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Review: Phrase-based MT
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Neural MT

1. Collect bilingual dataset (S5;,T;) € D

4. Supervised encoder-decoder framework
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Notation: Basic recurrent unit

- Repeatedly apply a non-linear transformation to sequential inputs
- Optionally produce an output from hidden states

Hidden state

hy = ¢h(Wxet + VV;.;.rht—l + by)

I
W

(typically sigmoid or tanh)
Input vector Tt



Notation: Basic recurrent unit

- Repeatedly apply a non-linear transformation to sequential inputs
- Optionally produce an output from hidden states

Output vector

Yt = ¢y(VVJht + by)
Hidden state

he = dn(W, 2y + Wil hy—1 + by)

I
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(typically sigmoid or tanh)
Input vector Tt



Notation: Softmax

- Typical output layer for multiclass classification
- Produces scores y such that ). y; =1

Label probabilities

y z= I/V,‘yTh + b,
e*
Softmax @ Yi = > e
Wy, by
Input vector

= p(label = ilh)



RNN classifier

Input words x4,

S Tn

Output category label z

hidden states

softmax
ho hs3
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Deep RNN classifier

Input words x4,

S Tn

Output category label z

<~

h1

ho

hs I

3

X1 X2 I3 T4

Tn

N



Bidirectional RNN classifier

Input words x4,

S Tn

Output category label z




RNN classifier

Input words z1,...,x,

Output category label z

reads the input text

ho hs3

X1 X2 I3 T4

Tn

classifies



RNN encoder

Input words z1,...,x,

Output representation r

J



RNN language model

Input words vy,

s Yk
Output following words i, ..., Ym

000
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RNN decoder

Input context vector ¢

Output words y1,...,Ym

000

1 Y2 Y3 ® Ya Ys
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RNN decoder

Input context vector ¢

Output words y1, ..., Ym
® Y1 Y2 Ys
O
O
S1 S92
. Condition with context

S; = f(si—layi—lv C)

10



Sequence-to-sequence models

11
- Introduced in Sutskever et al. (2014) and Cho et al. (2014)
- Combine a sequence encoder for the source language with a

sequence decoder for the target language

1. Encode source language tokens until <EOS> obtained

2. Use final encoder hidden state as context vector

3. Decode target language tokens until <E0OS> obtained
Use gated units (LSTMs or GRUs) to overcome vanishing gradients

Beam search decoding through softmax scores


https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://arxiv.org/pdf/1406.1078.pdf

Sequence-to-sequence learning

Y1 Y2
Input words z1,...,x,
Output words y1,...,Ym

X1 o X3

'/I;TL
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Long short-term memory (LSTM)

13

- Backpropagation through repeated non-linear transformations
(sigmoid, tanh) leads to vanishing gradients

— RNNs cannot easily model long-range dependencies
— Performance degrades with longer sequences

- LSTM (Hochreiter & Schmidhuber, 1997) adds a memory cell which
is only affected by linear interactions

- Gates with sigmoid activations are used to modulate:
o additions from the current input (input gate)

o contributions to the next hidden state (output gate)

o the amount of memory decayed (forget gate) (Gers et al., 1999)


http://www.bioinf.jku.at/publications/older/2604.pdf
https://pdfs.semanticscholar.org/e10f/98b86797ebf6c8caea6f54cacbc5a50e8b34.pdf

Long short-term memory (LSTM)

htfl

tanh

ht

h/l‘, = tanh(V[{(hTmt + VV}.Iht—l)
Tt

(normal RNN)
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Long short-term memory (LSTM)

15

Ct—1
hi—1 tanh Gr)
615 = tanh(W{hT:L't + I/Vh;‘rht_l)
= C—1+C
Tt

Ct




Long short-term memory (LSTM)

15
Ct—1

fr =Wl zp + Wy hy_y)

615 = tanh(VVthJ:t + V[/LhThtfl)
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Long short-term memory (LSTM)

15
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Long short-term memory (LSTM)

15

Ct—1
Je= U(Wcjmt + W{I-.Tht—l)
@ N = (W, e+ W, he1)
// o= oW, + W h-)
hi—1 tanh () G

