CS4705

Probability Review and Naïve Bayes

Slides from Dragomir Radev and modified

Announcements

- Reading for today: C. 4, 4.5 NLP
- Reading for next class: C 3, NLP
- Next class will be taught by Chris Kedzie
- For new students in class:
 - No laptop policy
 - Class participation using PollEverywhere or inclass comments

Today

- SciKit Learn Tutorial
- Wrap up on optimization
- Generative methods

Regularization

- Consider the case where one or more documents are mis-labeled
 - Text from a novel may be mis-labeled as social media if posted as a quote
- The classifier will attempt to learn weights that promote words characteristic of novels as predictors of social media
- Overfitting can also occur when the social media documents in the training set are not representative

Loss

• To prevent overfitting, a regularization parameter R(Θ) is added:

$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmin}} \left(\underbrace{\frac{1}{n} \sum_{i=1}^{n} L(f(\mathbf{x}_i; \Theta), \mathbf{y}_i)}_{\Theta} + \underbrace{\lambda R(\Theta)}_{\lambda R(\Theta)} \right)$$

Two Common regularizers

- L₂ regularization
 - Keeps sum of squares of parameter values low

$$R_{L_2}(\mathbf{W}) = ||\mathbf{W}||_2^2 = \sum_{i,j} (\mathbf{W}_{[i,j]})^2$$

- Gaussian prior or weight decay (Here W is weights not including b)
- Prefers to decrease parameter with high weight by 1 than 10 parameters with low weights
- L₁ regularization
 - Keeps sum of absolute value of parameters low

$$R_{L_1}(\mathbf{W}) = ||\mathbf{W}||_1 = \sum_{i=i}^{j} |\mathbf{W}_{[i,j]}|$$

Punished uniformly for high and low values

Gradient based optimization

- Repeat until L (Loss) < margin
 - Compute L over the training set
 - Compute gradients of Θ with respect to L
 - Move the parameters in the opposite direction of the gradient

Stochastic Gradient Descent

Algorithm 1 Online Stochastic Gradient Descent Training

Input:

- Function $f(\mathbf{x}; \Theta)$ parameterized with parameters Θ .
- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n .
- Loss function L.
 - 1: while stopping criteria not met do
 - 2: Sample a training example x_i, y_i
 - 3: Compute the loss $L(f(\mathbf{x_i}; \Theta), \mathbf{y_i})$
 - 4: $\hat{\mathbf{g}} \leftarrow \text{gradients of } L(f(\mathbf{x_i}; \Theta), \mathbf{y_i}) \text{ w.r.t } \theta$
 - 5: $\Theta \leftarrow \Theta \eta_t \hat{\mathbf{g}}$

6: return Θ

Problem

- Error is calculated based on just one training sample
- May not be representative of corpus wide loss
- Instead calculate the error based on a set of training examples: *minibatch*
- -> Minibatch stochastic gradient descent

Computing Gradients

$$\frac{\partial L}{\partial \mathbf{b}_{[i]}} = \begin{cases} -1 & i = t \\ 1 & i = k \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{\partial L}{\partial \mathbf{W}_{[i,j]}} = \begin{cases} \frac{\partial (-\mathbf{x}_{[i]} \cdot \mathbf{W}_{[i,t]})}{\partial \mathbf{W}_{[i,t]}} &= -\mathbf{x}_{[i]} \quad j = t \\\\ \frac{\partial (\mathbf{x}_{[i]} \cdot \mathbf{W}_{[i,k]})}{\partial \mathbf{W}_{[i,k]}} &= \mathbf{x}_{[i]} \quad j = k \\\\ 0 & \text{otherwise} \end{cases}$$

Summary

- Smoothing helps to account for zero valued n-grams
- Text classification using feature vectors representing n-grams and other properties
- Discriminative learning
- Methods for optimization, loss functions and regularization

Classification using a Generative Approach

- Start with Naïve Bayes and Maximum Likelihood Expectation
- But we need some background in probability first

Probabilities in NLP

- Very important for language processing
- Example in speech recognition:
 - "recognize speech" vs "wreck a nice beach"
- Example in machine translation:
 - "l'avocat general": "the attorney general" vs. "the general avocado"
- Example in information retrieval:
 - If a document includes three occurrences of "stir" and one of "rice", what is the probability that it is a recipe
- Probabilities make it possible to combine evidence from multiple sources systematically

- Probability theory
 - predicting how likely it is that something will happen
- Experiment (trial)
 - e.g., throwing a coin
- Possible outcomes
 - heads or tails
- Sample spaces
 - discrete (number of "rice") or continuous (e.g., temperature)
- Events
 - Ω is the certain event
 - arnothing is the impossible event
 - event space all possible events

Sample Space

- Random experiment: an experiment with uncertain outcome
 - e.g., flipping a coin, picking a word from text
- Sample space: all possible outcomes, e.g.,
 - Tossing 2 fair coins, $\Omega = \{HH, HT, TH, TT\}$

Events

- Event: a subspace of the sample space
 - $E \subseteq \Omega$, E happens iff outcome is in E, e.g.,
 - E={HH} (all heads)
 - E={HH,TT} (same face)
- Probability of Event : $0 \le P(E) \le 1$, s.t.
 - $P(\Omega)=1$ (outcome always in Ω)
 - P(A∪ B)=P(A)+P(B), if (A∩B)=Ø (e.g., A=same face, B=different face)

