CS 4705
Hidden Markov Models

Slides adapted from Dan Jurafsky, and James Martin



Responses on “well”

There is an oil well a few miles away from my house. Noun.

Well! | never thought | would see that! Interjection

It is a well designed program. Adv

Tears welled in her eyes. Verb

The store sells fruit as well as vegetables. Conjunction.

Are you well? Adj.

He and his family were well off. Adjectival Phrase (?)




Announcements

* Reading for today: Chapter 7-7.5 (NLP), C 8.4 Speech and
Language

* The Tas will be offering tutorials on the math of neural nets
and in particular, back propagation




Disambiguating “race”

@@®®®

Secretariat Is  expected to race tomorrow

Secretariat Is  expected to race tomorrow .



Disambiguating “race”

292 ime

Secretariat Is  eXxpected, tomorrow

Secretariat Is  expected to race tomorrow .



Disambiguating “race”

2l

Secretariat IS expected to race tomorrow

@@@@

Secretariat Is  expected to race tomorrow

(b)




Disambiguating “race”

SRR

Secretariat Is  expected to

Voo

Secretariat Is  expected to race tomorrow .



P(NN|TO) =.00047

P(VB|TO) = .83

P(race|NN) = .00057

P(race|VB) =.00012

P(NR|VB) =.0027

P(NR|NN) = .0012
P(VB|TO)P(NR|VB)P(race|VB) = .00000027
P(NN|TO)P(NR|NN)P(race| NN)=.00000000032
So we (correctly) choose the verb reading,




Definitions

* A weighted finite-state automaton adds probabilities to the arcs
The sum of the probabilities leaving any arc must sum to one

* A Markov chain is a special case of a WFST

the input sequence uniquely determines which states the automaton
will go through

* Markov chains can’t represent inherently ambiguous problems
Assigns probabilities to unambiguous sequences




Markov chain for weather




Markov chain for words




Markov chain = “First-order
observable Markov Model”

* a set of states
Q =4y, 9,...0y, the state at time tiis q,
* Transition probabilities:
a set of probabilities A = a,a,,...a,1---@5-
Each a; represents the probability of transitioning from state i to state j
The set of these is the transition probability matrix A

a;,=P(q,=jlg_=1i) l<i,jsN
N

a.=1;, l=sisN

L
j=1

* Distinguished start and end states




Markov chain = “First-order
observable Markov Model”

* Current state only depends on previous state

P(q;1q,..q,.) = P(q;1q,_)




Another representation for start
state

* Instead of start state

* Special initial probability vector nt

w,=P(gq =1) l=sisN

An initial distribution over probability of start states

* Constraints:
N

Eﬂ’j =]
j=1




The weather figure using pi




The weather figure: specific
example




Markov chain for weather

* What is the probability of 4 consecutive rainy days?




What is the probability of 4 consecutive
rainy days?

u

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Hidden Markov Models

* We don’t observe POS tags
* We infer them from the words we see

* Observed events

* Hidden events




HMM for Ice Cream

* You are a climatologist in the year 2799
* Studying global warming

* You can’t find any records of the weather in New York, NY for
summer of 2007

* But you find Kathy McKeown’s diary

* Which lists how many ice-creams Kathy ate every date that
summer

* Our job: figure out how hot it was




Hidden Markov Model

* For Markov chains, the output symbols are the same
as the states.

See hot weather: we're in state hot

* But in part-of-speech tagging (and other things)
The output symbols are words
The hidden states are part-of-speech tags

* So we need an extension!

* A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as
the states.

* This means we don’t know which state we are in.




Hidden Markov Models

States Q =q, q,...q:
Observations O= 0, 0,...0y.

Each observation is a symbol from a vocabulary V = {v,,v,,...v\/}
Transition probabilities

Transition probability matrix A = {a;;}

a;,=P(q,=jlg_=1i) l<i,jsN
Observation likelihoods
Output probability matrix B={b.(k)}
b.(k)=P(X, =0,1q, =1)

Special initial probability vector nt

7w, =P(q =1) l=sisN



* Some constraints

Hidden Markov Models

J
w,=P(q =1) l=sisN

l

A N
Y b,(k)=1 S, -1
k=1 i=1

J




Assumptions

* Markov assumption:

P(q;1q,..q,.) = P(q;1q,_)

* Output-independence assumption
P(Ot |01t_19Q1t) = P(Ot IQI)




McKeown task

* Given

* lce Cream Observation Sequence: 2,1,3,2,2,2,3...

