Neural Machine Translation COMS W4705: Natural Language Processing

Kapil Thadani kapil@cs.columbia.edu

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

Review: Machine Translation

2

Review: Machine Translation

・ロト ・ 直 ト ・ 三 ・ ・ 三 ・ への >

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

Review: Phrase-based MT

1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$

- Unsupervised phrase-based alignment
 ▶ phrase table π
- Unsupervised n-gram language modeling
 ▶ language model ψ
- 4. Supervised decoder

• parameters θ

$$\begin{split} \widehat{T} &= \underset{T}{\arg\max} \ p(T|S) \\ &= \underset{T}{\arg\max} \ p(S|T, \pi, \theta) \cdot p(T|\psi) \end{split}$$

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Neural MT

1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$

Unsupervised phrase-based alignment
 ▶ phrase table π

Unsupervised n-gram language modeling
 ▶ language model ψ

4. Supervised encoder-decoder framework

• parameters θ

Outline

- Encoder-decoder architectures
 - · RNN encoders & decoders
 - \cdot Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - · Dynamic contexts
 - · Induced alignments
- $\circ\,$ Scaling up
 - $\cdot\,$ Google NMT
 - $\cdot\,$ Sub-word units
 - · Sequence-level training
 - Multilingual translation
- Transformers
 - \cdot Self-attention
 - Induced structure

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

Outline

- Encoder-decoder architectures
 - · RNN encoders & decoders
 - \cdot Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - Dynamic contexts
 - Induced alignments
- Scaling up
 - Google NMT
 - Sub-word units
 - Sequence-level training
 - Multilingual translation
- Transformers
 - \cdot Self-attention
 - Induced structure

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation: Basic recurrent unit

- \cdot Repeatedly apply a non-linear transformation to sequential inputs
- · Optionally produce an output from hidden states

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Notation: Basic recurrent unit

- \cdot Repeatedly apply a non-linear transformation to sequential inputs
- · Optionally produce an output from hidden states

Sac

Notation: Softmax

- · Typical output layer for multiclass classification
- Produces scores y such that $\sum_i y_i = 1$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

RNN classifier

Input words x_1, \ldots, x_n Output category label z

9

Deep RNN classifier

Input words x_1, \ldots, x_n Output category label z

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bidirectional RNN classifier

Input words x_1, \ldots, x_n **Output** category label z

< □ > < □ > < □ > < □ > < □ > < □ > E 990

RNN classifier

Input words x_1, \ldots, x_n Output category label z

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

RNN encoder

Input words x_1, \ldots, x_n

Output representation r

9

RNN language model

Input words y_1, \ldots, y_k **Output** following words y_k, \ldots, y_m

<ロト < 団ト < 豆ト < 豆ト < 豆ト < 豆 < つへの</p>

RNN decoder

Input context vector c

Output words y_1, \ldots, y_m

10

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

RNN decoder

Input context vector c

Output words y_1, \ldots, y_m

10

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - - の Q ()~

Sequence-to-sequence models

- · Introduced in Sutskever et al. (2014) and Cho et al. (2014)
- Combine a sequence encoder for the source language with a sequence decoder for the target language
 - 1. Encode source language tokens until <EOS> obtained
 - 2. Use final encoder hidden state as context vector
 - 3. Decode target language tokens until <EOS> obtained
- \cdot Use gated units (LSTMs or GRUs) to overcome vanishing gradients
- Beam search decoding through softmax scores

Sequence-to-sequence learning

12

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

- Backpropagation through repeated non-linear transformations (sigmoid, tanh) leads to vanishing gradients
 - RNNs cannot easily model long-range dependencies
 - Performance degrades with longer sequences
- LSTM (Hochreiter & Schmidhuber, 1997) adds a memory cell which is only affected by linear interactions
- \cdot Gates with sigmoid activations are used to modulate:
 - additions from the current input (input gate)
 - contributions to the next hidden state (output gate)
 - the amount of memory decayed (forget gate) (Gers et al., 1999)

$$h_t = \tanh(W_{\mathsf{x}\mathsf{h}}^\top x_t + W_{\mathsf{h}\mathsf{h}}^\top h_{t-1})$$

(normal RNN)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 = のへで

$$\boldsymbol{f_t} = \sigma(\boldsymbol{W}_{\mathbf{f_x}}^\top \boldsymbol{x_t} + \boldsymbol{W}_{\mathbf{f_h}}^\top \boldsymbol{h_{t-1}})$$

$$\begin{split} \tilde{c}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^{\top} x_t + W_{\mathbf{h}\mathbf{h}}^{\top} h_{t-1}) \\ c_t &= \mathbf{f}_t \odot c_{t-1} + \tilde{c}_t \end{split}$$

