
Homework 3: Adventures with word
embeddings (100 points)

Kathleen McKeown, Fall 2019
COMS W4705: Natural Language Processing

Due 11/13/19 at 11:59pm

The aim of this assignment is to furnish you with a solid practical and theoretical
understanding of the inner workings of word embeddings. In the first part of the as-
signment, you will explore the effects of the various hyperparameters word embedding
algorithms may be tuned with. In the second part, you will examine the connection
between the algorithms themselves.

General instructions

Please post all clarification questions about this homework on the class Piazza under the
“hw3” folder. You may post your question privately to the instructors if you wish. If your
question includes code or a partial solution, please post it privately to the instructors
only.
This is an individual assignment. Although you may discuss the questions with other

students, you should not discuss the answers with other students. All code and written
answers must be entirely your own.

Late policy: You may use late days on this assignment. However, you MUST include
at the top of your submission how many late days you are using. If you don’t tell us
or have used all your late days, 10% per late day will be deducted from the homework
grade. You may choose to save your late days for harder assignments later in the class.

You should budget at least a day just for your full set of experiments to run
successfully. This likely means several days’ worth of runtime in the debugging phase.
We strongly recommend that you start coding as soon as possible, but at minimum a
week in advance of the deadline.

1

1 Parameter search (50 points)

This section of the assignment will involve a hands-on exploration of the effects of various
hyperparameters on the information learned by different word embedding models, loosely
following the methodology of Levy et al. [2015]. In overview, you will be training a
battery of models across a range of algorithms and hyperparameters, while evaluating
the information they learn via three different tasks. The hyperparameters you will be
exploring are:

• Context window size (2, 5, 10)

• Dimension (100, 300, 1000)

• Number of negative samples (1, 5, 15) (applicable to SGNS only)

The models you will be testing them with are

• word2vec skip-gram with negative sampling

• SVD on the positive PMI matrix

This comes out to 27 + 9 = 36 unique settings of parameters and model total. You will
evaluate each of these using the provided script evaluate.py and report and analyze
results in your writeup.

Writeup

Your submission for this part of the assignment will consist of (1) a table containing the
results of your parameter search; and (2) a written analysis of your results. Each row
of the table should contain numerical results for one choice of algorithm and parameter
setting. The columns should include algorithm, context window, dimension, number of
negative samples (indicate ‘-’ for SVD), correlation on WordSim353, accuracy for at least
three BATS categories (you pick the ones you think are most interesting from among the
40 low-level categories, the 4 high-level categories, or the total score), and accuracy on
the MSR paraphrase corpus.
The table should look something like this:

Algorithm Win. Dim. N. s. WordSim BATS 1 BATS 2 BATS 3 MSR
word2vec 2 100 5 47.05 0.01 0.02 0.03 36
SVD 2 100 - 12.34 0.04 0.05 0.06 63

...
...

...
...

...

Table 1: An example results table.

Your writeup should at least address the following prompts, but you are also encour-
aged to include other interesting observations or hypotheses you have made.

2

1. Does larger dimensionality always equate to better performance? In which cate-
gories and for which models? Why do you think this is?

2. Does better performance on one task mean better performance on the others?
Provide a hypothesis as to why or why not.

3. Was performance roughly similar across all analogy categories? If different, how
did it vary? Why do you think you observed this variation? Perform a brief error
analysis and compare errors across the BATS categories you selected for your table.

You do not have to answer these in order, but you should explicitly indicate where you
answer each of them in your writeup.

1.1 Training corpus

You will train your embedding models on the Brown corpus. The corpus is provided
in data/brown.txt. The file is formatted with one sentence per line, tokens space-
separated. You may experiment with different methods of preprocessing, but it is rec-
ommended that you at least lowercase because some of the evaluation tasks only use
lowercased words.

