CS4705 Part of Speech tagging

Some slides adapted from: Dan Jurafsky, Julia Hirschberg, Jim Martin

HW questions?

- Training files, question samples
 - /home/cs4705/corpora/wsj
 - /home/cs4705/corpora/wsj/wsj_2300questions.txt
 - CVN: will post on the CVN web site this afternoon
- Question and answer templates
- Not expected to use tools that we haven't gone over (e.g., named entity recognition)
 - Must allow paraphrases for indices
 - But company names will be provided in question exactly as they appear in article
- Any other questions?

Smoothing

- Words follow a Zipfian distribution
 - Small number of words occur very frequently
 - A large number are seen only once
 - <u>Zipf's law</u>: a word's frequency is approximately inversely proportional to its rank in the word distribution list

 Zero probabilities on one bigram cause a zero probability on the entire sentence

Smoothing is like Robin Hood: Steal from the rich and give to the poor (in probability mass)

- We often want to make predictions from sparse statistics:
 - P(w | denied the) 3 allegations 2 reports 1 claims 1 request
 - 7 total

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!

Slide from

Smoothing Methods

- Add-one smoothing (easy, but inaccurate)
 - Add 1 to every word count (Note: this is type)
 - Increment normalization factor by Vocabulary size: N (tokens) + V(types):

$$p_i^* = \frac{C_i + 1}{N + V}$$

- Backoff models
 - When a count for an n-gram is 0, back off to the count for the (n-1)-gram
 - These can be weighted
- Class-based smoothing
 - For certain types of n-grams, back off to the count of its syntactic class
 - E.g., Count ProperNouns in place of names (e.g., Obama)
- Good–Turing

timate

 Re-estimate amount of probability mass for zero (or low count) ngrams by looking at ngrams with higher counts

$$c^* = (c+1) \frac{N_{c+1}}{N_c}$$

Garden path sentences

- The old dog the footsteps of the young.
- The cotton clothing is made of grows in Mississippi.
- The horse raced past the barn fell.

What is a word class?

- Words that somehow 'behave' alike:
 - Appear in similar contexts
 - Perform similar functions in sentences
 - Undergo similar transformations
- 9 (or so) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction,

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly,
- P preposition of, by, to
- PRO pronoun I, me, mine
- DET determinerthe, a, that, those

POS Tagging: Definition

The process of assigning a part-of-speech or lexical class marker to each word in a corpus:

What is POS tagging good for?

- Is the first step of a vast number of Comp Ling tasks
- Speech synthesis:
 - How to pronounce "lead"?
 - INsult inSULT
 - OBject obJECT
 - OVERflow
 overFLOW
 - DIScount disCOUNT
 - CONtent conTENT
- Parsing
 - Need to know if a word is an N or V before you can parse
- Word prediction in speech recognition
 - Possessive pronouns (my, your, her) followed by nouns
 - Personal pronouns (I, you, he) likely to be followed by verbs
- Machine Translation

Open and closed class words

Closed class: a relatively fixed membership

• Prepositions: of, in, by, ...

- Auxiliaries: may, can, will had, been, ...
- Pronouns: I, you, she, mine, his, them, ...
- Usually function words (short common words which play a role in grammar)

Open class: new ones can be created all the time

- English has 4: Nouns, Verbs, Adjectives, Adverbs
- Many languages have all 4, but not all!
- In Lakhota and possibly Chinese, what English treats as adjectives act more like verbs.

Open class words

- Nouns
 - Proper nouns (Columbia University, New York City, Arthi Ramachandran, Metropolitan Transit Center). English capitalizes these.
 - Common nouns (the rest). German capitalizes these.
 - Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (fish, salt, communism) (*two fishes)
- Adverbs: tend to modify things
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here, home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)
- Verbs:
 - In English, have morphological affixes (eat/eats/eaten)
 - Actions (walk, ate) and states (be, exude)

- Many subclasses, e.g.
 - eats/V \Rightarrow eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN, eating/VBG, ...
 - Reflect morphological form & syntactic function

How do we decide which words go in which classes?

