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Review: Phrase-based MT

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz
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Review: Phrase-based MT

1. Collect bilingual dataset 〈Si, Ti〉 ∈ D

2. Unsupervised phrase-based alignment
I phrase table π

3. Unsupervised n-gram language modeling
I language model ψ

4. Supervised decoder
I parameters θ T̂ = argmax

T
p(T |S)

= argmax
T

p(S|T, π, θ) · p(T |ψ)
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Neural MT

1. Collect bilingual dataset 〈Si, Ti〉 ∈ D

2. Unsupervised phrase-based alignment
I phrase table π

3. Unsupervised n-gram language modeling
I language model ψ

4. Supervised encoder-decoder framework
I parameters θ
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Outline
◦ Encoder-decoder architectures

· RNN encoders & decoders
· Sequence-to-sequence models
· LSTMs & GRUs

◦ Attention mechanism
· Dynamic contexts
· Induced alignments

◦ Scaling up
· Google NMT
· Sub-word units
· Sequence-level training
· Multilingual translation

◦ Transformers
· Self-attention
· Induced structure
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Notation: Basic recurrent unit

· Repeatedly apply a non-linear transformation to sequential inputs
· Optionally produce an output from hidden states

Hidden state

Input vector

ht

xt

Wxh

Whh, bh
ht = φh(W

>
xh xt +W>hh ht−1 + bh)

(typically sigmoid or tanh)
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Notation: Basic recurrent unit

· Repeatedly apply a non-linear transformation to sequential inputs
· Optionally produce an output from hidden states

Hidden state

Input vector

ht

xt

Wxh

Whh, bh

Output vector yt

Why, by

yt = φy(W
>

hy ht + by)

ht = φh(W
>

xh xt +W>hh ht−1 + bh)

(typically sigmoid or tanh)
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Notation: Softmax

· Typical output layer for multiclass classification
· Produces scores y such that

∑
i yi = 1

Label probabilities

Softmax

Input vector h

y

Why, by

z =W>hy h+ by

yi =
ezi∑
j e
zj

= p(label = i|h)
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RNN classifier

Input words x1, . . . , xn

Output category label z

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

hidden states softmax

z
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Deep RNN classifier

Input words x1, . . . , xn

Output category label z

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

...
...

...
...

...

h′1 h′2 h′3 h′4 . . . h′n z
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Bidirectional RNN classifier

Input words x1, . . . , xn

Output category label z

x1 x2 x3 x4 . . . xn

−→
h1

−→
h2

−→
h3

−→
h4

. . . −→
hn

←−
h1

←−
h2

←−
h3

←−
h4

. . . ←−
hn

z
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RNN classifier

Input words x1, . . . , xn

Output category label z

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn z

reads the input text classifies
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RNN encoder

Input words x1, . . . , xn

Output representation r

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

r
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RNN language model

Input words y1, . . . , yk

Output following words yk, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .
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RNN decoder

Input context vector c

Output words y1, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

c
Initialize with context
s1 = c
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RNN decoder

Input context vector c

Output words y1, . . . , ym

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

c
Condition with context
si = f(si−1, yi−1, c)
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Sequence-to-sequence models

· Introduced in Sutskever et al. (2014) and Cho et al. (2014)

· Combine a sequence encoder for the source language with a
sequence decoder for the target language
1. Encode source language tokens until <EOS> obtained
2. Use final encoder hidden state as context vector
3. Decode target language tokens until <EOS> obtained

· Use gated units (LSTMs or GRUs) to overcome vanishing gradients

· Beam search decoding through softmax scores

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/pdf/1406.1078.pdf


12

Sequence-to-sequence learning

Input words x1, . . . , xn

Output words y1, . . . , ym

x1 x2 x3 . . . xn

h1 h2 h3 . . . hn

. . .

y1 y2 y3 y4 y5

s1 s2 s3 s4 s5 . . .

si = f(si−1, yi−1, hn)
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Long short-term memory (LSTM)

