
Basic Parsing with Context-
Free Grammars

1

Some slides adapted from Julia Hirschberg and Dan Jurafsky

To view past videos:
◦ http://globe.cvn.columbia.edu:8080/oncampus.ph

p?c=133ae14752e27fde909fdbd64c06b337

Usually available only for 1 week. Right now,
available for all previous lectures

2

http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337
http://globe.cvn.columbia.edu:8080/oncampus.php?c=133ae14752e27fde909fdbd64c06b337

3

4

5

Declarative formalisms like CFGs, FSAs define
the legal strings of a language -- but only tell
you ‘this is a legal string of the language X’
Parsing algorithms specify how to recognize
the strings of a language and assign each
string one (or more) syntactic analyses

6

Many possible CFGs for English, here is an example
(fragment):
◦ S → NP VP
◦ VP → V NP
◦ NP → Det N | Adj NP
◦ N → boy | girl
◦ V → sees | likes
◦ Adj → big | small
◦ DetP → a | the

◦ *big the small girl sees a boy
◦ John likes a girl
◦ I like a girl
◦ I sleep
◦ The old dog the footsteps of the young

the small boy likes a girl

S NP VP VP V
S Aux NP VP VP -> V PP
S -> VP PP -> Prep NP
NP Det Nom N old | dog | footsteps |

young | flight

NP PropN V dog | include | prefer |
book

NP -> Pronoun
Nom -> Adj Nom Aux does
Nom N Prep from | to | on | of
Nom N Nom PropN Bush | McCain |

Obama
Nom Nom PP Det that | this | a| the
VP V NP Adj -> old | green | red

Parse Tree for ‘The old dog the footsteps of the
young’ for Prior CFG

S

NP VP

NPV

DET
NOM

N PP

DET NOM

N

The old dog the

footsteps
of the young

Searching FSAs
◦ Finding the right path through the automaton
◦ Search space defined by structure of FSA
Searching CFGs
◦ Finding the right parse tree among all possible

parse trees
◦ Search space defined by the grammar
Constraints provided by the input sentence
and the automaton or grammar

10

Builds from the root S node to the leaves
Expectation-based
Common search strategy
◦ Top-down, left-to-right, backtracking
◦ Try first rule with LHS = S
◦ Next expand all constituents in these trees/rules
◦ Continue until leaves are POS
◦ Backtrack when candidate POS does not match input string

11

“The old dog the footsteps of the young.”
Where does backtracking happen?

What are the computational disadvantages?

What are the advantages?

12

Parser begins with words of input and builds
up trees, applying grammar rules whose RHS
matches

Det N V Det N Prep Det N
The old dog the footsteps of the young.

Det Adj N Det N Prep Det N
The old dog the footsteps of the young.

Parse continues until an S root node reached or no
further node expansion possible

13

Det N V Det N Prep Det N
The old dog the footsteps of the young.
Det Adj N Det N Prep Det N

14

When does disambiguation occur?

What are the computational advantages and
disadvantages?

15

Top-Down parsers – they never explore illegal
parses (e.g. which can’t form an S) -- but waste
time on trees that can never match the input
Bottom-Up parsers – they never explore trees
inconsistent with input -- but waste time exploring
illegal parses (with no S root)
For both: find a control strategy -- how explore
search space efficiently?
◦ Pursuing all parses in parallel or backtrack or …?
◦ Which rule to apply next?
◦ Which node to expand next?

16

Dynamic Programming Approaches – Use a chart to
represent partial results

CKY Parsing Algorithm
◦ Bottom-up
◦ Grammar must be in Normal Form
◦ The parse tree might not be consistent with linguistic

theory
Early Parsing Algorithm
◦ Top-down
◦ Expectations about constituents are confirmed by input
◦ A POS tag for a word that is not predicted is never added
Chart Parser

17

Allows arbitrary CFGs
Fills a table in a single sweep over the input
words
◦ Table is length N+1; N is number of words
◦ Table entries represent

Completed constituents and their locations
In-progress constituents
Predicted constituents

18

The table-entries are called states and are
represented with dotted-rules.
S -> · VP A VP is predicted

NP -> Det · Nominal An NP is in progress

VP -> V NP · A VP has been found

19

It would be nice to know where these things are in
the input so…
S -> · VP [0,0] A VP is predicted at the

start of the sentence

NP -> Det · Nominal [1,2] An NP is in progress; the
Det goes from 1 to 2

VP -> V NP · [0,3] A VP has been found
starting at 0 and ending at 3

20

21

As with most dynamic programming
approaches, the answer is found by looking
in the table in the right place.
In this case, there should be an S state in the
final column that spans from 0 to n+1 and is
complete.
If that’s the case you’re done.
◦ S –> α · [0,n+1]

22

March through chart left-to-right.
At each step, apply 1 of 3 operators
◦ Predictor

Create new states representing top-down expectations
◦ Scanner

Match word predictions (rule with word after dot) to
words

◦ Completer
When a state is complete, see what rules were looking
for that completed constituent