6t = tanh(WxJ;L‘t —+ m.;l,—ht—l)

@ Ct:ftQCt_l-f‘?:t@ét

output hy = o, @ tanh(c;)

hy Ct



Gated Recurrent Unit (GRU)

- Inspired by LSTM but with no memory cell (Cho et al., 2014)
- Gates with sigmoid activations are used to control:

o contributions of the previous hidden state to a new state (reset gate)
o the balance between previous and new states for the next hidden
state (update gate)

Requires fewer parameters but performs similarly to LSTM in
practice (Chung et al., 2014)

16


https://arxiv.org/pdf/1406.1078.pdf
https://arxiv.org/pdf/1412.3555.pdf

Gated Recurrent Unit (GRU) .

he s

Tt

iLt = tanh(W:J;L*t + W‘E—htil)
hi = iLL

It




Gated Recurrent Unit (GRU)

re = o(W, oy + W, hy 1)
hi—1 () @nh
iLt = tanh(W(tht + W,I(Tt ® }Ltfl))
hy = hy
Tt
}Lt
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Gated Recurrent Unit (GRU)

re = o(W, ze + W, hey)
2 =W, we+ Wy hey)
hi—1 () tanh
hy = tanh(W,) @y + Wil (ry © he_1))
ht =2z ® iLt
Ty —>@ update
hy
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Gated Recurrent Unit (GRU)

re=o(W, z + W, hi_1)

z=o0(W, z + W, hi_1)

hy = tanh(W,) @y + Wil (ry © he_1))
ht = (1 — Zt) @ ht,1 + Zt @ Et
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Sentence embeddings

2-D PCA projections of encoded vectors for sentences

-2

-3

-4

-5

| OdJohn admires Mary

OMary admires John

OMary is in love with John

OMary respects John

OdJohn is in love with Mary

OJohn respects Mary

Sutskever et al. (2014)
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https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

O lwas given a card by her in the garden
10+ O In the garden , she gave me a card
O She gave me a card in the garden
5k
0

-5r O She was given a card by me in the garden
O In the garden , | gave her a card
_10k
-15¢ O |l gave her a card in the garden
_20 . . . . . . )
-15 -10 -5 0 5 10 15

Sutskever et al. (2014)
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https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Phrase embeddings

19

2-D Barnes-Hut projections of encoded vectors for phrases
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https://arxiv.org/pdf/1406.1078.pdf

Sequence-to-sequence models

+ First end-to-end neural architecture for machine translation

+ No alignments required, just parallel data

+ Encoders produce meaningful sentence embeddings

— Does not outperform phrase-based MT techniques
— Performance degrades for longer sentences

— Need to reverse the input for better performance

Method test BLEU score (ntst14)
Baseline System [29] 33.30
Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59

20



Outline
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Attention mechanism

- Fixed context vector is a bottleneck for performance in
encoder-decoder architectures

- Bahdanau et al. (2015) introduce a dynamic context vector that
changes with each decoder timestep
o Weighted average over all encoder hidden states

o Weights (“attention”) conditioned on current decoder hidden state

Allows gradients to flow directly from decoding errors to relevant
encoder hidden states, thus robust to vanishing gradients

22


https://arxiv.org/pdf/1409.0473.pdf

Attention-based translation

h1

ho

hs3

I X9 T3 Ty

Tn

23



Attention-based translation

T3 L4

Tn

ei]‘ = a(si,l, hJ)
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Attention-based translation

softmax

Q41 a2 Joaz/  ala
1 1 1 1

_O O O

€ €r2 T3 Ty

23

exp(e;j;)

Njg = =<~
Y > exp(eik)

eij = a(si—1,hj)
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Attention-based translation -

C; = E Oéijhj
J

Y >k expleir)

eij = a(si—1,hj)

weighted
average

Q4n

I X9 T3 Ty cee In
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Attention-based translation

o 92 g5 Ya si = f(8i—1,Yi-1,¢i)
C; = Z aijhj
J

Y Y exp(en)

eij = a(si,l, hj)
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24

Induced alignments

Attention weights «;; reveal alignments between source & target words
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https://arxiv.org/pdf/1409.0473.pdf
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Induced alignments