1.2 Evaluation corpora

You will evaluate the embedding models you have trained on the following three tasks
and corpora (two intrinsic and one extrinsic):

• Word similarity - WordSim353 [Finkelstein et al., 2002]

• Analogy prediction - the Bigger Analogy Test Set [Gladkova et al., 2016]

• Paraphrase detection - the MSR paraphrase corpus [Dolan et al., 2004]

We provide a script, evaluate.py, which runs your trained vectors against these bench-
marks. It takes vectors in word2vec .bin format; in the format saved by gensim’s Keyed-
Vectors; or as a .txt file with one vector per line: space separated, with the word first,
then each of the values in the vector. (See the documentation in the code for an example.)
Note: many of the low-level category accuracies on BATS will be zero. This is expected

behavior. You will want to focus on analyzing performance on the categories that display
interesting nonzero scores.

1.3 Implementation details

We recommend that you train your word2vec models using the gensim package. You are
welcome to code up your own implementation (e.g. in PyTorch) if you like, but if you
choose to do this, you are responsible for ensuring that your implementation is correct.

3

You should implement the SVD method yourself. The matrix you will factorize here
is the positive pointwise mutual information matrix, or the matrix M whose entries are

Mij = max{0, PMI(wi, wj)},

where PMI(a, b) = log
p(a, b)

p(a)p(b)
. Using the truncated components of the singular value

decomposition
M = UΣV T ≈ UkΣkV

T
k = WCT ,

where Uk, Σk and Vk are the versions of the respective matrices truncated to the top k
singular values, and W and C are the matrices whose rows are the word and context
embeddings respectively, you will compute the symmetric decomposition

W = UkΣ
1/2
k

C = VkΣ
1/2
k .

You may use existing SVD solvers, e.g. numpy or scikit-learn’s SVD, but you will need
to implement co-occurrence collection and postprocessing on your own.
We recommend using a VM with at least 16GB of memory to ensure that you have

space to save all your models at the same time.
Hint: You won’t be able to store the entire co-occurrence matrix in memory as a dense

(e.g. numpy) array. Instead, you’ll need to use scipy’s lil_matrix format while counting
and performing other operations, then convert to coo_matrix before saving.
Hint: You’ll probably want to compute the co-occurrence matrix just once for each

context window size and save it.

1.4 Bonus (5 points)

For up to five points of extra credit, you may also do an additional evaluation and
analysis. You can evaluate the above parameter settings on GloVe (in this case we
recommend using the implementation of GloVe available from its website); or you may
load a single pretrained BERT model (see Hugging Face’s Transformers library) and
evaluate it on the same tasks. If you choose to use BERT, you will need to implement
the evaluation yourself, as the provided evaluation script only runs on static models.
Alternatively, you may implement a novel modification to word2vec, SVD-PPMI or

GloVe and evaluate it for up to five points of extra credit. Hint: SVD will probably be
easiest.
You can receive at most five points of extra credit total.

2 Fun with objective functions (50 points)

In this portion of the assignment we will uncover the relationship between the objective
function of word2vec and matrix factorization methods.

4

We will relate skip-gram with negative sampling to matrix factorization by first reduc-
ing its global objective to a local one under the assumption that individual word-context
pairs are independent, then analyzing the optimal solution for each pair.
You should show all work in this section, and simplify expressions as much as possible.

Hint: You may find it useful to consult the provided reference when doing problem 2,
but problem 3 can be solved much more neatly than they do in the paper.

Notation and definitions

We follow the notation of Levy and Goldberg [2014] with minor modifications.
Setting. We are given the following:

• A word vocabulary Vw and context vocabulary Vc.

• An input corpus D, consisting of a sequence of pairs (w, c) where w ∈ Vw and
c ∈ Vc, with |D| = N .

• Some number k of negative samples.

Each word w is associated with a word vector ~w, and each context word c with a context
vector ~c. We will denote the number of times a word w appears in D by Nw, the number
of times a context c appears by Nc, and the number of times any particular pair (w, c)
appears by Nw,c.
Recall that the objective for skipgram with negative sampling is to maximize the log

likelihood of its observed corpus, modeled as follows:

L =
∑

(w,c)∈D

log p(w, c)

=
∑
w∈Vw

∑
c∈Vc

Nw,c log p(w, c)

≈
∑
w∈Vw

∑
c∈Vc

Nw,c

(
log σ(~w · ~c) + k · Ec′∼Pn(c)[log σ(−~w · ~c′)]

)
.

