
Basic Parsing with Context-
Free Grammars

1

Some slides adapted from Julia Hirschberg and Dan Jurafsky

To view past videos:
◦ http://globe.cvn.columbia.edu:8080/oncampus.ph

p?c=133ae14752e27fde909fdbd64c06b337

Usually available only for 1 week. Right now,
available for all previous lectures

2

http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337
http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337

Allows arbitrary CFGs
Fills a table in a single sweep over the input
words
◦ Table is length N+1; N is number of words
◦ Table entries represent

Completed constituents and their locations
In-progress constituents
Predicted constituents

3

It would be nice to know where these things are in
the input so…
S -> · VP [0,0] A VP is predicted at the

start of the sentence

NP -> Det · Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> V NP · [0,3] A VP has been found
starting at 0 and ending at 3

4

5

March through chart left-to-right.
At each step, apply 1 of 3 operators
◦ Predictor

Create new states representing top-down expectations
◦ Scanner

Match word predictions (rule with word after dot) to
words

◦ Completer
When a state is complete, see what rules were looking
for that completed constituent

Done when an S spans from 0 to n

6

Given a state
◦ With a non-terminal to right of dot (not a part-

of-speech category)
◦ Create a new state for each expansion of the

non-terminal
◦ Place these new states into same chart entry as

generated state, beginning and ending where
generating state ends.
◦ So predictor looking at

S -> . VP [0,0]
◦ results in

VP -> . Verb [0,0]
VP -> . Verb NP [0,0]

7

Given a state
◦ With a non-terminal to right of dot that is a part-of-

speech category
◦ If the next word in the input matches this POS
◦ Create a new state with dot moved over the non-

terminal
◦ So scanner looking at VP -> . Verb NP [0,0]
◦ If the next word, “book”, can be a verb, add new state:

VP -> Verb . NP [0,1]
◦ Add this state to chart entry following current one
◦ Note: Earley algorithm uses top-down input to

disambiguate POS! Only POS predicted by some state
can get added to chart!

8

Applied to a state when its dot has reached right
end of role.
Parser has discovered a category over some span of
input.
Find and advance all previous states that were
looking for this category
◦ copy state, move dot, insert in current chart entry
Given:
◦ NP -> Det Nominal . [1,3]
◦ VP -> Verb. NP [0,1]
Add
◦ VP -> Verb NP . [0,3]

9

Find an S state in the final column that spans
from 0 to n and is complete.

If that’s the case you’re done.
◦ S –> α · [0,n]

10

More specifically…

1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches
2. Add new predictions
3. Go to 2

3. Look at N to see if you have a winner

11

Book that flight
We should find… an S from 0 to 3 that is a
completed state…

12

S NP VP VP V
S Aux NP VP PP -> Prep NP
NP Det Nom N old | dog | footsteps |

young

NP PropN V dog | include | prefer
Nom -> Adj Nom Aux does
Nom N Prep from | to | on | of
Nom N Nom PropN Bush | McCain |

Obama
Nom Nom PP Det that | this | a| the
VP V NP Adj -> old | green | red

14

15

16

What kind of algorithms did we just describe
◦ Not parsers – recognizers

The presence of an S state with the right attributes in
the right place indicates a successful recognition.
But no parse tree… no parser
That’s how we solve (not) an exponential problem in
polynomial time

17

With the addition of a few pointers we have a
parser
Augment the “Completer” to point to where
we came from.