- Nouns denote people, places and things and can be preceded by articles? But...
 - My typing is very bad.
 - *The Mary loves John.
- Verbs are used to refer to actions, processes, states
 - But some are closed class and some are open
 - I will have emailed everyone by noon.
 - Adverbs modify actions

<u>Is Monday</u> a temporal adverb or a noun? Some others?

Closed Class Words

- Idiosyncratic
- Closed class words (Prep, Det, Pron, Conj, Aux, Part, Num) are easier, since we can enumerate them....but
 - Part vs. Prep
 - George eats up his dinner/George eats his dinner up.
 - George eats up the street/*George eats the street up.
 - Articles come in 2 flavors: definite (the) and indefinite (a, an)

POS tagging: Choosing a tagset

- To do POS tagging, need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 N, V, Adj, Adv.
- Brown Corpus (Francis & Kucera '82), 1M words, 87 tags
- Penn Treebank: hand-annotated corpus of Wall Street Journal, 1M words, 45-46 tags
 - Commonly used
 - set is finer grained,
- Even more fine-grained tagsets exist

Penn TreeBank POS Tag set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
]]]	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	~~	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; – -)
RP	Particle	up, off			

Using the UPenn tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "to".

POS Tagging

Words often have more than one POS: *back*

- The *back* door = JJ
- On my *back* = NN
- Win the voters *back* = RB
- Promised to *back* the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How do we assign POS tags to words in a sentence?

- Time flies like an arrow.
- Time/[V,N] flies/[V,N] like/[V,Prep] an/Det arrow/N
- Time/N flies/V like/Prep an/Det arrow/N
- Fruit/N flies/N like/V a/DET banana/N
- Fruit/N flies/V like/Prep a/DET banana/N
- The/Det flies/N like/V a/DET banana/N

How hard is POS tagging? Measuring ambiguity

		Original		Treebank		
		87-tag corpus		45-tag corpus		
Unambiguous (1 tag)		44,019		38,857		
Ambiguous	(2-7 tags)	5,490		8844		
Details:	2 tags	4,967		6,731		
	3 tags	411		1621		
	4 tags	91		357		
	5 tags	17		90		
	6 tags	2	(well, beat)	32		
	7 tags	2	(still, down)	6	(well, set, round, open,	
					fit, down)	
	8 tags			4	('s, half, back, a)	
	9 tags			3	(that, more, in)	

Potential Sources of Disambiguation

- Many words have only one POS tag (e.g. is, Mary, very, smallest)
- Others have a single most likely tag (e.g. a, dog)
- But tags also tend to co-occur regularly with other tags (e.g. Det, N)
- In addition to conditional probabilities of words P(w₁|w_{n-1}), we can look at POS likelihoods P(t₁|t_{n-1}) to disambiguate sentences and to assess sentence likelihoods

3 methods for POS tagging

- 1. Rule-based tagging
 - (ENGTWOL)
- 2. Transformation-based tagging
 - 1. Learned rules (statistic and linguistic)
 - Brill tagger
- 3. Stochastic (=Probabilistic) tagging
 - HMM (Hidden Markov Model) tagging

Rule-based tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start with a dictionary

- she: PRP
- promised: VBN,VBD
- to TO
- back: VB, JJ, RB, NN
- the: DT
- bill: NN, VB
- Etc... for the ~100,000 words of English

Use the dictionary to assign every possible tag

NN RB VBN JJ VB PRP VBD TO VB DT NN She promised to back the bill

Write rules to eliminate tags

Eliminate VBN if VBD is an option when VBN/VBD follows "<start> PRP"

NN

			RB		
	VBN		JJ		VB
PRP	VBD	TO	VB	DT	NN
She	promised	to	back	the	bill

Sample ENGTWOL Lexicon

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
entire	ADJ	ABSOLUTE ATTRIBUTIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	N	GENITIVE SG
furniture	N	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	v	IMPERATIVE VFIN
show	v	PRESENT -SG3 VFIN
show	N	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	PCP2	SV
occurred	V	PAST VFIN SV

Stage 1 of ENGTWOL Tagging

First Stage: Run words through FST morphological analyzer to get all parts of speech.