Example: Toss a Die

- Sample space: Ω = {1,2,3,4,5,6}
- Fair die:
 - p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6
- Unfair die: p(1) = 0.3, p(2) = 0.2, ...
- N-dimensional die:
 - Ω = {1, 2, 3, 4, ..., N}
- Example in modeling text:
 - Toss a die to decide which word to write in the next position
 - $\Omega = \{ cat, dog, tiger, ... \}$

Example: Flip a Coin

- Ω : {Head, Tail}
- Fair coin:
 - p(H) = 0.5, p(T) = 0.5
- Unfair coin, e.g.:
 - p(H) = 0.3, p(T) = 0.7
- Flipping two fair coins:
 - Sample space: {HH, HT, TH, TT}
- Example in modeling text:
 - Flip a coin to decide whether or not to include a word in a document
 - Sample space = {appear, absence}

- Probabilities
 - numbers between 0 and 1
- Probability distribution
 - distributes a probability mass of 1 throughout the sample space Ω .
- Example:
 - A fair coin is tossed three times.
 - What is the probability of 3 heads?

- Joint probability: $P(A \cap B)$, also written as P(A, B)
- Conditional Probability: P(A|B)=P(A∩B)/P(B)
 - $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
 - So, P(A|B) = P(B|A)P(A)/P(B) (Bayes' Rule)
 - For independent events, $P(A \cap B) = P(A)P(B)$, so P(A|B)=P(A)
- Total probability: If A₁, ..., A_n form a partition of S, then
 - $P(B) = P(B \cap S) = P(B, A_1) + ... + P(B, A_n)$
 - So, $P(A_i | B) = P(B | A_i)P(A_i)/P(B)$

 $= P(B|A_i)P(A_i)/[P(B|A_1)P(A_1)+...+P(B|A_n)P(A_n)]$

This allows us to compute P(A_i|B) based on P(B|A_i)

- Joint probability: $P(A \cap B)$, also written as P(A, B)
- Conditional Probability: P(A|B)=P(A∩B)/P(B)
 - $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
 - So, P(A|B) = P(B|A)P(A)/P(B) (Bayes' Rule)
 - For independent events, $P(A \cap B) = P(A)P(B)$, so P(A|B)=P(A)
- Total probability: If A₁, ..., A_n form a partition of S, then
 - $P(B) = P(B \cap S) = P(B, A_1) + ... + P(B, A_n)$
 - So, $P(A_i | B) = P(B | A_i)P(A_i)/P(B)$

 $= P(B|A_i)P(A_i)/[P(B|A_1)P(A_1)+...+P(B|A_n)P(A_n)]$

This allows us to compute P(A_i|B) based on P(B|A_i)

Properties of Probabilities

- p(∅) = 0
- P(certain event)=1
- $p(X) \le p(Y)$, if $X \subseteq Y$
- $p(X \cup Y) = p(X) + p(Y)$, if $X \cap Y = \emptyset$

Conditional Probability

- Prior and posterior probability
- Conditional probability

Conditional Probability

- Six-sided fair die
 - P(D even)=?
 - P(D>=4)=?
 - P(D even | D>=4)=?
 - P(D odd | D>=4)=?
- Multiple conditions
 - P(D odd|D>=4, D<=5)=?

P(D even) =?

P(D even) =?

P (D even | D > 4)

P(D odd | D >= 4)

P(D odd|D>=4, D<=5)=?

Independence

- Two events are independent when
 P(A∩B) = P(A)P(B)
- Unless P(B)=0 this is equivalent to saying that P(A) = P(A|B)
- If two events are not independent, they are considered dependent

Probability Theory Review

$$1 = \sum_{a} P(A = a)$$
Conditional Probability
$$P(A|B) = \frac{P(AB)}{P(B)}$$
Chain Rule
$$P(AB) = P(A|B)P(B)$$
Law of Total Probability
$$P(A) = \sum_{b} P(A, B = b)$$

$$P(A) = \sum_{b} P(A|B = b)P(B = b)$$
Disjunction (Union)
$$P(A \lor B) = P(A) + P(B) - P(AB)$$
Negation (Complement)
$$P(\neg A) = 1 - P(A)$$

[slide from Brendan O'Connor]

Naïve Bayes Classifier

• We use Baye's rule:

 We can simplify and ignore P(D) since it is independent of class choice

•
$$P(C|D) \cong P(D|C)P(C)$$

 $\cong P(C) \prod P(w_i|C)$
 $i=1,n$

 This estimates the probability of D being in Class C assuming that D as n tokens and w is a token in D.

Use Labeled Training Data

 P(C) is equivalent to the number of labeled documents in the class / total number of documents:

 $P(C) = D_c/D$

 $P(w_i|C)$ is equivalent to the number of times w_i occurs with label C / the number of times all words in the vocabulary (V) occur with label C

 $P(w_i|C) = Count(w_iC)/\Sigma Count(v_iC)$

Multinomial Naïve Bayes Independence Assumptions

P(w₁,...w_n)

- Bag of Words assumption
 - Assume position doesn't matter
- Conditional Independence
 - Assume the feature probabilities P(w_i|c) are independent given the class c.

$$P(w_1,...,w_n) = \prod P(w_i | C)$$

i=1,n

[Jurafsky and Martin]

Multinomial Naïve Bayes Classifier

• C_{MAP} = argmax $P(w_1...w_n | C) P(C)$

[Jurafsky and Martin]

Laplace Smoothing: Needed because counts may be zero

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c)}{\sum_{w \in V} (count(w, c))}$$

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

[Jurafsky and Martin]

Questions?

SciKit Learn