Neural Dialog Systems

Or Biran* orb@cs.columbia.edu

11/20/2019

Virtual personal assistants

Chatbots

Commercial assistants

Virtual personal assistants:

Alexa, Cortana, Siri, Alisa, Conversica, Google

Chatbots

Commercial assistants

Virtual personal assistants:

Chatbots:

Xiaolce (小冰) – aka Rinna, Tay, Zo

Commercial assistants

Virtual personal assistants:

Chatbots:

Xiaolce (小冰) – aka Rinna, Tay, Zo

Commercial assistants:

WeChat (e-commerce), WhatsApp (flights), websites

	Chatbots	Task-driven
Retrieval		
Generation		

	Chatbots	Task-driven
Retrieval		
Generation		

	Chatbots	Task-driven
Retrieval		
Generation		

	Chatbots	Task-driven
Retrieval		
Generation		
Hybrid		

	Chatbots	Task-driven	Collaborative learning
Retrieval			
Generation			
Hybrid			

Component architecture

	Chatbots	Task-driven	Collaborative learning
Retrieval			
Generation			
Hybrid			

End-to-end

	Chatbots	Task-driven	Collaborative learning
Retrieval			
Generation			
Hybrid			

Component architecture

	Chatbots	Task-driven	Collaborative learning
Retrieval			
Generation			
Hybrid			

End-to-end

Multi-turn generation

Multi-turn generation

Response diversity

Machine translation

Semantics fully determined; some lexical diversity

Summarization

Semantics superset determined

Question answering

 Semantics unknown, but right answer is fully determined

Dialog

Many right answers!

Multi-turn generation

Response diversity

Theory of mind Speaker intent H: Please book me a flight to Boston tomorrow.
M: How about one that leaves at 9am?
H: No, I need to sleep.
M: How about one that leaves at 8am?

Multi-turn generation

Response diversity

Theory of mind Speaker intent Emotional state H: Please book me a flight to Boston tomorrow.
M: How about one that leaves at 9am?
H: No, I need to sleep.
M: How about one that leaves at 8am?
H: NO!!!
M: 7am?

Multi-turn generation H: Do you know what time the meeting is? M: **Response diversity** Yes. Theory of mind H: I can't remember the name of the service you recommended. Speaker intent It's ok. Humans often don't **Emotional state** M: remember things. Pragmatics

Speech acts / implicature

Multi-turn generation

Response diversity

Theory of mind Speaker intent Emotional state

Pragmatics

Speech acts / implicature

- H: Do you know what time the meeting is?M: Yes.
- H: I can't remember the name of the service you recommended.
- M: It's ok. Humans often don't remember things.

Grice's maxims

- Quality (say true things)
- Quantity (don't say too much / too little)
- Relevance (be relevant)
- Manner (express things clearly)

Multi-turn generation

Response diversity

Theory of mind Speaker intent Emotional state

Pragmatics Speech acts / implicature Prosody

I'm not flying to Boston

Multi-turn generation

Response diversity

Theory of mind Speaker intent Emotional state

Pragmatics Speech acts / implicature Prosody Turn taking

Personality

- Basic idea: reuse MT encoder-decoder model
 - RNNs with attention (2015)

- Basic idea: reuse MT encoder-decoder model
 - RNNs with attention (2015)
- 3 papers within 2 months!

	Shang et al., 2015	Sordoni et al., 2015	Vinyals and Le, 2015
Input (concatenated)	Last message	Last two messages	Entire conversation
Language	Chinese	English	English
Domain(s)	Weibo (microblogs)	Twitter	Ubuntu IT helpdesk + OpenSubtitles (movie conversations)
Extras		Crafted features extracted from input (BOW, length diff, lexical matches)	

- Basic idea: reuse MT encoder-decoder model
 - RNNs with attention (2015)
- 3 papers within 2 months!
- Conclusions:
 - Outputs usually plausible in context
 - Generalizes to unseen questions and topics

H: who is skywalker?	H: is sky blue or black?
M: he is a hero .	M: blue.
H: who is bill clinton ?	H: does a cat have a tail?
M: he's a billionaire.	M: yes.

H:	hello!
M:	hello!
H:	how are you?
M:	l'm good.
H:	what's your name?
M:	I'm Julia .
H:	when were you born?
M:	July 20th.
H:	what year were you born?
M:	1977.
H:	where are you from?
M:	I'm out in the boonies.
H:	are you a man or a woman?
M:	l'm a woman.
H:	why are we here?
M:	l'm not sure.
H:	okay, bye!
M:	bye.
H:	see you later.
M:	bye.

- Basic idea: reuse MT encoder-decoder model
 - RNNs with attention (2015)
- 3 papers within 2 months!
- Conclusions:
 - Outputs usually plausible in context
 - Generalizes to unseen questions and topics
 - Tend to be generic and repetitive ("safe response")
 - No consistent personality ——
 - Long outputs can go off-topic or become incoherent

1	l: 0:	There are always 8 players at the Italian restricted area. Unbelievable! Unbelievable!	
		Shang et al., 2015	
/	H:	what is your job?	
e")	M:	I'm a lawyer.	
- , 	H:	what do you do?	
	M:	I'm a doctor.	

Vinyals and Le., 2015

- T-2: today i will walk for miles. clear sky clear mind.
- T-1: love walking. it's too hot to walk this month. i haven't moved. frozen. heat freeze.
- T: it's too hot for you to get up to honey if you have frozen yogurt to you.

Basic idea: BLEU-RNNs wit ē 3 papers wi Human Score Human Score (Group 1) Human Score (a) Twitter Conclusions Outputs ι BLEU Generaliz Tend to b No consis Human Score (Group 1) Human Score Human Score Liu et al., 2016 Long outp (b) Ubuntu

BLEU not useful: no correlation with human scores

Global coherence, meaningful content and "safe responses"

Two problems with seq2seq models

- Have trouble with long memory
- Tend to favor generic, non-informative output

Global coherence, meaningful content and "safe responses"

Two problems with seq2seq models

- Have trouble with long memory
- Tend to favor generic, non-informative output

Three general approaches / lines of research:

- Add features
 - Personality embeddings (Li et al., 2016b); Topics (Xing et al., 2016); Situations (Sato et al., 2017)
- Improve model architecture
 - Hierarchical encoders (Serban et al., 2016)
 - Memory networks (Bordes et al, 2016)
 - Variational AutoEncoders (Serban et al., 2017; Zhao et al., 2017; Shen et al., 2018; Park et al., 2018)
- Improve training
 - Diversity-promoting objective function (Li et al., 2015)
 - Reinforcement Learning with heuristic rewards (Li et al., 2016a); Adversarial Learning (Li et al., 2017; Xu et al., 2017; Liu and Lane, 2018)

Hierarchical encoders (Serban et al., 2016)

Utterance-level hidden state

Add variational latent variable

Add **Conditional Variational Autoencoders** (Sohn et al., 2015) Can be trained with stochastic gradient variational Bayes (Kingma and Welling, 2013) Use the variational lower bound of the LL as objective: $\log p_{\theta}(y|x) \ge -KL(q_{\phi}(z|x,y)||p_{\theta}(z|x)) + \mathbb{E}_{q_{\phi}(z|x,y)}[\log p_{\theta}(y|x,z)]$ Actual objective (reparameterization trick): er
$$\begin{split} \tilde{\mathcal{L}}_{CVAE}(x,y;\theta,\phi) &= -KL\big(q_{\phi}(z|x,y) \| p_{\theta}(z|x)\big) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\big(y|x,z^{(l)}\big) \\ z^{(l)} &= g_{\phi}\big(x,y,\epsilon^{l}\big) = \mu + \sigma \odot \epsilon^{l} \end{split}$$

Add variational latent variable

	Context	Response
Add	jamaica blood!! $\langle url \rangle \rightarrow lol.$ yes [name]!. [name]! \rightarrow what's poppin in toronto homie	VHRED: nothing much. just chillin. what's good with you? LSTM: something!!!!!! HRED: something!!!!!!
	whhhhhhyyyy is it suddenly cold in tallahassee today?? this is florida! how can i dream of the beach when my fingers are icey cold?? \rightarrow sittin on deck in sun looking at lake travis in austin! enjoying day b4 birthday	VHRED: the sun is shining!!! LSTM: i know!!!!!!!! HRED: something!!!!!!
en -	reaches for [name]! \rightarrow - approaches him warily - hey there buddy swings him into the air - how you doin? \rightarrow tilts his head and your wariness and reaches for your face [name].	 VHRED: - looks up at you and smiles - you're so cute kisses your cheek - LSTM: - smiles - i'm fine thank you. how are you? HRED: - grins, looking at you as i look at you -
	i think i want an ipad2. but i already have an ibook. want vs. need. \rightarrow if you have an ibook. then you deserve an ipad!	VHRED: that's what i'm thinking. i'm going to buy a new one.LSTM: i want one!!!!HRED: i don't know what to do with it. i don't know what to do.
	ah echt? dan anrtwoord ik volgende keer via twitter als je me smst. \rightarrow haha doe maar p. goed bezig hoor myrthe d \rightarrow goed bezig? die snap ik even niet p	 VHRED: haha, ik heb er geen zin in de something, maar ik heb er geen something meer something LSTM: haha something something something HRED: something something something something something something something
	i love katie waissel more than like, anything in life. \rightarrow i wanna c the show again! i need <number> meet her again! n i want a b-day tweet nxt week doubt that will happen x</number>	 VHRED: me too. i'm going to have to wait for her to come back. i'm so excited. LSTM: i'm sure she will. i'm sure she'll be fine. HRED: i'm sure she'll be fine, i'm sure she'll be fine.
	my math teacher over here talkn bout nickels nd i'm tryna make big money i need to be in calculus \rightarrow lol	VHRED: i need to go to the gym and get my hair done lol LSTM: lol HRED: how u been

Vanishing latent variable problem

With enough training data, the decoder RNN learns to ignore $z \otimes$

Proposed solutions:

- KL annealing (Bowman et al., 2016) gradually increase weight of KL
- BOW loss (Zhao et al., 2017) add x_{BOW} term to loss function; latent variable captures global information about target response
- Hierarchical latent variables (Park et al., 2018)
- Learn to generate prior sample with GAN instead of random sample (Gu et al., 2019)

Consistent personality

message	Where do you live now?	
response	I live in Los Angeles.	
message	In which city do you live now?	
response	I live in Madrid.	
message	In which country do you live now?	
response	England, you?	
message	Where were you born?	
response	I was born in Canada.	
message	Where are you from?	
response	England, you?	
message	Where did you grow up?	
response	I grew up in Texas.	
message	How old are you?	
response	16 and you?	
message	What's your age?	
response	18.	
message	What is your major?	
response	I'm majoring in psychology	
message	What did you study in college?	
response	English lit.	(Li et al. <i>,</i> 2017)

Personality embeddings (Li et al., 2017)

Learn speaker embeddings v_i with a word prediction task for all utterances of speaker i

Derive speaker-addressee embeddings $V_{i,j}$ from v_i and v_j with a learned weighted linear combination

 $V_{i,j} = \tanh \left(W_1 v_i + W_2 v_j \right)$

 $V_{i,j}$ is added as input to each step in the decoder

- Helps with consistency
- Can infer biographic information based on similar personalities
- Adequate speaker-addressee style based on similar personalities

Personality embeddings (Li et al., 2017)

	message	Where is your hometown?	
learn speak	response	I'm from England. diction task for all utterances of sp	eaker i
	message	Where are you from?	
	response	I'm from England.	
Derive spea	message	In which city do you live now? it a learned weight	ed linear
combinatio	response	I live in London.	
	message]	In which country do you live now?	
	response]	I live in England.	
V_{i} is added	message	What is your major?	
	response	Business. You?	
	message	What did you study in college?	
Helps wit	response	I did business studies.	
Can infer	message	Howtold are you? similar personalities	
Adequate	response	I'm 18. vie based on similar personalities	
/ acquate	message	What is your age?	
	response	I'm 18.	

Personality embeddings (Li et al., 2017)

	message	Do you love me?	
Learn sneaker er	baseline	Of course, I love you.	of speaker i
Learn speaker ei		addressee: Emily, speaker: Sheldon	
	response	Of course, I love you, Emily.	
Derive speaker-a	ddressee e	addressee: Emily, speaker: Penny	eighted linear
combination	response	Of course, I love you, Emily.	
combination		addressee: Leonard, speaker: Penny	
	response	Of course, I love you, Leonard.	
		addressee: Monica, speaker: Chandler	
V. is added as i	response	Of course I love you. I want to marry you.	
		addressee: Rachel, speaker: Chandler	
	response	Of course I love you.	
Helps with cor	sistency	addressee: Ross, speaker: Chandler	
	response	Of course I love you.	
Can infer biogi	aphic infor	addressee: Ross, speaker: Rachel	
Adequate spea	response	Of course I love you. (kisses him)	
		addressee: Emily, speaker: Rachel	
	response	Of course I love you.	

Building dialog data sets (personality)

Personality embeddings work for existing users, but we want to create personas from scratch, using language

Mazare et al., 2018

- Mine persona-context-response triples from Reddit
- Persona is set sentences generally describing user

Persona: ["I like sport", "I work a lot"]

Context: "I love running."

Response: "Me too! But only on weekends."

Building dialog data sets (personality)

Personality embeddings work for existing users, but we want to create personas from scratch, using language

Mazare et al., 2018

- Mine persona-context-response triples from Reddit
- Persona is set sentences generally describing user

Zhang et al., 2018

- Turkers create personas with few sentences
- (Other) Turkers assigned personas randomly, get paired up and chat

Building dialog data sets (personality)

Personality e	Persona 1	Persona 2	
scratch, using	I like to ski My wife does not like me enymore	I am an artist I have four children	
	I have went to Mexico 4 times this year	I have four children I recently got a cat	
	I hate Mexican food	I enjoy walking for exercise	
	I like to eat cheetos	I love watching Game of Thrones	
Mazare et al.	2018		
Mine perse	eddit		
Persona is	/ ? / are vou		
	and I were just about to watch Game of Thrones.		
	[PERSON 1:] Nice ! How old are your children?		
	[PERSON 2:] I have four that range in age from 10 to 21. You?		
Zhang et al.,	[PERSON 1:] I do not have children at the moment. [PERSON 2:] That just means you get to keep all the popcorn for yourself		
Turkers cre	■ Turkers cred [PERSON 2:] That just means you get to keep all the popcorn for yourself.		
	[PERSON 2:] Good choice. Do you watch Game of Thrones?		
(Other) Iur	[PERSON 1:] No, I do not have much time for TV.		
	[PERSON 2:] I usually spend my time pa	ainting: but, I love the show.	

End-to-end structured dialog

Wizard of Oz setting: a human pretending to be a dialog system

MultiWOZ (Budzianowski et al., 2018)

- Full length dialogs in seven task-driven domains
- Annotated with DB entries, belief state and dialog acts
- Allows large scale training of individual components

End-to-end structured dialog

Wizard of Oz setting: a human pretending to be a dialog system

MultiWOZ (Budzianowski et al., 2018)

- Full length dialogs in seven task-driven domains
- Annotated with DB entries, belief state and dialog acts
- Allows large scale training of individual components

Structured fusion networks (Mehri et al., 2019)

- Multitask training of individual components
- End-to-end network uses pre-trained components

Handling OOV entities

Seq2seq models rely on a fixed vocabulary learned from the training set. Test sets typically have a similar vocabulary

In the real world, new entities come up all the time!

In task-oriented systems, this can be disqualifying

Handling OOV entities with templatization (Zhao et al., 2017)

Handling OOV entities with templatization (Zhao et al., 2017)

Handling OOV with copy-augmented models (Eric&Manning, 2017)

Copy mechanism: add the input tokens as possible outputs in the final softmax, with probability derived from their attention scores

Handling OOV with copy-augmented models (Eric&Manning, 2017)

Copy mechanism: add the input tokens as possible outputs in the final softmax, with probability derived from their attention scores

