y) \land Patient(e,x))\}
NP → Propernoun \{Propernoun.sem\}
NP → Pluralnoun \{Pluralnoun.sem\}
Propernoun → McDonalds
Pluralnoun → burgers
Modify parser to include operations on semantic attachments as well as syntactic constituents
- E.g., change an Early–style parser so when constituents are completed, their attached semantic function is applied and a meaning representation created and stored with state
- Or... let parser run to completion and then walk through resulting tree, applying semantic attachments from bottom–up
Option 1 (Integrated Semantic Analysis)

S → NP VP \{VP.sem(NP.sem)\}

◦ VP.sem has been stored in state representing VP
◦ NP.sem stored with the state for NP
◦ When rule completed, retrieve value of VP.sem and of NP.sem, and apply VP.sem to NP.sem
◦ Store result in S.sem.

- As fragments of input parsed, semantic fragments created
- Can be used to block ambiguous representations
Example carried through
What about

- John slept.
- John gave Mary the book.
- The door opened
- Any others?
But this is just the tip of the iceberg....

- Terms can be complex
 A restaurant serves burgers.
 - ‘a restaurant’: ∃x Isa(x,restaurant)
 - ∃e Isa(e,Serving) ^ Agent(e, < ∀x Isa(x,restaurant)>) ^ Patient(e,burgers)
 - Allows quantified expressions to appear where terms can by providing rules to turn them into well-formed FOPC expressions

- Issues of quantifier scope
 Every restaurant serves a burger.
How to represent other constituents?

- Adjective phrases:
 - Happy people, cheap food, purple socks
 - Intersective semantics works for some...

\[
\text{Nom} \rightarrow \text{Adj Nom} \{\lambda x \ (\text{Nom.sem}(x) \land \text{Isa}(x,\text{Adj.sem}))\}
\]

\[
\text{Adj} \rightarrow \text{cheap} \{\text{Cheap}\}
\]

\[
\lambda x \ \text{Isa}(x, \text{Food}) \land \text{Isa}(x,\text{Cheap})
\]

But….fake gun? Local restaurant? Former friend? Would-be singer?

\[
\text{Ex Isa}(x, \text{Gun}) \land \text{Isa}(x,\text{Fake})
\]
To incorporate semantics into grammar we must

- Determine `right' representation for each basic constituent
- Determine `right' representation constituents that take these basic constituents as arguments
- Incorporate semantic attachments into each rule of our CFG
Drawback

- You also perform semantic analysis on orphaned constituents that play no role in final parse
- Case for pipelined approach: Do semantics *after* syntactic parse
Non–Compositional Language

- Some meaning *isn’t* compositional
 - Non–compositional modifiers: fake, former, local, so–called, putative, apparent,…
 - Metaphor:
 - You’re the cream in my coffee. She’s the cream in George’s coffee.
 - The break–in was just the tip of the iceberg. This was only the tip of Shirley’s iceberg.
 - Idiom:
 - The old man finally kicked the bucket. The old man finally kicked the proverbial bucket.
 - Deferred reference: The ham sandwich wants his check.
- Solution: special rules? Treat idiom as a unit?
Temporal Representations

- How do we represent time and temporal relationships between events?
 It seems only yesterday that Martha Stewart was in prison but now she has a popular TV show. There is no justice.

- Where do we get temporal information?
 - Verb tense
 - Temporal expressions
 - Sequence of presentation

- Linear representations: Reichenbach ‘47
• **Utterance time** (U): when the utterance occurs
• **Reference time** (R): the temporal point-of-view of the utterance
• **Event time** (E): when events described in the utterance occur

George is eating a sandwich.
-- E,R,U →
George had eaten a sandwich (when he realized...)
E – R – U →
George will eat a sandwich.
--U,R – E →
While George was eating a sandwich, his mother arrived.
Verbs and Event Types: Aspect

- **Statives**: states or properties of objects at a particular point in time

 I am hungry.

- **Activities**: events with no clear endpoint

 I am eating.

- **Accomplishments**: events with durations and endpoints that result in some change of state

 I ate dinner.

- **Achievements**: events that change state but have no particular duration – they occur in an instant

 I got the bill.
Beliefs, Desires and Intentions

- Very hard to represent internal speaker states like believing, knowing, wanting, assuming, imagining
 - Not well modeled by a simple DB lookup approach so..
 - Truth in the world vs. truth in some possible world
 - George imagined that he could dance.
 - George believed that he could dance.
- Augment FOPC with special modal operators that take logical formulae as arguments, e.g. believe, know
Believes(George, dance(George))
Knows(Bill, Believes(George, dance(George)))

- **Mutual belief**: I believe you believe I believe….
 - Practical importance: modeling belief in dialogue
 - Clark’s *grounding*
Hypothesis: Principle of Compositionality

- Semantics of NL sentences and phrases can be composed from the semantics of their subparts

Rules can be derived which map syntactic analysis to semantic representation (Rule–to–Rule Hypothesis)

- Lambda notation provides a way to extend FOPC to this end
- But coming up with rule to rule mappings is hard

Idioms, metaphors and other non–compositional aspects of language makes things tricky (e.g. fake gun)
Next

- Read Ch 19: 1–5