Attention weights «;; reveal alignments between source & target words
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https://arxiv.org/pdf/1409.0473.pdf

Attention-based translation

Consistent performance as sentence length increases

BLEU score

30
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Bahdanau et al. (2015)
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https://arxiv.org/pdf/1409.0473.pdf
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Attention-based translation

+ Gradients can be backpropagated directly to attended regions,
avoiding vanishing gradients with long sequences

+ Attention weights «;; can be visualized to diagnose errors

+ Performance competitive with phrase-based MT

Model | All | NoUNK°

RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 | 17.82 26.71
RNNsearch-50 | 26.75 34.16
RNNsearch-50* | 28.45 36.15

Moses 33.30 35.63

— Runtime for inference is O(mn) instead of O(m + n) without
attention
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Scaling up

- Practical translation systems typically rely on phrase-based MT

— NMT does scale easily to large vocabularies and rare words
— Slower inference for large neural networks
— NMT sometimes fails to fully translate all of the input

- Wu et al. (2016) describes a production-grade NMT system
evaluated against phrase-based MT for Google Translate

PBMT GNMT Human Relative

Improvement
English — Spanish ~ 4.885 5.428 5.504 87%
English — French 4.932 5.295 5.496 64%
English — Chinese  4.035 4.594 4.987 58%
Spanish — English ~ 4.872 5.187 5.372 63%
French — English 5.046 5.343 5.404 83%
Chinese — English ~ 3.694 4.263 4.636 60%

RN Ge
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https://arxiv.org/pdf/1609.08144.pdf

Scaling up: GNMT

29

Sequence-to-sequence model with attention (Wu et al
Encoder: 8 LSTM layers; bottom layer bidirectional

., 2016)
Decoder: 8 LSTM layers; bottom layer provides attention context
All layers loaded on separate GPUs

Encoder LSTMs

GPU8B

layers

De,éoder LSTMs
GPU3

Nifav
GPU2 e

GPU3
h —> Attention
GPU2 i \

GPUL |

GPU2
</s> —> vy,

GPU1

N


https://arxiv.org/pdf/1609.08144.pdf

Scaling up: Residual connections

o Layer inputs added element-wise to outputs

30
- Stacked LSTMs with residual connections (He et al., 2015)

o Activations model differences between layer inputs and targets
o More robust to vanishing gradients in deep architectures

Normal deep LSTM

~@
L®

Residual connections
® v 9
ol A ol
) —{(Em)— (G Erm—{(Em—(Em—)
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https://arxiv.org/pdf/1512.03385.pdf

Scaling up: Sub-word units

31

- Infrequent words replaced with sub-words to reduce vocabulary

4

Jet makers feud over seat width with big orders at stake

Jet makers feud over seat width with big orders at stake

- Various corpus-based techniques to identify sub-words including
o WordPieceModel (Schuster & Nakajima, 2012)

o Byte Pair Encoding (Sennrich et al., 2016)

Available implementations:
o sentencepiece
o subword-nmt


https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37842.pdf
https://www.aclweb.org/anthology/P16-1162.pdf
https://github.com/google/sentencepiece
https://github.com/rsennrich/subword-nmt

32

Scaling up: Sequence-level training

- NMT models are trained on the word level with cross-entropy loss

but evaluated with sequence-level metrics like BLEU, which are
non-differentiable

- Model parameters 6 can also be refined against any
non-differentiable measure R(x,y) using reinforcement learning

VoEp [R(z,y)] = Y R(z,y) Vop(ylz;0)

(z,y)€D

— Z R(x,y) - Vop(y|z;0) -

(z,y)€D

= Y R(x,y)- Vologp(ylz:6) - p(yla;0)

(z,y)€D

= Ep [R(z,y) - Vg log p(ylz; 0)]



Scaling up: Sequence-level training

32
- NMT models are trained on the word level with cross-entropy loss

but evaluated with sequence-level metrics like BLEU, which are
non-differentiable