· Backpropagation through repeated non-linear transformations
(sigmoid, tanh) leads to vanishing gradients
− RNNs cannot easily model long-range dependencies
− Performance degrades with longer sequences

· LSTM (Hochreiter & Schmidhuber, 1997) adds a memory cell which
is only affected by linear interactions

· Gates with sigmoid activations are used to modulate:
◦ additions from the current input (input gate)
◦ contributions to the next hidden state (output gate)
◦ the amount of memory decayed (forget gate) (Gers et al., 1999)

http://www.bioinf.jku.at/publications/older/2604.pdf
https://pdfs.semanticscholar.org/e10f/98b86797ebf6c8caea6f54cacbc5a50e8b34.pdf
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Long short-term memory (LSTM)

ht−1 httanh

xt

ht = tanh(W>xh xt +W>hh ht−1)

(normal RNN)
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Long short-term memory (LSTM)

ct−1

ct

xt

ht−1 tanh +

c̃t = tanh(W>xh xt +W>hh ht−1)

ct = ct−1 + c̃t
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Long short-term memory (LSTM)

ct−1

ct

xt

ht−1 tanh +

forget
×σ

ft = σ(W>fx xt +W>fh ht−1)

c̃t = tanh(W>xh xt +W>hh ht−1)

ct = ft � ct−1 + c̃t
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ct

xt
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input
×

σ
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Long short-term memory (LSTM)

ct−1

ct

xt

ht−1 tanh +

forget
×σ

input
×

σ

output

tanh

×

ht

σ

ft = σ(W>fx xt +W>fh ht−1)

it = σ(W>ix xt +W>ih ht−1)

ot = σ(W>ox xt +W>oh ht−1)

c̃t = tanh(W>xh xt +W>hh ht−1)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)
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Gated Recurrent Unit (GRU)

· Inspired by LSTM but with no memory cell (Cho et al., 2014)

· Gates with sigmoid activations are used to control:
◦ contributions of the previous hidden state to a new state (reset gate)
◦ the balance between previous and new states for the next hidden

state (update gate)

· Requires fewer parameters but performs similarly to LSTM in
practice (Chung et al., 2014)

https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1412.3555.pdf
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Gated Recurrent Unit (GRU)

xt

ht−1

ht

tanh

h̃t = tanh(W>xh xt +W>hh ht−1)

ht = h̃t
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Gated Recurrent Unit (GRU)

xt

ht−1

ht

tanh

reset

×

σ

rt = σ(W>rx xt +W>rh ht−1)

h̃t = tanh(W>xh xt +W>hh (rt � ht−1))
ht = h̃t
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Gated Recurrent Unit (GRU)

xt

ht−1

ht

tanh

reset

×

σ

update

×

σ

rt = σ(W>rx xt +W>rh ht−1)

zt = σ(W>zx xt +W>zh ht−1)

h̃t = tanh(W>xh xt +W>hh (rt � ht−1))
ht = zt � h̃t
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Gated Recurrent Unit (GRU)

xt

ht−1

ht

tanh

reset

×

σ

update

×

σ

1−

×

+

σ

rt = σ(W>rx xt +W>rh ht−1)

zt = σ(W>zx xt +W>zh ht−1)

h̃t = tanh(W>xh xt +W>hh (rt � ht−1))
ht = (1− zt)� ht−1 + zt � h̃t



18

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

Sutskever et al. (2014)

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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Sentence embeddings

2-D PCA projections of encoded vectors for sentences

Sutskever et al. (2014)

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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Phrase embeddings
2-D Barnes-Hut projections of encoded vectors for phrases

Cho et al. (2014)

https://arxiv.org/pdf/1406.1078.pdf
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Sequence-to-sequence models

+ First end-to-end neural architecture for machine translation
+ No alignments required, just parallel data
+ Encoders produce meaningful sentence embeddings

− Does not outperform phrase-based MT techniques
− Performance degrades for longer sentences
− Need to reverse the input for better performance
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Outline
◦ Encoder-decoder architectures

