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Announcements
* Reading for today: C. 4, 4.5 NLP

* Reading for next class: C 3, NLP

* Next class will be taught by Chris Kedzie

* For new students in class:
No laptop policy

Class participation using PollEverywhere or in-
class comments




Today

* SciKit Learn Tutorial
* Wrap up on optimization

* Generative methods




Regularization

* Consider the case where one or more
documents are mis-labeled

Text from a novel may be mis-labeled as social
media if posted as a quote

* The classifier will attempt to learn weights

that promote words characteristic of
novels as predictors of social media

* Qverfitting can also occur when the social
media documents in the training set are
not representative




L.oss

* To prevent overfitting, a regularization parameter R(©) is added:

( loss regularz‘zation\
.

7 ~ ——

6 = argmin [~ L(f(x:0).y) + AR(®)
i=1

- /




Two Common regularizers

* L, regularization
Keeps sum of squares of parameter values low

Re,(W) = [W[} =3 (W)

i,
Gaussian prior or weight decay (Here W is weights
not including b)

Prefers to decrease parameter with high weight by 1
than 10 parameters with low weights

* L, regularization
Keeps sum of absolute value of parameters low
Rp, (W)= |[W]|l1 =) W

i,J
Punished uniformly for high and low values




Gradient based optimization

* Repeat until L (Loss) < margin
Compute L over the training set
Compute gradients of © with respectto L

Move the parameters in the opposite direction
of the gradient




Stochastic Gradient Descent

Algorithm 1 Online Stochastic Gradient Descent Training

Input:
- Function f(x;©) parameterized with parameters ©.
- Training set of inputs X1, ...,X,, and desired outputs yq1.,....,¥n.

- Loss function L.

1: while stopping criteria not met do
Sample a training example X;, y;
Compute the loss L(f(x1;0),yi)

g <« gradients of L(f(xi;0),yi) w.r.t ¢
O+ O —ng
return O




Problem

* Error is calculated based on just one
training sample

* May not be representative of corpus wide
loss

* Instead calculate the error based on a set
of training examples: minibatch

* -> Minibatch stochastic gradient descent




Computing Gradients

or -1 1=t
0 otherwise

O(—x] Wi, e))

Wi =Xp J=t
oL A(X[i] "W i, k]) :
aw[z,y] oWk — o =k

0 otherwise




Summary

* Smoothing helps to account for zero
valued n-grams

* Text classification using feature vectors
representing n-grams and other properties

* Discriminative learning

* Methods for optimization, loss functions
and regularization




Classification using a
Generative Approach

» Start with Naive Bayes and Maximum
Likelihood Expectation

* But we need some background in
probability first




Probabilities in NLP

*Very important for language processing
* Example in speech recognition:

“recognize speech” vs “wreck a nice beach”

* Example in machine translation:

IIII

avocat general”: “the attorney general” vs. “the general
avocado”

* Example in information retrieval:

If a document includes three occurrences of “stir” and one
of “rice”, what is the probability that it is a recipe

* Probabilities make it possible to combine
evidence from multiple sources systematically .



Probabilities

* Probability theory

predicting how likely it is that something will happen
* Experiment (trial)

e.g., throwing a coin
* Possible outcomes

heads or tails

* Sample spaces

discrete (number of “rice”) or continuous (e.g., temperature)

* Events

Q2 is the certain event

@ is the impossible event

event space - all possible events



Sample Space

* Random experiment: an experiment with
uncertain outcome

e.g., flipping a coin, picking a word from text

* Sample space: all possible outcomes, e.g.,
Tossing 2 fair coins, Q ={HH, HT, TH, TT}




Events

* Event: a subspace of the sample space
EC Q, E happens iff outcome isin E, e.g.,
E={HH} (all heads)
E={HH,TT} (same face)

* Probability of Event : 0 < P(E) <1, s.t.
P(€2)=1 (outcome always in )

P(AU B)=P(A)+P(B), if (ANB)=J (e.g., A=same face,
B=different face)




Example: Toss a Die

* Sample space: Q ={1,2,3,4,5,6}
* Fair die:
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6
* Unfair die: p(1) = 0.3, p(2) =0.2, ...
* N-dimensional die:
Q={1,23,4,..N}

* Example in modeling text:
Toss a die to decide which word to write in the next
position
Q ={cat, dog, tiger, ...}




Example: Flip a Coin

* Q : {Head, Tail}

* Fair coin:
p(H) =0.5, p(T) =0.5

* Unfair coin, e.g.:
p(H) =0.3, p(T) =0.7

* Flipping two fair coins:
Sample space: {HH, HT, TH, TT}

* Example in modeling text:

Flip a coin to decide whether or not to include a word in a
document

Sample space = {appear, absence}




Probabilities

* Probabilities
numbers between 0 and 1

* Probability distribution

distributes a probability mass of 1 throughout the sample
space Q2.