18

S8
S9

S10

S11

S13
S12

S8

S9
S8

All the possible parses for an input are in the table

We just need to read off all the backpointers from
every complete S in the last column of the table

Find all the S -> X . [0,N+1]

Follow the structural traces from the Completer

Of course, this won’t be polynomial time, since
there could be an exponential number of trees

We can at least represent ambiguity efficiently

20

Depth-first search will never terminate if
grammar is left recursive (e.g. NP --> NP PP)

21

),(** εαα ⎯→⎯ΑΒ⎯→⎯Α

Solutions:
◦ Rewrite the grammar (automatically?) to a weakly

equivalent one which is not left-recursive
e.g. The man {on the hill with the telescope…}
NP NP PP (wanted: Nom plus a sequence of PPs)
NP Nom PP
NP Nom
Nom Det N
…becomes…
NP Nom NP’
Nom Det N
NP’ PP NP’ (wanted: a sequence of PPs)
NP’ e

Not so obvious what these rules mean…

◦ Harder to detect and eliminate non-immediate
left recursion

NP --> Nom PP
Nom --> NP

◦ Fix depth of search explicitly

◦ Rule ordering: non-recursive rules first
NP --> Det Nom
NP --> NP PP

23

Multiple legal structures
◦ Attachment (e.g. I saw a man on a hill with a

telescope)
◦ Coordination (e.g. younger cats and dogs)
◦ NP bracketing (e.g. Spanish language teachers)

24

25

NP vs. VP Attachment

Solution?
◦ Return all possible parses and disambiguate

using “other methods”

26

Parsing is a search problem which may be
implemented with many control strategies
◦ Top-Down or Bottom-Up approaches each have

problems
Combining the two solves some but not all issues

◦ Left recursion
◦ Syntactic ambiguity
Rest of today (and next time): Making use of
statistical information about syntactic
constituents
◦ Read Ch 14

27

28

29

Probabilistic methods
Augment the grammar with probabilities
Then modify the parser to keep only most
probable parses
And at the end, return the most probable
parse

30

The probabilistic model
◦ Assigning probabilities to parse trees
Getting the probabilities for the model
Parsing with probabilities
◦ Slight modification to dynamic programming

approach
◦ Task is to find the max probability tree for an input

31

Attach probabilities to grammar rules
The expansions for a given non-terminal sum
to 1
VP -> Verb .55
VP -> Verb NP .40
VP -> Verb NP NP .05
◦ Read this as P(Specific rule | LHS)

32

33

34

A derivation (tree) consists of the set of
grammar rules that are in the tree

The probability of a tree is just the product of
the probabilities of the rules in the derivation.

35

P(T,S) = P(T)P(S|T) = P(T); since P(S|T)=1

P(T,S) = p(rn)
n∈T
∏

36

The probability of a word sequence P(S) is the
probability of its tree in the unambiguous
case.
It’s the sum of the probabilities of the trees in
the ambiguous case.

37

From an annotated database (a treebank)
◦ So for example, to get the probability for a

particular VP rule just count all the times the rule is
used and divide by the number of VPs overall.

38

39

40

41

42

43

Total: over 17,000 different grammar rules in
the 1-million word Treebank corpus

44

We’re assuming that there is a grammar to be
used to parse with.
We’re assuming the existence of a large robust
dictionary with parts of speech
We’re assuming the ability to parse (i.e. a
parser)
Given all that… we can parse probabilistically

45

Bottom-up (CKY) dynamic programming
approach
Assign probabilities to constituents as they
are completed and placed in the table
Use the max probability for each constituent
going up

46

Say we’re talking about a final part of a parse
◦ S->0NPiVPj

The probability of the S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing
bottom-up parsing

47

I said the P(NP) is known.
What if there are multiple NPs for the span of
text in question (0 to i)?
Take the max (where?)

48

The probability model we’re using is just
based on the rules in the derivation…
◦ Doesn’t use the words in any real way
◦ Doesn’t take into account where in the derivation a

rule is used

49

Add lexical dependencies to the scheme…
◦ Infiltrate the predilections of particular words into

the probabilities in the derivation
◦ I.e. Condition the rule probabilities on the actual

words

50

To do that we’re going to make use of the
notion of the head of a phrase
◦ The head of an NP is its noun
◦ The head of a VP is its verb
◦ The head of a PP is its preposition
(It’s really more complicated than that but this will

do.)