· RNN encoders & decoders
· Sequence-to-sequence models
· LSTMs & GRUs

◦ Attention mechanism
· Dynamic contexts
· Induced alignments

◦ Scaling up
· Google NMT
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Attention mechanism

· Fixed context vector is a bottleneck for performance in
encoder-decoder architectures

· Bahdanau et al. (2015) introduce a dynamic context vector that
changes with each decoder timestep

◦ Weighted average over all encoder hidden states
◦ Weights (“attention”) conditioned on current decoder hidden state

· Allows gradients to flow directly from decoding errors to relevant
encoder hidden states, thus robust to vanishing gradients

https://arxiv.org/pdf/1409.0473.pdf
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Attention-based translation

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4
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Attention-based translation

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

feedforward

e4,1 e4,2 e4,3 e4,4 e4,n

eij = a(si−1, hj)
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Attention-based translation

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

softmax

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Attention-based translation

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

weighted
average

c5

ci =
∑
j

αijhj

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Attention-based translation

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

y1 y2 y3 y4

s1 s2 s3 s4

α4,1 α4,2 α4,3 α4,4 α4,n

c5

s5

si = f(si−1, yi−1, ci)

ci =
∑
j

αijhj

αij =
exp(eij)∑
k exp(eik)

eij = a(si−1, hj)
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Induced alignments

Attention weights αij reveal alignments between source & target words

Bahdanau et al. (2015)

https://arxiv.org/pdf/1409.0473.pdf
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https://arxiv.org/pdf/1409.0473.pdf
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Attention-based translation

Consistent performance as sentence length increases

Bahdanau et al. (2015)

https://arxiv.org/pdf/1409.0473.pdf


26

Attention-based translation

+ Gradients can be backpropagated directly to attended regions,
avoiding vanishing gradients with long sequences

+ Attention weights αij can be visualized to diagnose errors
+ Performance competitive with phrase-based MT

− Runtime for inference is O(mn) instead of O(m+ n) without
attention
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Scaling up

· Practical translation systems typically rely on phrase-based MT
− NMT does scale easily to large vocabularies and rare words
− Slower inference for large neural networks
− NMT sometimes fails to fully translate all of the input

· Wu et al. (2016) describes a production-grade NMT system
evaluated against phrase-based MT for Google Translate

https://arxiv.org/pdf/1609.08144.pdf
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Scaling up: GNMT
· Sequence-to-sequence model with attention (Wu et al., 2016)

Encoder: 8 LSTM layers; bottom layer bidirectional
Decoder: 8 LSTM layers; bottom layer provides attention context

· All layers loaded on separate GPUs

https://arxiv.org/pdf/1609.08144.pdf
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Scaling up: Residual connections

· Stacked LSTMs with residual connections (He et al., 2015)
◦ Layer inputs added element-wise to outputs
◦ Activations model differences between layer inputs and targets
◦ More robust to vanishing gradients in deep architectures

Normal deep LSTM Residual connections

https://arxiv.org/pdf/1512.03385.pdf
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Scaling up: Sub-word units

· Infrequent words replaced with sub-words to reduce vocabulary

Jet makers feud over seat width with big orders at stake

⇓
_J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

· Various corpus-based techniques to identify sub-words including
◦ WordPieceModel (Schuster & Nakajima, 2012)
◦ Byte Pair Encoding (Sennrich et al., 2016)

· Available implementations:
◦ sentencepiece
◦ subword-nmt

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37842.pdf
https://www.aclweb.org/anthology/P16-1162.pdf
https://github.com/google/sentencepiece
https://github.com/rsennrich/subword-nmt
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Scaling up: Sequence-level training

· NMT models are trained on the word level with cross-entropy loss
but evaluated with sequence-level metrics like BLEU, which are
non-differentiable

· Model parameters θ can also be refined against any
non-differentiable measure R(x, y) using reinforcement learning

∇θ ED [R(x, y)] =
∑
〈x,y〉∈D

R(x, y) · ∇θ p(y|x; θ)

=
∑
〈x,y〉∈D

R(x, y) · ∇θ p(y|x; θ) ·
p(y|x; θ)
p(y|x; θ)