《曰》 《國》 《臣》 《臣》

Ξ

990

$$f_t = \sigma(W_{f_x}^\top x_t + W_{f_h}^\top h_{t-1})$$
$$i_t = \sigma(W_{i_x}^\top x_t + W_{i_h}^\top h_{t-1})$$

$$\begin{split} \tilde{c}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top h_{t-1}) \\ c_t &= f_t \odot c_{t-1} + \mathbf{i}_t \odot \tilde{c}_t \end{split}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} f_t &= \sigma(W_{\mathsf{fx}}^\top x_t + W_{\mathsf{fh}}^\top h_{t-1}) \\ i_t &= \sigma(W_{\mathsf{ix}}^\top x_t + W_{\mathsf{ih}}^\top h_{t-1}) \\ o_t &= \sigma(W_{\mathsf{ox}}^\top x_t + W_{\mathsf{oh}}^\top h_{t-1}) \end{split}$$

$$\begin{split} \tilde{c}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top h_{t-1}) \\ c_t &= f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \end{split}$$

$$h_t = \mathbf{o_t} \odot \tanh(c_t)$$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ

- Inspired by LSTM but with no memory cell (Cho et al., 2014)
- · Gates with sigmoid activations are used to control:
 - contributions of the previous hidden state to a new state (reset gate)
 - the balance between previous and new states for the next hidden state (update gate)
- Requires fewer parameters but performs similarly to LSTM in practice (Chung et al., 2014)

$$\tilde{h}_t = \tanh(W_{\mathbf{xh}}^\top x_t + W_{\mathbf{hh}}^\top h_{t-1})$$
$$h_t = \tilde{h}_t$$

$$\mathbf{r_t} = \sigma(W_{\mathsf{rx}}^\top x_t + W_{\mathsf{rh}}^\top h_{t-1})$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top (\boldsymbol{r_t} \odot h_{t-1})) \\ h_t &= \tilde{h}_t \end{split}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - 釣�?

$$\begin{aligned} r_t &= \sigma(W_{\mathsf{rx}}^\top x_t + W_{\mathsf{rh}}^\top h_{t-1}) \\ \mathbf{z_t} &= \sigma(W_{\mathsf{zx}}^\top x_t + W_{\mathsf{zh}}^\top h_{t-1}) \end{aligned}$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top (r_t \odot h_{t-1})) \\ h_t &= \mathbf{z_t} \odot \tilde{h}_t \end{split}$$

$$r_t = \sigma(W_{\mathsf{rx}}^\top x_t + W_{\mathsf{rh}}^\top h_{t-1})$$
$$\mathbf{z}_t = \sigma(W_{\mathsf{zx}}^\top x_t + W_{\mathsf{zh}}^\top h_{t-1})$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top (r_t \odot h_{t-1})) \\ h_t &= (\mathbf{1} - \mathbf{z}_t) \odot h_{t-1} + \mathbf{z}_t \odot \tilde{h}_t \end{split}$$

(日)

990

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

18

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 - の へ ()・

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 0 < 0 </p>

Phrase embeddings

2-D Barnes-Hut projections of encoded vectors for phrases

Cho et al. (2014)

<ロト < 団 ト < 豆 ト < 豆 ト = 豆 = のへで</p>
Sequence-to-sequence models

- + First end-to-end neural architecture for machine translation
- + No alignments required, just parallel data
- + Encoders produce meaningful sentence embeddings
- Does not outperform phrase-based MT techniques
- Performance degrades for longer sentences
- Need to reverse the input for better performance

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - · Dynamic contexts
 - · Induced alignments
- Scaling up
 - Google NMT
 - Sub-word units
 - Sequence-level training
 - Multilingual translation
- Transformers
 - \cdot Self-attention
 - Induced structure

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Attention mechanism

• Fixed context vector is a bottleneck for performance in encoder-decoder architectures

- Bahdanau et al. (2015) introduce a dynamic context vector that changes with each decoder timestep
 - Weighted average over all encoder hidden states
 - Weights ("attention") conditioned on current decoder hidden state
- Allows gradients to flow directly from decoding errors to relevant encoder hidden states, thus robust to vanishing gradients