1) (Preliminaries.) The sigmoid function is defined as

σ(x) =
1

1 + e−x
.

i) Find an expression for σ(−x) in terms of σ(x).

ii) Calculate the derivative
d

dx
σ(x).

iii) Calculate the derivative
d

dx
log(σ(x)). Simplify to an expression in terms of σ.

5

2) (A simplified global objective.) In general, Pn(c) can be any appropriate “noise
distribution” over the context vocabulary. Here, for simplicity’s sake, we will consider

the empirical unigram distribution: Pn(c) =
Nc

N
.

i) Recall that the expectation of a random variable X drawn from a discrete dis-
tribution over possible outcomes {x1, x2, ..., xn} is E[X] =

∑n
i=1 p(xi)xi. Using

the above definition of Pn(c), write out the inner expectation in the SGNS loss
function as a sum.

ii) Reduce this into one double sum. Your final expression should look like

L =
∑
w∈Vw

∑
c∈Vc

(something here).

Hint: What is
∑
c∈Vc

Nw,c?

3) (Optimizing at the local level.) If we allow our vectors sufficient dimensionality,
we can assume the values of each ~w ·~c are independent. (Think about why this is the
case.)

Under this assumption, we can optimize the global objective by individually optimiz-
ing the local objective for each (w, c):

l = Nw,c log σ(~w · ~c) + k ·Nw
Nc

N
· log σ(−~w · ~c).

Note that this can be viewed as a function of a single scalar variable x = ~w · ~c.
i) Find the derivative of l with respect to x.

ii) Set the derivative to zero and solve for x.

iii) Now substitute ~w·~c back in for x. What is the optimal ~w·~c in terms of PMI(w, c)?

3 Submission instructions

Your writeup for section 1 and your solutions for section 2 should be submitted as a
single pdf file on Gradescope. We prefer that this pdf be named <your uni>.pdf.

You should zip your solution code for section 1 (and README, if you have one) in
a single folder named <your uni>-hw3, and submit the zip on CourseWorks. The data
and helper scripts we provided you do not need to be included in this zip.

4 Academic integrity

Copying or paraphrasing someone’s work (code included), or permitting your own work
to be copied or paraphrased, even if only in part, is not allowed, and will result in
an automatic grade of 0 for the entire assignment or exam in which the copying or

6

paraphrasing was done. Your grade should reflect your own work. If you believe you are
going to have trouble completing an assignment, please talk to the instructor or a TA in
advance of the due date.

References

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large para-
phrase corpora: Exploiting massively parallel news sources. In COLING 2004: Pro-
ceedings of the 20th International Conference on Computational Linguistics, pages
350–356, Geneva, Switzerland, aug 23–aug 27 2004. COLING. URL https://www.
aclweb.org/anthology/C04-1051.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-
man, and Eytan Ruppin. Placing search in context: The concept revisited. ACM
Transactions on information systems, 20(1):116–131, 2002.

Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based detection of
morphological and semantic relations with word embeddings: what works and what
doesn’t. In Proceedings of the NAACL Student Research Workshop, pages 8–15, San
Diego, California, June 2016. Association for Computational Linguistics. doi: 10.
18653/v1/N16-2002.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix fac-
torization. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 2177–2185. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5477-neural-word-embedding-as-implicit-matrix-factorization.pdf.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with
lessons learned from word embeddings. Transactions of the Association for Computa-
tional Linguistics, 3:211–225, 2015. doi: 10.1162/tacl_a_00134.

7

https://www.aclweb.org/anthology/C04-1051
https://www.aclweb.org/anthology/C04-1051
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf

	Parameter search (50 points)
	Training corpus
	Evaluation corpora
	Implementation details
	Bonus (5 points)

	Fun with objective functions (50 points)
	Submission instructions
	Academic integrity

