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Announcements	
• Reading	for	today:	C.	4,	4.5	NLP	
		
• Reading	for	next	class:	C	3,	NLP	

• Next	class	will	be	taught	by	Chris	Kedzie	
	
• For	new	students	in	class:	
•  No	laptop	policy	
•  Class	parKcipaKon	using	PollEverywhere	or	in-
class	comments	



Today	
• SciKit	Learn	Tutorial	
	
• Wrap	up	on	opKmizaKon	
	
• GeneraKve	methods	



Regularization	
• Consider	the	case	where	one	or	more	
documents	are	mis-labeled	
•  Text	from	a	novel	may	be	mis-labeled	as	social	
media	if	posted	as	a	quote	

• The	classifier	will	aRempt	to	learn	weights	
that	promote	words	characterisKc	of	
novels	as	predictors	of	social	media	
• OverfiTng	can	also	occur	when	the	social	
media	documents	in	the	training	set	are	
not	representaKve	



Loss	
•  To	prevent	overfiTng,	a	regularizaKon	parameter	R(Θ)	is	added:	



Two	Common	regularizers	
•  L2	regularizaKon	
•  Keeps	sum	of	squares	of	parameter	values	low	
	
	

•  Gaussian	prior	or	weight	decay	(Here	W	is	weights	
not	including	b)	
•  Prefers	to	decrease	parameter	with	high	weight	by	1	
than	10	parameters	with	low	weights	

•  L1	regularizaKon	
•  Keeps	sum	of	absolute	value	of	parameters	low	
	
	
Punished	uniformly	for	high	and	low	values	



Gradient	based	optimization	
• Repeat	unKl	L	(Loss)	<	margin	
• Compute	L	over	the	training	set	
• Compute	gradients	of	Θ	with	respect	to	L	
• Move	the	parameters	in	the	opposite	direcKon	
of	the	gradient	



Stochastic	Gradient	Descent	



Problem	
• Error	is	calculated	based	on	just	one	
training	sample	
	
• May	not	be	representaKve	of	corpus	wide	
loss	
	
• Instead	calculate	the	error	based	on	a	set	
of	training	examples:	minibatch	
	
• ->	Minibatch	stochasKc	gradient	descent	



Computing	Gradients	



Summary	
• Smoothing	helps	to	account	for	zero	
valued	n-grams	
• Text	classificaKon	using	feature	vectors	
represenKng	n-grams	and	other	properKes	
• DiscriminaKve	learning	
• Methods	for	opKmizaKon,	loss	funcKons	
and	regularizaKon	



ClassiCication	using	a	
Generative	Approach	
• Start	with	Naïve	Bayes	and		Maximum	
Likelihood	ExpectaKon	
	
• But	we	need	some	background	in	
probability	first	



Probabilities	in	NLP	
• Very	important	for	language	processing	
• Example	in	speech	recogniKon:	
•  “recognize	speech”	vs	“wreck	a	nice	beach”	

• Example	in	machine	translaKon:	
•  “l’avocat	general”:	“the	aRorney	general”	vs.	“the	general	
avocado”	

• Example	in	informaKon	retrieval:	
•  If	a	document	includes	three	occurrences	of	“sKr”	and	one	
of	“rice”,	what	is	the	probability	that	it	is	a	recipe	

• ProbabiliKes	make	it	possible	to	combine	
evidence	from	mulKple	sources	systemaKcally		



Probabilities	
• Probability	theory	
•  predicKng	how	likely	it	is	that	something	will	happen	

• Experiment	(trial)	
•  e.g.,	throwing	a	coin	

• Possible	outcomes	
•  heads	or	tails	

• Sample	spaces	
•  discrete	(number	of		“rice”)	or	conKnuous	(e.g.,	temperature)	

• Events	
•  Ω	is	the	certain	event		
•  ∅	is	the	impossible	event	
•  event	space	-	all	possible	events	



Sample	Space	
• Random	experiment:	an	experiment	with	
uncertain	outcome	
•  e.g.,	flipping	a	coin,	picking	a	word	from	text	
• Sample	space:	all	possible	outcomes,	e.g.,		
•  Tossing	2	fair	coins,	Ω	={HH,	HT,	TH,	TT}	



Events	
• Event:	a	subspace	of	the	sample	space	
•  E⊆	Ω,	E	happens	iff	outcome	is	in	E,	e.g.,		
•  E={HH}	(all	heads)		
•  E={HH,TT}	(same	face)	
		

• Probability	of	Event	:	0	≤	P(E)	≤1,	s.t.	
•  P(Ω)=1	(outcome	always	in	Ω)	
•  P(A∪	B)=P(A)+P(B),	if	(A∩B)=∅		(e.g.,	A=same	face,	
B=different	face)	



Example:	Toss	a	Die	

• Sample	space:	Ω	=	{1,2,3,4,5,6}	
• Fair	die:	
•  p(1)	=	p(2)	=	p(3)	=	p(4)	=	p(5)	=	p(6)	=	1/6	

• Unfair	die:	p(1)	=	0.3,	p(2)	=	0.2,	...	
• N-dimensional	die:	
•  Ω	=	{1,	2,	3,	4,	…,	N}	

• Example	in	modeling	text:	
•  Toss	a	die	to	decide	which	word	to	write	in	the	next	
posiKon	
•  Ω	=	{cat,	dog,	Kger,	…}	