* Produce:
* Weather Sequence: H,C,H,H,H,C...




HMM for ice cream

T[=[.8,.2] 7 6

)] [2] [P(1 ICOLD)] [5]
=1 4 P(21COLD) |=] .4
1 P IcoLD) | | 1

(




Different types of HMM structure

Ergodic =
fully-connected

Bakis = left-to-right



Transitions between the hidden states of
HMM, showing A probs




B observation likelihoods for POS HMM

2
P(“aardvark” | TO)

if’.(“race” | TO)

P(“the” | TO)
P(“to” | TO)
i:".(“zeb ra” | TO)

P(“aardvark” | VB) *aardvark” | NN)

P(“race” | VB)
P(‘the” | VB)

P(“to” | VB)

P(“race” | NN)

(

(

P(“the” | NN)

P(“to” | NN)
(“zebra” | NN)

P

P(“zebra’ | VB)



Three fundamental Problems for HMMs

* Likelihood: Given an HMM A = (A,B) and an observation
sequence O, determine the likelihood P(O, A).

* Decoding: Given an observation sequence O and an HMM A =
(A,B), discover the best hidden state sequence Q.

* Learning: Given an observation sequence O and the set of
states in the HMM, learn the HMM parameters A and B.

What kind of data would we need to learn the HMM
parameters?




: What kind of data would we need to learn :
the HMM parameters?

u

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Decoding

* The best hidden sequence
Weather sequence in the ice cream task
POS sequence given an input sentence

* We could use argmax over the probability of
each possible hidden state sequence

Why not?

* Viterbi algorithm
Dynamic programming algorithm

Uses a dynamic programming trellis

Each trellis cell represents, v,(j), represents the probability
that the HMM is in state j after seeing the first t observations
and passing through the most likely state sequence




Viterbi intuition: we are looking for
the best ‘path’

promised to back the bill

Slide from Dekang Lin .



Intuition

* The value in each cell is computed by taking the MAX over all
paths that lead to this cell.

* An extension of a path from state i at time t-1 is computed by
multiplying:

(i) = glféaz\’;‘_lv"l(i) aij bj(or)

vi—1(i) the previous Viterbi path probability from the previous time step

ai; the transition probability from previous state g; to current state g;

bj(o;) the state observation likelihood of the observation symbol o; given
the current state j




The Viterbi Algorithm

function VITERBI(observations of len T, state-graph) returns best-path

num-states < NUM-OF-STATES(state-graph)
Create a path probabaility matrix viterbi[num-states+2,T+2]
viterbi[0,0] — 1.0
for each time step ¢ from 1 to 7T do
for each state s from 1 to num-states do

viterbi[s.t] «— max viterbi[s’,t— 1] * ag s * bs(ot)
1 < < num-states
backpointer[s.t]«<—  argmax viterbi[s',t — 1] * as g

1 < 5'< num-states
Backtrace from highest probabaility state in final column of viterbif | and return path



The A matrix for the POS HMM

VB TO NN PPSS
<s> 019 0043 041 067
VB 0038 035 047 0070
TO 83 0 00047 0
NN 0040 016 087 0045
PPSS 23 00079 0012 00014

Figure 4.15  Tag transition probabilities (the a array. p(7;|f;—1) computed from the
87-tag Brown corpus without smoothing. The rows are labeled with the conditioning
event; thus P(PPSS|VB) is .0070. The symbol <s>> is the start-of-sentence symbol.

What is P(VB|TO)? What is P(NN|TO)? Why does this make
sense?

What is P(TO|VB)? What is P(TO|NN)? Why does this make
sense?



What is P(NN|TO)?

016
.00047

087

None of the above

u

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



What is P(VB|TO)?

.035
.0038
047

.83

None of the above

u

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Why does this make sense?