51

Attribute grammar

52

53

We used to have
◦ VP -> V NP PP P(rule|VP)

That’s the count of this rule divided by the number of
VPs in a treebank

Now we have
◦ VP(dumped)-> V(dumped) NP(sacks)PP(in)
◦ P(r|VP ^ dumped is the verb ^ sacks is the head of

the NP ^ in is the head of the PP)
◦ Not likely to have significant counts in any treebank

54

When stuck, exploit independence and collect
the statistics you can…
We’ll focus on capturing two things
◦ Verb subcategorization

Particular verbs have affinities for particular VPs
◦ Objects affinities for their predicates (mostly their

mothers and grandmothers)
Some objects fit better with some predicates than
others

55

Condition particular VP rules on their head…
so
r: VP -> V NP PP P(r|VP)
Becomes

P(r | VP ^ dumped)

What’s the count?
How many times was this rule used with (head)

dump, divided by the number of VPs that dump
appears (as head) in total

Think of left and right modifiers to the head

56

Attribute grammar

57

P(T,S) = S-> NP VP (.5)*
VP(dumped) -> V NP PP (.5) (T1)
VP(ate) -> V NP PP (.03)
VP(dumped) -> V NP (.2) (T2)

P(T,S) = p(rn)
n∈T
∏

58

Subcategorization captures the affinity
between VP heads (verbs) and the VP rules
they go with.
What about the affinity between VP heads and
the heads of the other daughters of the VP
Back to our examples…

59

61

The issue here is the attachment of the PP.
So the affinities we care about are the ones
between dumped and into vs. sacks and into.
So count the places where dumped is the
head of a constituent that has a PP daughter
with into as its head and normalize
Vs. the situation where sacks is a constituent
with into as the head of a PP daughter.

62

P(T,S) = S-> NP VP (.5)*
VP(dumped) -> V NP PP(into) (.7) (T1)
NOM(sacks) -> NOM PP(into) (.01) (T2)

P(T,S) = p(rn)
n∈T
∏

63

Consider the VPs
◦ Ate spaghetti with gusto
◦ Ate spaghetti with marinara
The affinity of gusto for eat is much larger
than its affinity for spaghetti
On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for
ate

64

Note the relationship here is more distant
and doesn’t involve a headword since gusto
and marinara aren’t the heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np

65

Context-Free Grammars
Parsing
◦ Top Down, Bottom Up Metaphors
◦ Dynamic Programming Parsers: CKY. Earley
Disambiguation:
◦ PCFG
◦ Probabilistic Augmentations to Parsers
◦ Tradeoffs: accuracy vs. data sparcity
◦ Treebanks

	Slide Number 1
	Announcements
	Earley Parsing
	States/Locations
	Graphically
	Earley Algorithm
	Predictor
	Scanner
	Completer
	How do we know we are done?
	Earley
	Example
	CFG for Fragment of English
	Example
	Example
	Example
	Details
	Converting Earley from Recognizer to Parser
	Augmenting the chart with structural information
	Retrieving Parse Trees from Chart
	Left Recursion vs. Right Recursion
	Slide Number 22
	Slide Number 23
	Another Problem: Structural ambiguity
	Slide Number 25
	Slide Number 26
	Summing Up
	Probabilistic Parsing
	How to do parse disambiguation
	Probabilistic CFGs
	Probability Model
	PCFG
	PCFG
	Probability Model (1)
	Probability model
	Probability Model (1.1)
	Getting the Probabilities
	TreeBanks
	Treebanks
	Treebanks
	Treebank Grammars
	Lots of flat rules
	Example sentences from those rules
	Probabilistic Grammar Assumptions
	Typical Approach
	What’s that last bullet mean?
	Max
	Problems with PCFGs
	Solution
	Heads
	Example (right)
	Example (wrong)
	How?
	Declare Independence
	Subcategorization
	Example (right)
	Probability model
	Preferences
	Example (right)
	Example (wrong)
	Preferences
	Probability model
	Preferences (2)
	Preferences (2)
	Summary

