
Basic Parsing with Context-
Free Grammars
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Some slides adapted from Julia Hirschberg and Dan Jurafsky



To view past videos:
◦ http://globe.cvn.columbia.edu:8080/oncampus.ph

p?c=133ae14752e27fde909fdbd64c06b337

Usually available only for 1 week. Right now, 
available for all previous lectures
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http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337
http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337


Allows arbitrary CFGs
Fills a table in a single sweep over the input 
words
◦ Table is length N+1; N is number of words
◦ Table entries represent

Completed constituents and their locations
In-progress constituents
Predicted constituents
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It would be nice to know where these things are in 
the input so…
S -> · VP [0,0] A VP is predicted at the 

start of the sentence

NP -> Det · Nominal  [1,2] An NP is in progress; the 
Det goes from 1 to 2

VP -> V NP · [0,3] A VP has been found 
starting at 0 and ending at 3
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March through chart left-to-right.
At each step, apply 1 of 3 operators
◦ Predictor

Create new states representing top-down expectations
◦ Scanner

Match word predictions (rule with word after dot) to 
words

◦ Completer
When a state is complete, see what rules were looking 
for that completed constituent

Done when an S spans from 0 to n
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Given a state
◦ With a non-terminal to right of dot (not a part-

of-speech category)
◦ Create a new state for each expansion of the 

non-terminal
◦ Place these new states into same chart entry as 

generated state, beginning and ending where 
generating state ends. 
◦ So predictor looking at

S -> . VP [0,0]  
◦ results in

VP -> . Verb [0,0]
VP -> . Verb NP [0,0]
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Given a state
◦ With a non-terminal to right of dot that is a part-of-

speech category
◦ If the next word in the input matches this POS
◦ Create a new state with dot moved over the non-

terminal
◦ So scanner looking at VP -> . Verb NP [0,0]
◦ If the next word, “book”, can be a verb, add new state:

VP -> Verb . NP [0,1]
◦ Add this state to chart entry following current one
◦ Note: Earley algorithm uses top-down input to 

disambiguate POS! Only POS predicted by some state 
can get added to chart!
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Applied to a state when its dot has reached right 
end of role.
Parser has discovered a category over some span of 
input.
Find and advance all previous states that were 
looking for this category
◦ copy state, move dot, insert in current chart entry
Given:
◦ NP -> Det Nominal . [1,3]
◦ VP -> Verb. NP [0,1]
Add
◦ VP -> Verb NP . [0,3]
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Find an S state in the final column that spans 
from 0 to n  and is complete.

If that’s the case you’re done.
◦ S –> α · [0,n]
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More specifically…

1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches
2. Add new predictions
3. Go to 2

3. Look at N to see if you have a winner
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Book that flight
We should find… an S from 0 to 3 that is a 
completed state…
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S NP VP VP V
S Aux NP VP PP -> Prep NP
NP Det Nom N old | dog | footsteps | 

young

NP  PropN V dog | include | prefer
Nom -> Adj Nom Aux does
Nom N Prep from | to | on | of
Nom N Nom PropN Bush | McCain | 

Obama
Nom Nom PP Det that |  this | a| the
VP V NP Adj -> old | green | red
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What kind of algorithms did we just describe 
◦ Not parsers – recognizers

The presence of an S state with the right attributes in 
the right place indicates a successful recognition.
But no parse tree… no parser
That’s how we solve (not) an exponential problem in 
polynomial time
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With the addition of a few pointers we have a 
parser
Augment the “Completer” to point to where 
we came from.
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All the possible parses for an input are in the table

We just need to read off all the backpointers from 
every complete S in the last column of the table

Find all the S -> X .  [0,N+1]

Follow the structural traces from the Completer

Of course, this won’t be polynomial time, since 
there could be an exponential number of trees

