
Homework 2: Emotion Classification with
Neural Networks (100 points)

Kathleen McKeown, Fall 2019
COMS W4705: Natural Language Processing

Due 10/14/2019 at 11:59pm

Please post all clarification questions about this homework on the class Piazza under
the “hw2” folder. You may post your question privately to the instructors if you wish. If
your question includes code or a partial solution, please post it privately to the instruc-
tors ONLY.

This is an individual assignment. Although you may discuss the questions with other
students, you should not discuss the answers with other students. All code and written
answers must be entirely your own.

Late policy: You may use late days on this assignment. However, you MUST include
at the top of your submission how many late days you are using. If you don’t tell us
or have used all your late days, 10% per late day will be deducted from the homework
grade. You may choose to save your late days for harder assignments later in the class.

1 Introduction

This homework will serve as your introduction to using neural networks, a powerful tool
in the world of NLP. You will explore neural networks through the problem of emotion
classification, in which you assign one of several emotion labels to a piece of text (contrast
this multi-class problem with your first homework, where you developed separate models
for many binary problems). You will implement and apply different neural architectures
to this problem and work through the math that defines them. The dataset you will use
for this homework is taken from a CrowdFlower dataset1 (Sentiment Analysis: Emotion
in Text) from which a subset was used in an experiment published on Microsoft Azure
AI Gallery2.

1https://www.figure-eight.com/data-for-everyone/
2https://gallery.azure.ai/Experiment/Logistic-Regression-for-Text-Classification-Sentiment-Analysis-1
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2 Homework Instructions

2.1 Programming Problems (48 points)

For this assignment, you will implement different popular neural network architectures
and test them out on a social media emotion classification dataset. You will use a popu-
lar deep learning framework, PyTorch, to implement and train these neural models. For
this homework, we will provide a GPU image on Google Cloud (coms4705-gpu-student;
refer to the Google Cloud setup instructions if you need help finding it) within a few
days of the homework’s release. The networks in this assignment should run quickly
even without GPUs, so if you prefer, you may install PyTorch on the CPU image (using
conda install pytorch cpuonly -c pytorch; see the the download page) or work lo-
cally.

To get started, download the provided code from the website and open hw2.py. Ulti-
mately, the provided code and the code you write should work together to load the text
data from the data/crowdflower_data.csv file, preprocess it and place it into Pytorch
DataLoaders, create a number of models, train them on the training and development
data, and test them on a blind test set. Most of the code is already written for you; you
will complete this assignment by filling in some code of your own.

Provided Data
The data consists of 27,471 Tweets which were labeled with emotion labels through

crowdsourcing. We have selected the four emotion labels with the most data from the
original dataset: ‘neutral’, ‘happiness’, ‘worry’, and ‘sadness’. Each Tweet has been given
exactly 1 of these labels, and they are not preprocessed in any way before you run hw2.py.

Provided Code
Code is already provided to 1) load, preprocess, and vectorize the data; 2) load pre-

trained 100-dimensional GloVe embeddings (trained on Twitter); and 3) test a generic
model on the test set. The preprocessing code is located in utils.py. You may not
modify the test_model() function at any time. You may modify other code (e.g., the
preprocessing code) as part of your code extensions (see section 2.1.3).
The main() function in hw2.py is provided to start you out; it loads and preprocesses

the data, and will save it to file if you set FRESH_START = True and load it if you set
FRESH_START = False. You should use this function to run and test your code and to
train the models you submit, although we will not grade you on it specifically.

2.1.1 Training Code

You will need to fill in the train_model() function in hw2.py to train your models. You
may not modify the function header. The train_model() function you submit (and use
to train your own models) should do the followimg:

• Take in an arbitrary created model, a created loss function, a created optimizer,
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and the train and development data;

• Train by looping through minibatches of the whole training set (the provided
DataLoaders already provide minibatches of size 128; you may change the batch
size if you wish) (one pass through the whole training data is called an epoch);

• Zero the gradients before processing each minibatch;

• Calculate the predicted output on each minibatch;

• Calculate the loss on each minibatch (between the gold labels and your model
output) using the existing loss function;

• Perform backpropagation with the loss from each minibatch;

• Take an optimizer step each time you perform backpropagation;

• At the end of each epoch, calculate the total loss on the development set and print
it out;

• Train until the loss on the development set stops improving; and

• Return the trained model.

2.1.2 Base Models

You will implement two basic models, a dense neural network and a recurrent neural
network, by filling in the init() and forward() functions for the DenseNetwork and
RecurrentNetwork classes in the models.py file. You must submit these two trained
models, saved using torch.save(); those saved models must conform to the architectures
we lay out below and may not include any additional extensions.
When you save your models, make sure to

• Save the model BEFORE you start implementing any extensions for Section 2.1.3,

• Save the whole model, not just the state_dict, and

• Move the model to CPU before saving if you were working on a GPU.