- Model parameters 6 can also be refined against any

non-differentiable measure R(x,y) using reinforcement learning

- GNMT: improvement in BLEU scores (but not human judgments)

Dataset Trained with log-likelihood Refined with RL
En—Fr 38.95 39.92
En—De 24.67 24.60

N



Scaling up: Multilingual MT

- Johnson et al. (2016) proposes a simple change to translate between
multiple languages with a single NMT model
language for translation

o A token is added to the input sequence to indicate the target

o Vocabulary and parameters are shared across languages

+ Can improve translation for low-resource languages with little
parallel data

+ Enables zero-shot translation for language pairs with no parallel data

33


https://arxiv.org/pdf/1611.04558.pdf

Scaling up: Multilingual MT

t-SNE projections of learned representations of 74 sentences and

different translations in English, Japanese and Korean

The stratosphere extends from about
10km to about 50km in altitude.

MBS DT o 10kmLE o
50km7Hx| SEE U Ch

FUR B, SE 10km DS
50km DFEFICHDET

Johnson et al. (2016)

o

T s
®e

[ ]
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https://arxiv.org/pdf/1611.04558.pdf

Outline
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Notation: Attention

- Attend over keys ki ...k, conditioned on query ¢

c
Query

Cc = Zalkl

«; = softmax(e;)

e; = score(q, k;)

35



Notation: Attention

- Attend over values v,

... v, for keys kq

... k,, conditioned on query ¢
c
Query

Cc = E ;U5
4

Keys

a; = softmax(e;)
Values V1

V2

e; = score(q, k;)

35



Scaled dot-product attention

36

- The original additive attention (Bahdanau et al., 2015) is a

single-layer feed-forward network over a concatenated query and key.

score(q, k) = g tanh (W, [g; k])

- Scaled dot-product attention (Vaswani et al., 2017) instead uses a

simple dot product between the projected query and key (after a
linear projection), normalized by the key dimensionality dj

.
q'k
score(q, k) = ——

R =
where ¢ = W, "¢’ and k = W,T K’

Note: values are projected separately v = W, v/


https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1706.03762.pdf

Transformer

37
- The sequential computation of RNNs prevents parallelization for
inference and also de-emphasizes long-range dependencies

- Vaswani et al., (2017) introduces a sequence model with recurrent
connections replaced by self-attention

embeddings in the input

o Hidden states for each input token are produced by attending to the
input sequence using the token as a query
o Information about word positions must by injected via position

Recurrent layers are replaced by self-attention layers which can be
stacked, each with
o Scaled dot-product attention

o Multiple attention heads, projected down to the input dimensionality
o Unseen tokens masked out (in the decoder)


https://arxiv.org/pdf/1706.03762.pdf

Transformer

RNN encoder

h1 I
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T3

Ty

4

T,
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Transformer

RNN encoder with attention

T T2 X3 T4

Tn

38



Transformer

Deep encoder with self-attention

D
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Transformer

A
A
h1 ho
1 T T3

b,
A
hs3
T4

Deep encoder with multi-head self-attention (Vaswani et al., 2017)
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https://arxiv.org/pdf/1706.03762.pdf

Transformer
Output
Probabilities

Add & Norm

Feed
Forward
7
| Add & Norm |<\
£31E Moy Mult-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
it t
o J —
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

39
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Self-attention: Long-range dependencies
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Self-attention: Anaphora resolution
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Self-attention: Clause structure
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Transformer

+ No recurrence, so inference can be parallelized
+ Improved runtime and performance on translation + other tasks
+ Scaled dot-product attention is efficient

+ Self-attention layers appear to capture some linguistic structure

— O(n?) comparisons for each layer (unless restricted)

— Positional embeddings are necessary to account for ordering of input

41
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Resources

- OpenNMT provides implementations of NMT models

OpenNMT-py OpenNMT-tf
ConvS2S v
DeepSpeech2 v
GPT-2 v
Im2Text v

Listen, Attend and Spell
RNN with attention

Transformer

+ Available for PyTorch and TensorFlow
+ Actively maintained and used


http://opennmt.net/
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-tf