We can at least represent ambiguity efficiently
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Depth-first search will never terminate if 
grammar is left recursive (e.g. NP --> NP PP)
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Solutions:
◦ Rewrite the grammar (automatically?) to a weakly 

equivalent one which is not left-recursive
e.g. The man {on the hill with the telescope…}
NP NP PP (wanted:  Nom plus a sequence of PPs)
NP Nom PP
NP Nom
Nom Det N
…becomes…
NP Nom NP’
Nom Det N
NP’ PP NP’ (wanted:  a sequence of PPs)
NP’ e

Not so obvious what these rules mean…



◦ Harder to detect and eliminate non-immediate 
left recursion

NP --> Nom PP
Nom --> NP

◦ Fix depth of search explicitly

◦ Rule ordering: non-recursive rules first
NP --> Det Nom
NP --> NP PP
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Multiple legal structures
◦ Attachment (e.g. I saw a man on a hill with a 

telescope)
◦ Coordination (e.g. younger cats and dogs)
◦ NP bracketing (e.g. Spanish language teachers)
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NP vs. VP Attachment



Solution?  
◦ Return all possible parses and disambiguate 

using “other methods”
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Parsing is a search problem which may be 
implemented with many control strategies
◦ Top-Down or Bottom-Up approaches each have 

problems
Combining the two solves some but not all issues

◦ Left recursion
◦ Syntactic ambiguity
Rest of today (and next time): Making use of 
statistical information about syntactic 
constituents
◦ Read Ch 14
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Probabilistic methods
Augment the grammar with probabilities
Then modify the parser to keep only most 
probable parses
And at the end, return the most probable 
parse
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The probabilistic model
◦ Assigning probabilities to parse trees
Getting the probabilities for the model
Parsing with probabilities
◦ Slight modification to dynamic programming 

approach
◦ Task is to find the max probability tree for an input
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Attach probabilities to grammar rules
The expansions for a given non-terminal sum 
to 1
VP -> Verb .55
VP -> Verb NP .40
VP -> Verb NP NP .05
◦ Read this as P(Specific rule | LHS)
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A derivation (tree) consists of the set of 
grammar rules that are in the tree

The probability of a tree is just the product of 
the probabilities of the rules in the derivation.
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P(T,S) = P(T)P(S|T) = P(T); since P(S|T)=1

P(T,S) = p(rn )
n∈T
∏
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The probability of a word sequence P(S) is the 
probability of its tree in the unambiguous 
case.
It’s the sum of the probabilities of the trees in 
the ambiguous case.
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From an annotated database (a treebank)
◦ So for example, to get the probability for a 

particular VP rule just count all the times the rule is 
used and divide by the number of VPs overall.
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Total: over 17,000 different grammar rules in 
the 1-million word Treebank corpus
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We’re assuming that there is a grammar to be 
used to parse with.
We’re assuming the existence of a large robust 
dictionary with parts of speech
We’re assuming the ability to parse (i.e. a 
parser)
Given all that… we can parse probabilistically 



45

Bottom-up (CKY) dynamic programming 
approach
Assign probabilities to constituents as they 
are completed and placed in the table
Use the max probability for each constituent 
going up
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Say we’re talking about a final part of a parse
◦ S->0NPiVPj

The probability of the S is…
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We’re doing 
bottom-up parsing
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I said the P(NP) is known.
What if there are multiple NPs for the span of 
text in question (0 to i)?
Take the max (where?)
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The probability model we’re using is just 
based on the rules in the derivation…
◦ Doesn’t use the words in any real way
◦ Doesn’t take into account where in the derivation a 

rule is used
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Add lexical dependencies to the scheme…
◦ Infiltrate the predilections of particular words into 

the probabilities in the derivation
◦ I.e. Condition the rule probabilities on the actual 

words
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To do that we’re going to make use of the 
notion of the head of a phrase
◦ The head of an NP is its noun
◦ The head of a VP is its verb
◦ The head of a PP is its preposition
(It’s really more complicated than that but this will 

do.)
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Attribute grammar
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We used to have
◦ VP -> V NP PP P(rule|VP)