23

Given a state
◦ With a non-terminal to right of dot (not a part-

of-speech category)
◦ Create a new state for each expansion of the

non-terminal
◦ Place these new states into same chart entry as

generated state, beginning and ending where
generating state ends.
◦ So predictor looking at

S -> . VP [0,0]
◦ results in

VP -> . Verb [0,0]
VP -> . Verb NP [0,0]

24

Given a state
◦ With a non-terminal to right of dot that is a part-of-

speech category
◦ If the next word in the input matches this POS
◦ Create a new state with dot moved over the non-

terminal
◦ So scanner looking at VP -> . Verb NP [0,0]
◦ If the next word, “book”, can be a verb, add new state:

VP -> Verb . NP [0,1]
◦ Add this state to chart entry following current one
◦ Note: Earley algorithm uses top-down input to

disambiguate POS! Only POS predicted by some state
can get added to chart!

25

Applied to a state when its dot has reached right
end of role.
Parser has discovered a category over some span of
input.
Find and advance all previous states that were
looking for this category
◦ copy state, move dot, insert in current chart entry
Given:
◦ NP -> Det Nominal . [1,3]
◦ VP -> Verb. NP [0,1]
Add
◦ VP -> Verb NP . [0,3]

26

Find an S state in the final column that spans
from 0 to n+1 and is complete.

If that’s the case you’re done.
◦ S –> α · [0,n+1]

27

More specifically…

1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches
2. Add new predictions
3. Go to 2

3. Look at N+1 to see if you have a winner

28

Book that flight
We should find… an S from 0 to 3 that is a
completed state…

29

S NP VP VP V
S Aux NP VP PP -> Prep NP
NP Det Nom N old | dog | footsteps |

young

NP PropN V dog | include | prefer
Nom -> Adj Nom Aux does
Nom N Prep from | to | on | of
Nom N Nom PropN Bush | McCain |

Obama
Nom Nom PP Det that | this | a| the
VP V NP Adj -> old | green | red

31

32

33

What kind of algorithms did we just describe
◦ Not parsers – recognizers

The presence of an S state with the right attributes in
the right place indicates a successful recognition.
But no parse tree… no parser
That’s how we solve (not) an exponential problem in
polynomial time

34

With the addition of a few pointers we have a
parser
Augment the “Completer” to point to where
we came from.

35

S8
S9

S10

S11

S13
S12

S8

S9
S8

All the possible parses for an input are in the table

We just need to read off all the backpointers from
every complete S in the last column of the table

Find all the S -> X . [0,N+1]

Follow the structural traces from the Completer

Of course, this won’t be polynomial time, since
there could be an exponential number of trees

We can at least represent ambiguity efficiently

37

Depth-first search will never terminate if
grammar is left recursive (e.g. NP --> NP PP)

38

),(** εαα ⎯→⎯ΑΒ⎯→⎯Α

Solutions:
◦ Rewrite the grammar (automatically?) to a weakly

equivalent one which is not left-recursive
e.g. The man {on the hill with the telescope…}
NP NP PP (wanted: Nom plus a sequence of PPs)
NP Nom PP
NP Nom
Nom Det N
…becomes…
NP Nom NP’
Nom Det N
NP’ PP NP’ (wanted: a sequence of PPs)
NP’ e

Not so obvious what these rules mean…

◦ Harder to detect and eliminate non-immediate
left recursion

NP --> Nom PP
Nom --> NP

◦ Fix depth of search explicitly

◦ Rule ordering: non-recursive rules first
NP --> Det Nom
NP --> NP PP

40

Multiple legal structures
◦ Attachment (e.g. I saw a man on a hill with a

telescope)
◦ Coordination (e.g. younger cats and dogs)
◦ NP bracketing (e.g. Spanish language teachers)

41

42

NP vs. VP Attachment

Solution?
◦ Return all possible parses and disambiguate

using “other methods”

43

Parsing is a search problem which may be
implemented with many control strategies
◦ Top-Down or Bottom-Up approaches each have

problems
Combining the two solves some but not all issues

◦ Left recursion
◦ Syntactic ambiguity
Next time: Making use of statistical
information about syntactic constituents
◦ Read Ch 14

44

	Slide Number 1
	Announcements
	Homework Questions?
	Evaluation
	Syntactic Parsing
	Syntactic Parsing
	CFG: Example
	Modified CFG
	Slide Number 9
	Parsing as a Form of Search
	Top-Down Parser
	Rule Expansion
	Bottom-Up Parsing
	Slide Number 14
	Bottom-up parsing
	What’s right/wrong with….
	Some Solutions
	Earley Parsing
	States
	States/Locations
	Graphically
	Earley
	Earley Algorithm
	Predictor
	Scanner
	Completer
	How do we know we are done?
	Earley
	Example
	CFG for Fragment of English
	Example
	Example
	Example
	Details
	Converting Earley from Recognizer to Parser
	Augmenting the chart with structural information
	Retrieving Parse Trees from Chart
	Left Recursion vs. Right Recursion
	Slide Number 39
	Slide Number 40
	Another Problem: Structural ambiguity
	Slide Number 42
	Slide Number 43
	Summing Up