Example:	Flip	a	Coin	
• Ω	:	{Head,	Tail}	
• Fair	coin:		
•  p(H)	=	0.5,	p(T)	=	0.5	
• Unfair	coin,	e.g.:	
•  p(H)	=	0.3,	p(T)	=	0.7	
• Flipping	two	fair	coins:	
•  Sample	space:	{HH,	HT,	TH,	TT}	

• Example	in	modeling	text:	
•  Flip	a	coin	to	decide	whether	or	not	to	include	a	word	in	a	
document	
•  Sample	space	=	{appear,	absence}	



Probabilities	

• ProbabiliKes	
•  numbers	between	0	and	1	

• Probability	distribuKon	
•  distributes	a	probability	mass	of	1	throughout	the	sample	
space	Ω.	

•  Example:		
•  A	fair	coin	is	tossed	three	Kmes.		
•  What	is	the	probability	of	3	heads?	



Probabilities	

•  Joint	probability:	P(A∩B),	also	wriRen	as	P(A,	B)	
•  CondiKonal	Probability:	P(A|B)=P(A∩B)/P(B)	
•  P(A∩B)	=	P(A)P(B|A)	=	P(B)P(A|B)	
•  So,	P(A|B)	=	P(B|A)P(A)/P(B)	(Bayes’	Rule)	
•  For	independent	events,	P(A∩B)	=	P(A)P(B),	so	P(A|B)=P(A)	

•  Total	probability:	If	A1,	…,	An	form	a	parKKon	of	S,	then	
•  P(B)	=	P(B∩S)	=	P(B,	A1)	+	…	+	P(B,	An)		
•  So,	P(Ai|B)	=	P(B|Ai)P(Ai)/P(B)	
																						=	P(B|Ai)P(Ai)/[P(B|A1)P(A1)+…+P(B|An)P(An)]		
•  This	allows	us	to	compute	P(Ai|B)	based	on	P(B|Ai)	
																							



Probabilities	
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•  So,	P(A|B)	=	P(B|A)P(A)/P(B)	(Bayes’	Rule)	
•  For	independent	events,	P(A∩B)	=	P(A)P(B),	so	P(A|B)=P(A)	
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Properties	of	Probabilities	
•  p(∅)	=	0		
•  P(certain	event)=1	
•  p(X)	≤	p(Y),	if	X	⊆	Y	
•  p(X	∪	Y)	=	p(X)	+	p(Y),	if	X	∩	Y=∅	



Conditional	Probability	

• Prior	and	posterior	probability	
• CondiKonal	probability	

P(A|B)	=		
P(A	∩	B)	

P(B)		

Ω	

A	 B	

A∩B	



Conditional	Probability	
• Six-sided	fair	die	
• P(D	even)=?	
• P(D>=4)=?	
• P(D	even|D>=4)=?	
• P(D	odd|D>=4)=?	
• MulKple	condiKons	
• P(D	odd|D>=4,	D<=5)=?	













Independence	

•  Two	events	are	independent	when		
P(A∩B)	=	P(A)P(B)	

• Unless	P(B)=0	this	is	equivalent	to	saying	that	P(A)	=	
P(A|B)	
•  If	two	events	are	not	independent,	they	are	
considered	dependent	



[slide	from	Brendan	O’Connor]	



Naïve	Bayes	ClassiCier	
• We	use	Baye’s	rule:	
•  P(C|D)	=	P(D|C)P(C)	
																					P(D)		
Here	C=Class,	D=Document	

• We	can	simplify	and	ignore	P(D)	since	it	is	
independent	of	class	choice	
•  P(C|D)	≅	P(D|C)P(C)	
													≅	P(C)	Π	P(wi|C)	
																								i=1,n	
•  This	esKmates	the	probability	of	D	being	in	Class	C	
assuming	that	D	as	n	tokens	and	w	is	a	token	in	D.		



Use	Labeled	Training	Data	
• P(C)	is	equivalent	to	the	number	of	labeled	
documents	in	the	class	/	total	number	of	
documents:	

	P(C)	=	Dc/D	
P(wi|C)	is	equivalent	to	the	number	of	Kmes	
wi	occurs	with	label	C	/	the	number	of	Kmes	
all	words	in	the	vocabulary	(V)	occur	with	
label	C 		

	P(w,|C)	=		Count(wiC)/Σ		Count(viC)	
																																													vi	εV	



Multinomial	Naïve	Bayes	
Independence	Assumptions	

• Bag	of	Words	assumpKon	
•  Assume	posiKon	doesn’t	maRer	

• CondiKonal	Independence	
•  Assume	the	feature	probabiliKes	P(wi|c)	are	independent	
given	the	class	c. 

[Jurafsky	and	MarKn]	

P(w1,…wn)	

P(w1,…wn)=	Π	P(wi|C)	
																					i=1,n	



Multinomial	Naïve	Bayes	
ClassiCier	
• CMAP	=	argmax	P(w1…wn|C)	P(C)	
	
• CNB	=		argmax	P(Cj)	Π	P(w|C)	
																																		wεW	

This	is	why	it’s	naïve!	

[Jurafsky	and	MarKn]	



Laplace Smoothing: Needed 
because counts may be zero 
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[Jurafsky	and	MarKn]	



Questions?	



SciKit	Learn	


