CS4705 Part of Speech tagging

Announcements

- Reading for today:
- Reading for next time:
- We are turning to syntax. Today: part-ofspeech tagging
- Homework 2 is out

The old dog the footsteps of the young.

The horse raced past the barn fell.

N

The old dog | the footsteps of the young.

The horse raced past the barn fell.

V

The old dog | the footsteps of the young.

The horse raced past the barn fell.

The old dog the footsteps of the young.

VBD

The horse raced past the barn | fell.

The old dog the footsteps of the young.

VBN VBD

The horse raced past the barn | fell.

The old dog the footsteps of the young.

The horse raced past the barn fell.

In the garden path reading of "The cotton clothing is made of grows in Mississippi" "cotton" is a

Verb

Noun

Adjective

Adverb

None of the above

In the correct reading of "The cotton clothing is made of grows in Mississippi" "cotton" is a

Verb

Noun

Adjective

Adverb

None of the above

What is a word class?

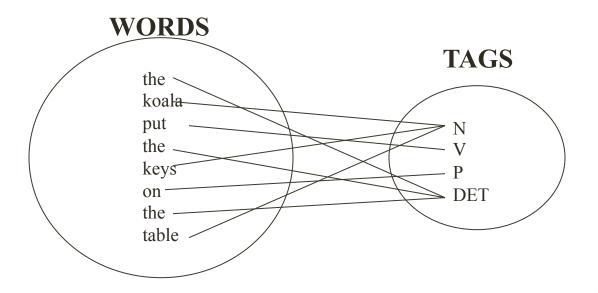
- Words that somehow 'behave' alike:
 - Appear in similar contexts
 - Perform similar functions in sentences
 - Undergo similar transformations
- 9 (or so) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction,

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly,
- P preposition of, by, to
- PRO pronoun *I, me, mine*
- DET determiner the, a, that, those

POS Tagging: Definition

 The process of assigning a part-of-speech or lexical class marker to each word in a corpus:



What is POS tagging good for?

- Is the first step of a vast number of Comp Ling tasks
- Speech synthesis:
 - How to pronounce "lead"?
 - INsult inSULT
 - OBject obJECT
 - OVERflow overFLOW
 - DIScount disCOUNT
 - CONtent conTENT
- Parsing
 - Need to know if a word is an N or V before you can parse
- Word prediction in speech recognition
 - Possessive pronouns (my, your, her) followed by nouns
 - Personal pronouns (I, you, he) likely to be followed by verbs
- Machine Translation

If lead is pronounced "led" it is a

Noun

Adjective

Verb

Adverb

None of the above

If "lead" is pronounced as "leed" it is a

Noun

Adjective

Verb

Adverb

None of the above

Open and closed class words

- Closed class: a relatively fixed membership
 - Prepositions: of, in, by, ...
 - Auxiliaries: may, can, will had, been, ...
 - Pronouns: I, you, she, mine, his, them, ...
 - Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have all 4, but not all!
 - In Lakhota and possibly Chinese, what English treats as adjectives act more like verbs.

Open class words

Nouns

- Proper nouns (Columbia University, New York City, Elsbeth Turcan, Metropolitan Transit Center). English capitalizes these.
- Common nouns (the rest). German capitalizes these.
- Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (fish, salt, communism) (*two fishes)
- Adverbs: tend to modify actions or predicates
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here, home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)

Verbs:

- In English, have morphological affixes (eat/eats/eaten)
- Actions (walk, ate) and states (be, exude)

- Many subclasses, e.g.
 - eats/V ⇒ eat/VB, eat/VBP, eats/VBZ, ate/VBD, eaten/VBN, eating/VBG, ...
 - Reflect morphological form & syntactic function

How do we decide which words go in which classes?

 Nouns denote people, places and things and can be preceded by articles? But...

My typing is very bad.

*The Mary loves John.

- Verbs are used to refer to actions, processes, states
 - But some are closed class and some are open
 I will have emailed everyone by noon.
 - Adverbs modify actions
 - Is Monday a temporal adverb or a noun?

Is Monday a temporal adverb or a noun?

Temporal adverb

Noun

Neither

Determining Part-of-Speech

A blue seat / A child seat: noun or adj?