• Example: Pavlov had shown that salivation ... Pavlov PAVLOV N NOM SG PROPER HAVE V PAST VFIN SVO had HAVE PCP2 SVO

SHOW PCP2 SVOO SVO SV shown **ADV**

that

PRON DEM SG

DET CENTRAL DEM SG

CS

salivation NNOM SG

Stage 2 of ENGTWOL Tagging

- Second Stage: Apply NEGATIVE constraints.
- Example: Adverbial "that" rule
 - Eliminates all readings of "that" except the one in
 - "It isn't <u>that</u> odd"

Given input: "that"

lf

- (+1 A/ADV/QUANT) ;if next word is adj/adv/quantifier
- (+2 SENT-LIM) ;following which is E-O-S

```
(NOT - 1 SVOC/A); and the previous word is not a
```

- ; verb like "consider" which
 - ; allows adjective complements

```
; in "I consider that odd"
```

```
Then eliminate non-ADV tags
Else eliminate ADV
```

Transformation-Based Tagging (Brill Tagging)

- Combination of Rule-based and stochastic tagging methodologies
 - Like rule-based because rules are used to specify tags in a certain environment
 - Like stochastic approach because machine learning is used—with tagged corpus as input
 - Rules are learned
- Input:
 - tagged corpus
 - dictionary (*with most frequent tags*)

Transformation-Based Tagging

- Basic Idea:
 - Set the most probable tag for each word as a start value
 - Change tags according to rules of type "if word-1 is a determiner and word is a verb then change the tag to noun" in a specific order
- Training is done on tagged corpus:
 - Use a set of rule templates
 - Among the set of rules, find one with highest score
 - Continue finding rules until lowest score threshold is passed
 - Keep the ordered set of rules

Rules make errors that are corrected by later rules

TBL Rule Application

- Tagger labels every word with its most-likely tag
 - For example: *race* has the following probabilities in the Brown corpus:
 - *P(NN/race) = .98*
 - *P(VB/race)*= .02
- Transformation rules make changes to tags
 - "Change NN to VB when previous tag is TO" ... is/VBZ expected/VBN to/TO race/NN tomorrow/NN becomes

... is/VBZ expected/VBN to/TO race/VB tomorrow/NN

TBL: Rule Learning

- > 2 parts to a rule
 - Triggering environment
 - Rewrite rule
- The range of triggering environments of templates (from Manning & Schutze 1999:363)

TBL: The Tagging Algorithm

- Step 1: Label every word with most likely tag (from dictionary)
- Step 2: Check every possible transformation & select one which most improves tagging
- Step 3: Re-tag corpus applying the rules
- Repeat 2-3 until some criterion is reached, e.g., X% correct with respect to training corpus
- RESULT: Sequence of transformation rules

TBL: Rule Learning (cont.)

- Problem: Could apply transformations ad infinitum!
- Constrain the set of transformations with "templates":
 - Replace tag X with tag Y, provided tag Z or word Z' appears in some position
- Rules are learned in ordered sequence
- Rules may interact.
- Rules are compact and can be inspected by humans

Templates for TBL

The preceding (following) word is tagged **z**. The word two before (after) is tagged **z**. One of the two preceding (following) words is tagged **z**. One of the three preceding (following) words is tagged **z**. The preceding word is tagged **z** and the following word is tagged **w**. The preceding (following) word is tagged **z** and the word two before (after) is tagged **w**.

	Change tags			
#	From	To	Condition	Example
1	NN	VB	Previous tag is TO	to/TO race/NN \rightarrow VB
2	VBP	VB		rnight/MD vanish/VBP \rightarrow VB
3	NN	VB	One of the previous 2 tags is MD	might/MD not reply/NN $\rightarrow \rm VB$
		NN	One of the previous 2 tags is DT	
5	VBD	VBN	One of the previous 3 tags is VBZ	

Comparison of two approaches

- Accuracy
- Coverage
- Ease of building such a system
 - What is needed?
- Ease in porting to a new genre/new domain

Baseline?

Summary

Parts of speech

- What's POS tagging good for anyhow?
- Tag sets
- Rule-based tagging
- Learning rules: statistical and linguistic
- Next time:
 - HMM Tagging