=
∑
〈x,y〉∈D

R(x, y) · ∇θ log p(y|x; θ) · p(y|x; θ)

= ED [R(x, y) · ∇θ log p(y|x; θ)]



32

Scaling up: Sequence-level training

· NMT models are trained on the word level with cross-entropy loss
but evaluated with sequence-level metrics like BLEU, which are
non-differentiable

· Model parameters θ can also be refined against any
non-differentiable measure R(x, y) using reinforcement learning

· GNMT: improvement in BLEU scores (but not human judgments)
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Scaling up: Multilingual MT

· Johnson et al. (2016) proposes a simple change to translate between
multiple languages with a single NMT model

◦ A token is added to the input sequence to indicate the target
language for translation

◦ Vocabulary and parameters are shared across languages

+ Can improve translation for low-resource languages with little
parallel data

+ Enables zero-shot translation for language pairs with no parallel data

https://arxiv.org/pdf/1611.04558.pdf
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Scaling up: Multilingual MT
t-SNE projections of learned representations of 74 sentences and
different translations in English, Japanese and Korean

Johnson et al. (2016)

https://arxiv.org/pdf/1611.04558.pdf
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Outline
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Notation: Attention

· Attend over keys k1 . . . kn conditioned on query q

Query q

Keys k1 k2 k3 . . . kn

c c =
∑
i

αiki

αi = softmax(ei)

ei = score(q, ki)
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Notation: Attention

· Attend over values v1 . . . vn for keys k1 . . . kn conditioned on query q

Query q

Keys k1 k2 k3 . . . kn

c

Values v1 v2 v3 . . . vn

c =
∑
i

αivi

αi = softmax(ei)

ei = score(q, ki)
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Scaled dot-product attention

· The original additive attention (Bahdanau et al., 2015) is a
single-layer feed-forward network over a concatenated query and key.

score(q, k) = u>qk tanh(W
>

qk [q; k])

· Scaled dot-product attention (Vaswani et al., 2017) instead uses a
simple dot product between the projected query and key (after a
linear projection), normalized by the key dimensionality dk

score(q, k) =
q>k√
dk

where q =W>q q′ and k =W>k k′

Note: values are projected separately v =W>v v′

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1706.03762.pdf
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Transformer

· The sequential computation of RNNs prevents parallelization for
inference and also de-emphasizes long-range dependencies

· Vaswani et al., (2017) introduces a sequence model with recurrent
connections replaced by self-attention

◦ Hidden states for each input token are produced by attending to the
input sequence using the token as a query

◦ Information about word positions must by injected via position
embeddings in the input

· Recurrent layers are replaced by self-attention layers which can be
stacked, each with

◦ Scaled dot-product attention
◦ Multiple attention heads, projected down to the input dimensionality
◦ Unseen tokens masked out (in the decoder)

https://arxiv.org/pdf/1706.03762.pdf
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Transformer

RNN encoder

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn
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Transformer

RNN encoder with attention

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

sj
cj
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Transformer

Deep encoder with self-attention

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

h′1 h′2 h′3 h′4 . . . h′n
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Transformer

Deep encoder with multi-head self-attention (Vaswani et al., 2017)

x1 x2 x3 x4 . . . xn

h1 h2 h3 h4 . . . hn

h′1 h′2 h′3 h′4 . . . h′n

https://arxiv.org/pdf/1706.03762.pdf
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Transformer
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Self-attention: Long-range dependencies
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Self-attention: Anaphora resolution
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Self-attention: Clause structure
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Transformer

+ No recurrence, so inference can be parallelized
+ Improved runtime and performance on translation + other tasks
+ Scaled dot-product attention is efficient
+ Self-attention layers appear to capture some linguistic structure

− O
(
n2
)
comparisons for each layer (unless restricted)

− Positional embeddings are necessary to account for ordering of input
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Resources

· OpenNMT provides implementations of NMT models

+ Available for PyTorch and TensorFlow
+ Actively maintained and used

http://opennmt.net/
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-tf