Dense Network
Your dense network should...

• Feed the provided lists of word indices into an embedding layer initialized with the
pretrained GloVe embeddings;

– The embedding layer must be 100-dimensional to match the pretrained em-
beddings. You may choose whether to freeze the embedding layer or keep
training it.

• Take the sum of all word embeddings for the sentence;
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• Feed the result into a two-layer feedforward network, whose output is a vector of
size 4;

– You may add dropout and decide the hidden size in this network.

Recurrent Network
Your recurrent network should...

• Perform the same embedding step as above (without summing; you should get a
sequence of embeddings as output);

• Run the produced embeddings through a two-layer recurrent network (plain RNN,
LSTM, or GRU); and

– You may choose the type of RNN, the hidden size output by the RNN, the
number of layers, and the dropout.

• Project the final hidden state of the RNN to a vector of size 4, as above (i.e., using
a single dense layer).

2.1.3 Extensions

Finally, experiment with the architecture and training of your networks. Select two of
the following and try them out on one or both of your networks:

• A different word embedding setting (using a different set of pretrained embeddings
that were trained on an emotion-related task, training your own word embeddings
on the corpus, etc.)

• Changes to the preprocessing of the data (tokenizers specifically for Tweets, a
different method of selecting the vocabulary, etc.)

• Architecture changes (adding attention to your recurrent network, flattening em-
beddings using some method other than sum in the dense network, etc.)

• Or a similarly significant change that you come up with (i.e., no simple parameter
tuning)

These extensions should all be present in the hw2.py and models.py you submit. You
may try them out individually or both at once.
NOTE: You must submit your ORIGINAL code for the DenseNetwork and

RecurrentNetwork; PyTorch requires us to have the original class definition to load your
models. If you experiment with code inside one of the models, put that code in a NEW
model class in models.py. If we cannot load your models, you will not receive points for
their performance.
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2.2 Written Problems (39 points)

Now that you have implemented these architectures in code, let’s understand what’s
happening at a mathematical level. In this section, you will calculate the forward pass of
a dense neural network and work through an example of backpropagation to understand
how the network learns.
Submit the answers to these problems, with your work, in your typeset submission as

described in Section 3.4. (You do not have to show work for multiplying two matrices
together).

2.2.1 Dense Network - Forward (10 points total)

Suppose we have a simple dense network. The forward pass of this network is described
by:

Z1 =W1Ain + b1 (1)
A1 = f(Z1) (2)
Zout =WoutA1 + bout (3)
Aout = fout(Zout) (4)

where 1-2 describe a feed-forward layer and 3-4 describe the output layer.

Suppose that you are given the following:

W1 =


1 −1 2 3 0
4 0 −1 1 3
2 1 3 −5 −4
4 −3 2 1 −3

 b1 =


−1
2
−4
3


Wout =

[
2 −2 −1 3
−2 1 −5 4

]
bout =

[
12
3

]

Ain =


2 1
3 4
5 3
1 1
4 2


f1(x) = fout(x) = relu(x) =

{
x if x > 0

0 otherwise

That is, for simplicity, we will assume that f1 and fout are the same function.

1. Calculate the following: Z1 (3 points), A1 (2 points), Zout (3 points), and Aout (2
points). Show your work.
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2.2.2 Backpropagation (19 points total)

When the network learns via stochastic gradient descent, each time we see a training ex-
ample, we make our prediction, calculate the loss with respect to the gold label, and then
improve the network’s parameters. We calculate the proportion of the loss attributable
to each parameter—the gradient of the loss with respect to that parameter—and move
that parameter a tiny amount in the opposite direction.
This is described (for a generic network) by:

Parameters : W, b
Inputs : x̂
I t e r a t e u n t i l convergence ( f o r g iven l e a rn i ng ra t e η )

W ←W − η ∂Loss
∂W

b← b− η ∂Loss
∂b

Notice that stochastic gradient descent updates all of the parameters of the model.

Consider a neural network (Network N) with 4 inputs (x1, x2, x3, x4) defined below.
Note: this is not a dense network but it is still a neural network.

Network N
Inputs : x1, x2, x3, x4
Hidden un i t s : x5 = f5(x1), x6 = f6(x2, x3), x7 = f7(x4)
Output un i t : x8 = f8(x5, x6, x7)
Given by :

f5(x1) = σ(x1) =
1

1+exp(−x1)

f6(x2, x3) = a ∗ x2 + b ∗ x3 + c ∗ x2 ∗ x3
f7(x4) = (x4)

2 + d

f8(x5, x6, x7) =
exp(x6)∑7
i=5 exp(xi)

Where :
a, b, c, d ∈ R are l ea rned parameters .

End Network

Note: exp(x) = ex. Suppose that

a = 3, b = 4, c = 2, d = 2

x1 = 0, x2 = 2, x3 = −1, x4 = 2

learning rate
η = 0.1

and
∂Loss(x1, x2, x3, x4)

∂x8
= 3.

