
Scikit-learn

COMSW4705 Fall 2019
Elsbeth Turcan

ML Pipeline

● Data gathering/preprocessing

● Vectorization

● Training

● Prediction

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
import sklearn.metrics
import sklearn.neighbors

print("Loading 20 newsgroups dataset for categories:")
data_train = fetch_20newsgroups(subset='train', shuffle=True, random_state=42)
data_test = fetch_20newsgroups(subset='test', shuffle=True, random_state=42)
print('data loaded')

'''Create tf-idf vectors for the input'''
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.9,
 stop_words='english')
X_train = vectorizer.fit_transform(data_train.data)
X_test = vectorizer.transform(data_test.data)
y_train = data_train.target
y_test = data_test.target

'''Train a K-Neighbors Classifier on the data'''
n_neighbors = 2
weights = 'uniform'
clf = sklearn.neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_train, y_train)

'''Make predictions on the test data using the trained classifier'''
y_predicted = clf.predict(X_test)
print ('Classification report:')
print sklearn.metrics.classification_report(y_test, y_predicted,

target_names=data_test.target_names)

Cross-validation

● N-fold cross-validation splits the training

data into N sections, or “folds”, and iterates

over them, treating each fold as a miniature

test set in one iteration and training on all

other data

● Useful for analyzing the robustness of your

model, or training on small data

● Be mindful that you do not train on features

that only appear in test!
○ Sklearn’s built-in cross validation functions

DO NOT DO THIS CORRECTLY!

train

train

train

train

test

train a model
using only this
data

treat this like a
blind test set

Cross-validation

● N-fold cross-validation splits the training

data into N sections, or “folds”, and iterates

over them, treating each fold as a miniature

test set in one iteration and training on all

other data

● Useful for analyzing the robustness of your

model, or training on small data

● Be mindful that you do not train on features

that only appear in test!
○ Sklearn’s built-in cross validation functions

DO NOT DO THIS CORRECTLY!

test

train

train

train

train

Cross-validation

● N-fold cross-validation splits the training

data into N sections, or “folds”, and iterates

over them, treating each fold as a miniature

test set in one iteration and training on all

other data

● Useful for analyzing the robustness of your

model, or training on small data

● Be mindful that you do not train on features

that only appear in test!
○ Sklearn’s built-in cross validation functions

DO NOT DO THIS CORRECTLY!

train

test

train

train

train

...and so on;
average the accuracies
of all 5 iterations to get
the model accuracy

Cross-validation

● N-fold cross-validation splits the training

data into N sections, or “folds”, and iterates

over them, treating each fold as a miniature

test set in one iteration and training on all

other data

● Useful for analyzing the robustness of your

model, or training on small data

● Be mindful that you do not train on features

that only appear in test!
○ Sklearn’s built-in cross validation functions

DO NOT DO THIS CORRECTLY!

● Sklearn has useful built-in iterators you can

use to split your data into the right folds

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

Tuning

● Models have various parameters and

certain parameter settings are more

appropriate for your problem

● The documentation will list them and

their possible values

● To get 3/5 or even 4/5 points for HW1,

you shouldn’t need to worry too much

about parameters

Saving models

● Scikit-learn saves models to file using the built-in library pickle

pickle.dump(model, open(‘model.pkl’, ‘w+’))

● Models can be loaded in new files (without knowing what they originally were)

model = pickle.load(open(‘model.pkl’, ‘r’))

model.predict(...)

● Good idea to save your best-performing models while you try different model settings

Tips and Tricks

● Try simple things first

● Make educated guesses to narrow down the search space
○ Look at the features given in the data .csv
○ Think why certain models or feature combinations might be good

● Don’t tune your parameters and features individually and exhaustively
○ i.e., don’t write a single classifier and keep changing individual numbers -- automate the search!

● Sklearn vectorizers are your friends for n-grams additional features such as LIWC
○ They have options too - e.g., n-grams have a range and vocabulary size

● HW1: try first to improve your plain n-gram model -- then your feature model has a good

foundation

● Come to office hours if you need help with the basics of machine learning

https://scikit-learn.org/stable/modules/feature_extraction.html