That’s the count of this rule divided by the number of 
VPs in a treebank

Now we have
◦ VP(dumped)-> V(dumped) NP(sacks)PP(in)
◦ P(r|VP ^ dumped is the verb ^ sacks is the head of 

the NP ^ in is the head of the PP)
◦ Not likely to have significant counts in any treebank
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When stuck, exploit independence and collect 
the statistics you can…
We’ll focus on capturing two things
◦ Verb subcategorization

Particular verbs have affinities for particular VPs
◦ Objects affinities for their predicates (mostly their 

mothers and grandmothers)
Some objects fit better with some predicates than 
others
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Condition particular VP rules on their head… 
so
r:  VP -> V NP PP  P(r|VP) 
Becomes

P(r | VP ^ dumped) 

What’s the count?
How many times was this rule used with (head) 

dump, divided by the number of VPs that dump
appears  (as head) in total

Think of left and right modifiers to the head
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Attribute grammar
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P(T,S) = S-> NP VP  (.5)*
VP(dumped) -> V NP PP (.5) (T1)
VP(ate) -> V NP PP (.03)
VP(dumped) -> V NP (.2) (T2)

P(T,S) = p(rn )
n∈T
∏
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Subcategorization captures the affinity 
between VP heads (verbs) and the VP rules 
they go with.
What about the affinity between VP heads and 
the heads of the other daughters of the VP
Back to our examples…
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The issue here is the attachment of the PP. 
So the affinities we care about are the ones 
between dumped and into vs. sacks and into.
So count the places where dumped is the 
head of a constituent that has a PP daughter 
with into as its head and normalize
Vs. the situation where sacks is a constituent 
with into as the head of a PP daughter.
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P(T,S) = S-> NP VP  (.5)*
VP(dumped) -> V NP PP(into) (.7) (T1)
NOM(sacks) -> NOM PP(into) (.01) (T2)

P(T,S) = p(rn )
n∈T
∏
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Consider the VPs
◦ Ate spaghetti with gusto
◦ Ate spaghetti with marinara
The affinity of gusto for eat is much larger 
than its affinity for spaghetti
On the other hand, the affinity of marinara for 
spaghetti is much higher than its affinity for 
ate
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Note the relationship here is more distant 
and doesn’t involve a headword since gusto 
and marinara aren’t the heads of the PPs.

Vp (ate) Vp(ate)

Vp(ate) Pp(with)
Pp(with)

Np(spag)

npvv
Ate spaghetti with marinaraAte spaghetti with gusto

np
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Context-Free Grammars
Parsing
◦ Top Down, Bottom Up Metaphors
◦ Dynamic Programming Parsers: CKY. Earley
Disambiguation:
◦ PCFG
◦ Probabilistic Augmentations to Parsers
◦ Tradeoffs: accuracy vs. data sparcity
◦ Treebanks


	Slide Number 1
	Announcements
	Earley Parsing
	States/Locations
	Graphically
	Earley Algorithm
	Predictor
	Scanner
	Completer
	How do we know we are done?
	Earley
	Example
	CFG for Fragment of English
	Example
	Example
	Example
	Details
	Converting Earley from Recognizer to Parser
	Augmenting the chart with structural information
	Retrieving Parse Trees from Chart
	Left Recursion vs. Right Recursion
	Slide Number 22
	Slide Number 23
	Another Problem:  Structural ambiguity
	Slide Number 25
	Slide Number 26
	Summing Up
	Probabilistic Parsing
	How to do parse disambiguation
	Probabilistic CFGs
	Probability Model
	PCFG
	PCFG
	Probability Model (1)
	Probability model
	Probability Model (1.1)
	Getting the Probabilities
	TreeBanks
	Treebanks
	Treebanks
	Treebank Grammars
	Lots of flat rules
	Example sentences from those rules
	Probabilistic Grammar Assumptions
	Typical Approach
	What’s that last bullet mean?
	Max
	Problems with PCFGs
	Solution
	Heads
	Example (right)
	Example (wrong)
	How?
	Declare Independence
	Subcategorization
	Example (right)
	Probability model
	Preferences
	Example (right)
	Example (wrong)
	Preferences
	Probability model
	Preferences (2)
	Preferences (2)
	Summary