Answer the following:
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1. For i = 1, . . . , 7, write the formula to calculate

∂Loss

∂xi

. Show your work. (1 point each)

2. Calculate
∂Loss

∂a
,

∂Loss

∂b
,

∂Loss

∂c
,

∂Loss

∂d

and update the learned parameters a, b, c, d. Show your work. (2 points for each
partial derivative, 1 point for each update)

2.2.3 Coding Reflections (10 points)

Finally, answer the following questions about the programming portion of this assign-
ment:

• What extensions did you try in section 2.1.3? Where in the code did you need to
implement them, or what code implemented each? Why did you think each of them
might improve your performance? What was the actual effect of each one, and why
do you think that happened? (For each extension, write a short paragraph.) (10
points, 5 per extension)

3 Grading (WHAT YOU NEED TO SUBMIT!)

You will be graded based on the following:

3.1 Programming (48 points total)

Your deliverables are the following:

• Your completed hw2.py file (10 points total)

– The train_model() function should have the same function header as in the
provided code, should create an optimizer, should train on the training set
until the development loss stops decreasing, and should print the development
loss at the end of each epoch. This function may include any experiments from
section 2.1.3 as long as it does the above. (10 points)

• Your completed models.py file (20 points total)

– Your DenseNetwork class should be complete as per the specifications in 2.1.2.
(10 points)

– Your RecurrentNetwork class should be complete as per the specifications in
2.1.2.. (10 points)
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• Your DenseNetwork and RecurrentNetworkmodels saved with torch.save() (NOTE:
You should save the whole model, not just the state dict; also, save a
CPU version.) (6 points total)

– Your DenseNetwork model, saved as dense.pth, should accept the output of
the provided DataLoaders as input, produce a (batch_size, 4) matrix of prob-
abilities as output, and conform to the architecture specifications in section
2.1.2. (3 points)

– Your RecurrentNetwork model, saved as recurrent.pth, should accept the
output of the provided DataLoaders as input, produce a (batch_size, 4)matrix
of probabilities as output, and conform to the architecture specifications in
section 2.1.2. (3 points)

• Your extensions from section 2.1.3 should be present and correctly implemented
(12 points total).

– The extensions may be anywhere in your code; you MUST tag them with
a comment pointing them out, and include the text “extension-grading” in
that comment so we can find them easily.

– Each extension is worth 6 points. If you do more than two, you will be graded
on the first two listed in your written answers. Make sure you include the
utils.py file!

We will not grade you on your main() function or any other function unless you have
changed it drastically, but you should use the existing setup in main() to run your
experiments.

3.2 Software Engineering (includes documentation) (5 points)

Within Code Documentation

• Code should be documented in a meaningful way. This can mean expressive func-
tion/variable names as well as commenting.

• Informative method/function/variable names.

• Efficient implementation.

3.3 F1 Score (8 points total)

You will also be graded on the performance of both of your saved models using the
provided test_model() function. You will receive 4 points for each model if you achieve
at least 40 points in macro F1 score for that model. This threshold should not be
difficult to achieve given the starting parameters, and should rather serve as a check
that you implemented your model correctly and understand the code in order to tweak
parameters.
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3.4 Written Answers (39 points total)

Your deliverables are the following:

• A hw2-written.pdf file containing your name, email address, the homework num-
ber, and your answers for the written portion. If you are using any late days for this
assignment, note them at the top of this file. The following is the point breakdown
for each problem.

1. Dense Network - Forward (10 points total)

2. Backpropagation (19 points total)

3. Coding Reflections (10 points total)

4 Submission Instructions

You should submit the following on CourseWorks:

• A zip file named <YOUR_UNI>-hw2.zip, for example, ect2150-hw2.zip.
This should have exactly the files listed in the deliverables in section 3.1, all placed
inside a <YOUR_UNI>_hw2 directory. Include any external files needed to run your
code (e.g., word embeddings we did not provide you). You do not need to include
the provided data files or pretrained word embeddings in the zip.

You should submit the following on Gradescope:

• The hw2-written.pdf as described in section 3.4.

NOTES:

1. We WILL NOT grade code that does not run in Python 3.6.9, INCLUDING
because of Python 2 print errors. We will grade your code on the VM image we
provided you, so you should test it there before submitting on CourseWorks.

2. Handwritten solutions WILL NOT be graded. This includes pictures of hand-
written answers inside the PDF. If you have concerns about typesetting, please
talk to the TAs or post on Piazza.

5 Academic integrity

Copying or paraphrasing someone’s work (code included), or permitting your own work
to be copied or paraphrased, even if only in part, is not allowed, and will result in
an automatic grade of 0 for the entire assignment or exam in which the copying or
paraphrasing was done. Your grade should reflect your own work. If you believe you are
going to have trouble completing an assignment, please talk to the instructor or a TA in
advance of the due date.
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