* Example:

A fair coin is tossed three times.
What is the probability of 3 heads?




Probabilities

* Joint probability: P(AMB), also written as P(A, B)

* Conditional Probability: P(A|B)=P(AMB)/P(B)
P(AMB) = P(A)P(B|A) = P(B)P(A|B)
So, P(A|B) = P(B|A)P(A)/P(B) (Bayes’ Rule)
For independent events, P(AMB) = P(A)P(B), so P(A|B)=P(A)

* Total probability: If A,, ..., A, form a partition of S, then
P(B) = P(BNS) = P(B, A,) + ... + P(B, A )
So, P(A;|B) = P(B|A))P(A;)/P(B)

=P(B|A)P(A)/[P(B|A)P(A))+...+P(B|A, )P(A,)]

This allows us to compute P(A,|B) based on P(B|A)




Probabilities

* Joint probability: P(AMB), also written as P(A, B)

* Conditional Probability: P(A|B)=P(AMB)/P(B)
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Properties of Probabilities

* p(D) =0

* P(certain event)=1

* p(X) =p(Y),ifXCY

* p(XUY)=pX)+p(Y),i fXNY=D




Conditional Probability

* Prior and posterior probability
* Conditional probability

P(A|B) =

P(A N B)

P(B)




Conditional Probability

* Six-sided fair die
P(D even)="?
P(D>=4)="?
P(D even|D>=4)="?
P(D odd|D>=4)="?
* Multiple conditions
P(D odd|D>=4, D<=5)="?




P(D even) =?

None of the above

o

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app
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None of the above

P(D even)=?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

o



P(Deven|D>4)

2/3
1/2

1/4

None of the above

o

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



P(D odd | D >=4)

3/6
2/3
1/3

1/4

None of the above

o

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



P(D odd|D>=4, D<=5)=?

2/3
1/3
0/2

1/2

None of the above

o

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app



Independence

* Two events are independent when
P(AMB) = P(A)P(B)
* Unless P(B)=0 this is equivalent to saying that P(A) =
P(A[B)
* If two events are not independent, they are
considered dependent




Probability Theory Review

=) P(Ad=aq)
Conditional Probability P( A‘B) — %BB))
Chain Rule P(AB) = P(A|B)P(B)

Law of Total Probability

Disjunction (Union) ~ P(A 'V B) = P(A) + P(B) - P(AB)
Negation (Complement) P(-A)=1-P(A)

[slide from Brendan O’Connor]




Naive Bayes Classifier

* We use Baye’s rule:
P(C|D) = P(D|C)P(C)
P(D)
Here C=Class, D=Document
* We can simplify and ignore P(D) since it is
independent of class choice
P(C|D) = P(D|C)P(C)
= P(C) MM P(w;| C)
i=1,n
This estimates the probability of D being in Class C
assuming that D as n tokens and w is a token in D.




Use Labeled Training Data

* P(C) is equivalent to the number of labeled
documents in the class / total number of
documents:

P(C)=D_./D

P(w,|C) is equivalent to the number of times

w; occurs with label C / the number of times

all words in the vocabulary (V) occur with

label C

P(w |C) = Count(w;C)/2 Count(v,C)

v, eV




Multinomial Naive Bayes
Independence Assumptions

P(w,,...w,)

* Bag of Words assumption
Assume position doesn’t matter

* Conditional Independence

Assume the feature probabilities P(w;|c) are independent
given the class c.

P(w,,...w )= P(w,|C)
1I=1,n

[Jurafsky and Martin] .



Multinomial Naive Bayes
Classifier

* Cyap = argmax P(w,...w_ | C) P(C)

* Cyg = argmax P(C;)|1M P(w]|C)
weW

This is why it’s naive!

[Jurafsky and Martin]



Laplace Smoothing: Needed
because counts may be zero

count(w;,c)

E (count(w,c))

wevV

P(w. )=

count(w;,c)+1

E (count(w,c)+1)

wev

I3(wi lc)=

count(w;,c)+1

(E COWlt W C

wev

+Y

[Jurafsky and Martin]



Questions?




SciKit Learn