- Some tests
 - Syntactic

A blue seat

A very blue seat

This seat is blue

Morphological

Bluer

A child seat

*A very child seat

*This seat is child

*childer

Blue is an adjective, but child is a noun

Determining Part-of-Speech

- Preposition or particle?
 - A. He threw out the garbage.
 - B. He threw the garbage out the door.
 - C. He threw the garbage out
 - D. *He threw the garbage the door out.
- out in A is a particle, in B is a preposition

Closed Class Words

- Idiosyncratic
- Closed class words (Prep, Det, Pron, Conj, Aux, Part, Num) are easier, since we can enumerate them....but
 - Part vs. Prep
 - George eats up his dinner/George eats his dinner up.
 - George eats up the street/*George eats the street up.
 - Articles come in 2 flavors: definite (the) and indefinite (a, an)

POS tagging: Choosing a tagset

- To do POS tagging, need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv.
- Brown Corpus (Francis & Kucera '82), 1M words, 87 tags
- Penn Treebank: hand-annotated corpus of Wall Street Journal, 1M words, 45-46 tags
 - Commonly used
 - set is finer grained,
- Even more fine-grained tagsets exist

Penn TreeBank POS Tag set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Using the UPenn tagset

- The/DT grand/JJ jury/NN commmented/ VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/ PRP..")
- Except the preposition/complementizer "to" is just marked "to".

POS Tagging

- Words often have more than one POS:
 back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How do we assign POS tags to words in a sentence?

What information do you think we could use to assign POS in the following sentences?

- Time flies like an arrow.
- Time/[V,N] flies/[V,N] like/[V,Prep] an/Det arrow/N
- Time/N flies/V like/Prep an/Det arrow/N
- Fruit/N flies/N like/V a/DET banana/N
- Fruit/N flies/V like/Prep a/DET banana/N
- The/Det flies/N like/V a/DET banana/N

How hard is POS tagging? Measuring ambiguity

		Original		Treebank	
		87-tag corpus		45-tag corpus	
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open,
					fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Can you think of seven sentences where in each one "well" is used with a different part of speech?

		Original		Treebank	
		87-tag corpus		45-tag corpus	
Unambiguous (1 tag)		44,019		38,857	
Ambiguous (2–7 tags)		5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round, open,
					fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Potential Sources of Disambiguation

- Many words have only one POS tag (e.g. is, Mary, very, smallest)
- Others have a single most likely tag (e.g. a, dog)
- But tags also tend to co-occur regularly with other tags (e.g. Det, N)
- In addition to conditional probabilities of words $P(w_1|w_{n-1})$, we can look at POS likelihoods $P(t_1|t_{n-1})$ to disambiguate sentences and to assess sentence likelihoods

Hidden Markov Model Tagging

Using an HMM to do POS tagging

A special case of Bayesian inference

 Related to the "noisy channel" model used in MT, ASR and other applications

POS tagging as a sequence classification task

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

Getting to HMM

• Out of all sequences of n tags $t_1...t_n$ want the single tag sequence such that $P(t_1...t_n | w_1...w_n)$ is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Getting to HMM

This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- Intuition of Bayesian classification:
 - Use Bayes rule to transform into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and prior

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} \underbrace{P(w_{1}^{n}|t_{1}^{n})}^{\operatorname{prior}} \underbrace{P(t_{1}^{n})}^{\operatorname{prior}}$$

$$P(w_{1}^{n}|t_{1}^{n}) \approx \prod_{i=1}^{n} P(w_{i}|t_{i})$$

$$P(t_{1}^{n}) \approx \prod_{i=1}^{n} P(t_{i}|t_{i-1})$$

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n}|w_{1}^{n}) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(w_{i}|t_{i}) P(t_{i}|t_{i-1})$$

Two kinds of probabilities (1)

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be:
 - Compute P(NN | DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two kinds of probabilities (2)

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is | VBZ) by counting in a labeled corpus:

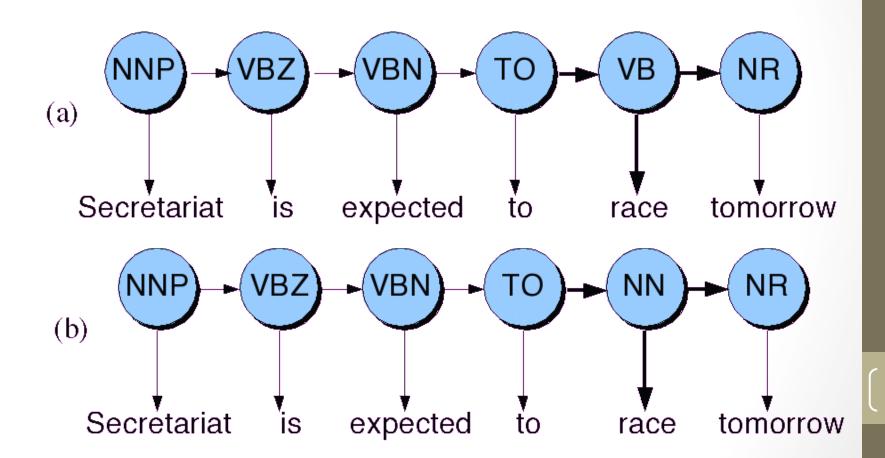
$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"



- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race | NN) = .00057
- P(race | VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb reading,

Summary

Parts of speech

- What's POS tagging good for anyhow?
- Tag sets
- Statistics and POS tagging
- Next time:
 - HMM Tagging

Homework 2