The B matrix for the POS HMM

I want to race
VB 0 0093 0 00012
TO 0 0 99 0
NN 0 000054 0 00057
PPSS 37 0 0 0

I Figure 4.16 Observation likelihoods (the & array) computed from the 87-tag

Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the

difference in the probabilities.




| vi(j) = max v_1(i)a; ibj (o) L i

’ ’
<j< ¥ et
l — p £ 7
’ )
7’ ’
’ ’ | JaRY |
v,(4)=.041 x 0=0 2 R
l - - ’, I, l’ 1’
Vi ’ I -
’/ ’ ’ Il’
/ !
7 I o0 NN
! ’
’ i i ~=
/ ’ i
/ ] i
4 ! I
¥ i '
/ ! I
/ ‘ ]
’ ! !
i ! i
7 / i
’ ! i
’ / i
/ / i
’ ! '
’ i ' -
’ ! ’ s
’ ‘ ' ‘ X
! [} '+ TO
! i v ‘
' i N
! i
! i
4 [
’ '
4 [}
B ]

!
[
‘
i
i
L
I
’
’
!
II RN
! PPS
v S
\--
PN 1'_\\ 7 B
’ '
' stan o stan | ' ostant
\ ’ L ’
b L4 ~ - ~




< ov(j) =  max W(i)aijbj(or) i o

’ ’
< < s %250 4
l — p £ 7
et ’ /'y
7’ ’
’ ’ | JaRY |
v,(4)=.041 x 0=0 2 A
1 ) e e e / /
Vi ’ I -
’/ ’ ’ Il’
/ !
7 I o0 NN
! ’
’ i i ~=
/ ’ i
/ ] i
4 ! I
/ ' '
/ ' '
/ ‘ ]
’ ! !
i ! 7
7 / i
’ ! i
’ / i
/ / i
’ i '
’ i ' ~
’ ] ’ Plad
; ‘ ' A A
! ' v TO
’ N \ ,
’ ¢ N2
! i
! i
4 [
’ '
4 [}
B ]

! ;‘- %
y !/ PPS 1
.\S

PR N Y S Y 2
’ '

' stan o stan | ' ostant
Al ’ Al s’

b L4 Al - ~




W v (j) =  max (i) aijbjlor) Ly Sy

’ ’
<i< i 8
l p— y !
— — , 5
¢ i
7’ ’
’ ’ / '
v,(4)=.041 x 0=0 i syt
1 = = , P
/ ’ r
el / ! ! .-
s ’ ’ Il’
‘. / [
7 I o0 NN
. '
’ i i ~=
/ ’ i
,’ ] i
’ !
/I 4 ’
/ ! I
1 ! !
’ ’ !
v / i
7 / i
’ ! i
’ / i
/ / i
’ ! '
’ i ' -
4 ! ] ”
! / [ ’ '
’ ! v TO
! i . p
’ 7 N
! i
! i
4 [
’ '
4 [}
B ]

! la' %
, / PPS 1
.\S

IR s~ N, VLA
/ ;

' stan o stan | ' ostant
\ ’ L ’

b 4 S - ~




The A matrix for the POS HMM

VB TO NN PPSS

<S> 019 0043 041 067

VB 0038 035 047 0070
TO 83 0 00047 0

NN .0040 016 087 0045
PPSS 23 00079 0012 00014

Figure 4.15  Tag transition probabilities (the a array. p(7;|f;—1) computed from the
87-tag Brown corpus without smoothing. The rows are labeled with the conditioning
event; thus P(PPSS|VB) is .0070. The symbol <s>> is the start-of-sentence symbol.
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The B matrix for the POS HMM

I want to race
VB 0 0093 0 00012
TO 0 0 99 0
NN 0 000054 0 00057
PPSS 37 0 0 0

I Figure 4.16 Observation likelihoods (the & array) computed from the 87-tag

Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the

difference in the probabilities.
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Computing the Likelihood of an observation

* Forward algorithm

* Exactly like the viterbi algorithm, except

* To compute the probability of a state, sum the probabilities from
each path




* Look at a confusion matrix

Error Analysis: ESSENTIAL!!!

IN JJ NN NNP RB VBD VBN
IN - 2 7
JJ 2 - 3.3 2.1 1.7 2 2.7
NN 8.7 - 2
NNP 2 3.3 4.1 - 2
RB 2.2 20 S -
VBD 3 S - 44
VBN 2.8 2.6

* See what errors are causing problems

Noun (NN) vs ProperNoun (NN) vs Adj (JJ)

Adverb (RB) vs Prep (IN) vs Noun (NN)

Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)