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

23

<ロト < 団ト < 豆ト < 豆ト < 豆ト < 豆 < つへの</p>

Induced alignments

Attention weights α_{ij} reveal alignments between source & target words

Bahdanau et al. (2015)

Induced alignments

Attention weights α_{ij} reveal alignments between source & target words

Bahdanau et al. (2015)

(ロト 4 昼 ト 4 臣 ト 4 臣 - の 9 0 0

Consistent performance as sentence length increases

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 - の へ ()・

- + Gradients can be backpropagated directly to attended regions, avoiding vanishing gradients with long sequences
- + Attention weights α_{ij} can be visualized to diagnose errors
- + Performance competitive with phrase-based MT

Model	All	No UNK°
RNNencdec-3	30 13.93	24.19
RNNsearch-3	0 21.50	31.44
RNNencdec-5	50 17.82	26.71
RNNsearch-5	0 26.75	34.16
RNNsearch-50	0* 28.45	36.15
Moses	33.30	35.63

– Runtime for inference is $\mathcal{O}(mn)$ instead of $\mathcal{O}(m+n)$ without attention

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - Dynamic contexts
 - Induced alignments
- $\circ\,$ Scaling up
 - $\cdot\,$ Google NMT
 - \cdot Sub-word units
 - · Sequence-level training
 - Multilingual translation
- Transformers
 - \cdot Self-attention
 - Induced structure

Scaling up

- · Practical translation systems typically rely on phrase-based MT
 - NMT does scale easily to large vocabularies and rare words
 - Slower inference for large neural networks
 - NMT sometimes fails to fully translate all of the input
- Wu et al. (2016) describes a production-grade NMT system evaluated against phrase-based MT for Google Translate

	PBMT	GNMT	Human	Relative
				Improvement
$\operatorname{English} \to \operatorname{Spanish}$	4.885	5.428	5.504	87%
$\mathrm{English} \to \mathrm{French}$	4.932	5.295	5.496	64%
$\mathrm{English} \to \mathrm{Chinese}$	4.035	4.594	4.987	58%
$\text{Spanish} \to \text{English}$	4.872	5.187	5.372	63%
$\mathrm{French} \to \mathrm{English}$	5.046	5.343	5.404	83%
$Chinese \rightarrow English$	3.694	4.263	4.636	60%

Scaling up: GNMT

- Sequence-to-sequence model with attention (Wu et al., 2016)
 Encoder: 8 LSTM layers; bottom layer bidirectional
 Decoder: 8 LSTM layers; bottom layer provides attention context
- · All layers loaded on separate GPUs

Scaling up: Residual connections

Stacked LSTMs with residual connections (He et al., 2015)

- Layer inputs added element-wise to outputs
- Activations model differences between layer inputs and targets
- More robust to vanishing gradients in deep architectures

Scaling up: Sub-word units

· Infrequent words replaced with sub-words to reduce vocabulary

Jet makers feud over seat width with big orders at stake ↓ _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

- · Various corpus-based techniques to identify sub-words including
 - WordPieceModel (Schuster & Nakajima, 2012)
 - Byte Pair Encoding (Sennrich et al., 2016)
- · Available implementations:
 - sentencepiece
 - subword-nmt

Scaling up: Sequence-level training

- NMT models are trained on the word level with cross-entropy loss but evaluated with *sequence-level* metrics like BLEU, which are non-differentiable
- Model parameters θ can also be refined against any non-differentiable measure R(x, y) using reinforcement learning

$$\nabla_{\theta} \mathbb{E}_{\mathcal{D}} \left[R(x, y) \right] = \sum_{\langle x, y \rangle \in \mathcal{D}} R(x, y) \cdot \nabla_{\theta} p(y|x; \theta)$$
$$= \sum_{\langle x, y \rangle \in \mathcal{D}} R(x, y) \cdot \nabla_{\theta} p(y|x; \theta) \cdot \frac{p(y|x; \theta)}{p(y|x; \theta)}$$
$$= \sum_{\langle x, y \rangle \in \mathcal{D}} R(x, y) \cdot \nabla_{\theta} \log p(y|x; \theta) \cdot p(y|x; \theta)$$
$$= \mathbb{E}_{\mathcal{D}} \left[R(x, y) \cdot \nabla_{\theta} \log p(y|x; \theta) \right]$$

▲ロト ▲ 課 ト ▲ 語 ト → 語 - の Q @

Scaling up: Sequence-level training

- NMT models are trained on the word level with cross-entropy loss but evaluated with *sequence-level* metrics like BLEU, which are non-differentiable
- Model parameters θ can also be refined against any non-differentiable measure R(x, y) using reinforcement learning
- · GNMT: improvement in BLEU scores (but not human judgments)

Dataset	Trained with log-likelihood	Refined with RL
$En \rightarrow Fr$	38.95	39.92
$En \rightarrow De$	24.67	24.60

<ロト 4 目 ト 4 目 ト 4 目 ト 1 の 0 0 0</p>

Scaling up: Multilingual MT

- Johnson et al. (2016) proposes a simple change to translate between *multiple* languages with a single NMT model
 - A token is added to the input sequence to indicate the target language for translation
 - Vocabulary and parameters are shared across languages
- + Can improve translation for low-resource languages with little parallel data
- + Enables zero-shot translation for language pairs with no parallel data

Scaling up: Multilingual MT

t-SNE projections of learned representations of 74 sentences and different translations in English, Japanese and Korean

Johnson et al. (2016)

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - Dynamic contexts
 - Induced alignments
- Scaling up
 - Google NMT
 - Sub-word units
 - Sequence-level training
 - Multilingual translation
- Transformers
 - \cdot Self-attention
 - \cdot Induced structure

Notation: Attention

· Attend over keys $k_1 \dots k_n$ conditioned on query q

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

Notation: Attention

· Attend over values $v_1 \dots v_n$ for keys $k_1 \dots k_n$ conditioned on query q

<ロト < 団 ト < 豆 ト < 豆 ト - 豆 - つく()</p>

Scaled dot-product attention

 The original additive attention (Bahdanau et al., 2015) is a single-layer feed-forward network over a concatenated query and key.

$$\mathsf{score}(q,k) = u_{\mathsf{qk}}^{\top} \mathsf{tanh}(W_{\mathsf{qk}}^{\top}[q;k])$$

• Scaled dot-product attention (Vaswani et al., 2017) instead uses a simple dot product between the projected query and key (after a linear projection), normalized by the key dimensionality d_k

$$\operatorname{score}(q,k) = \frac{q^{\top}k}{\sqrt{d_k}}$$

where $q = W_{\mathbf{q}}^{\top}q'$ and $k = W_{\mathbf{k}}^{\top}k'$ Note: values are projected separately $v = W_{\mathbf{v}}^{\top}v'$

• The sequential computation of RNNs prevents parallelization for inference and also de-emphasizes long-range dependencies

- Vaswani et al., (2017) introduces a sequence model with recurrent connections replaced by *self-attention*
 - Hidden states for each input token are produced by attending to the input sequence using the token as a query
 - Information about word positions must by injected via *position embeddings* in the input
- \cdot Recurrent layers are replaced by self-attention layers which can be stacked, each with
 - Scaled dot-product attention
 - o Multiple attention heads, projected down to the input dimensionality
 - Unseen tokens masked out (in the decoder)

RNN encoder

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

RNN encoder with attention

38

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Deep encoder with self-attention

38

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

Deep encoder with multi-head self-attention (Vaswani et al., 2017)

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Self-attention: Long-range dependencies

· · · · ·	- <u>O</u> · · · · · · ·				
	lt	lt			
	is	is			
	in	in			
	this	this			
	spirit	spirit			
	that	that			
	а	а			
m	ajority	majority			
	of	of			
Am	erican	American			
govern	iments	governments			
	have	have			
p	bassed	passed			
	new	new			
	laws	laws			
	since	since			
	2009	2009			
n	naking	making			
	the	the			
regis	tration	registration			
	or	or			
	voting	voting			
р	rocess	process			
	more	more			
	difficult -	difficult			
<	EOS>	<eos></eos>	► < Ē ► .	1	900

Self-attention: Anaphora resolution

- + No recurrence, so inference can be parallelized
- + Improved runtime and performance on translation + other tasks
- + Scaled dot-product attention is efficient
- + Self-attention layers appear to capture some linguistic structure
- $\mathcal{O}(n^2)$ comparisons for each layer (unless restricted)
- Positional embeddings are necessary to account for ordering of input

Resources

· OpenNMT provides implementations of NMT models

	OpenNMT-py	OpenNMT-tf
ConvS2S	\checkmark	
DeepSpeech2	\checkmark	
GPT-2		√
Im2Text	\checkmark	
Listen, Attend and Spell		√
RNN with attention	\checkmark	√
Transformer	\checkmark	√

- + Available for PyTorch and TensorFlow
- + Actively maintained and used

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへぐ