
Lexical	Semantics	
Wrap-up	and	
Midterm	Review	



How	do	we	know	when	a	word	
has	more	than	one	sense?	
• ATIS	examples	

• Which	flights	serve	breakfast?	
• Does	America	West	serve	Philadelphia?	

• The	“zeugma”	test:	

•  ?Does	United	serve	breakfast	and	San	Jose?	



Synonyms	
• Word	that	have	the	same	meaning	in	some	or	
all	contexts.	
•  filbert	/	hazelnut	
•  couch	/	sofa	
•  big	/	large	
•  automobile	/	car	
•  vomit	/	throw	up	
•  Water	/	H20	

• Two	lexemes	are	synonyms	if	they	can	be	
successfully	subsNtuted	for	each	other	in	all	
situaNons	
•  If	so	they	have	the	same	proposi&onal	meaning	



Synonyms	
• But	there	are	few	(or	no)	examples	of	
perfect	synonymy.	
• Why	should	that	be?		
•  Even	if	many	aspects	of	meaning	are	idenNcal	
•  SNll	may	not	preserve	the	acceptability	based	
on	noNons	of	politeness,	slang,	register,	genre,	
etc.	

• Example:	
• Water	and	H20	



Some	more	terminology	
•  Lemmas	and	wordforms	

•  A	lexeme	is	an	abstract	pairing	of	meaning	and	form	
•  A	lemma	or	cita&on	form	is	the	grammaNcal	form	that	
is	used	to	represent	a	lexeme.	

•  Carpet	is	the	lemma	for	carpets	
•  Dormir	is	the	lemma	for	duermes.	

•  Specific	surface	forms	carpets,	sung,	duermes	are	called	wordforms	

•  The	lemma	bank	has	two	senses:	
•  Instead,	a	bank	can	hold	the	investments	in	a	custodial	
account	in	the	client’s	name	

•  But	as	agriculture	burgeons	on	the	east	bank,	the	river	
will	shrink	even	more.	

• A	sense	is	a	discrete	representaNon	of	one	
aspect	of	the	meaning	of	a	word	



Synonymy	is	a	relation	between	senses	rather	
than	words	

• Consider	the	words	big	and	large	
• Are	they	synonyms?	

•  How	big	is	that	plane?	
• Would	I	be	flying	on	a	large	or	small	plane?	

• How	about	here:	
•  Miss	Nelson,	for	instance,	became	a	kind	of	big	sister	to	
Benjamin.	

•  ?Miss	Nelson,	for	instance,	became	a	kind	of	large	sister	to	
Benjamin.	

• Why?	
•  big	has	a	sense	that	means	being	older,	or	grown	up	
•  large	lacks	this	sense	



Antonyms	
• Senses	that	are	opposites	with	respect	to	
one	feature	of	their	meaning	

• Otherwise,	they	are	very	similar!	
•  dark	/	light	
•  short	/	long	
•  hot	/	cold	
•  up	/	down	
•  in	/	out	

• More	formally:	antonyms	can	
•  define	a	binary	opposiNon	or	at	opposite	ends	of	a	
scale	(long/short,	fast/slow)	

•  Be	reversives:	rise/fall,	up/down	



Hyponymy	
• One	sense	is	a	hyponym	of	another	if	the	first	
sense	is	more	specific,	denoNng	a	subclass	of	the	
other	
•  car	is	a	hyponym	of	vehicle	
•  dog	is	a	hyponym	of	animal	
•  mango	is	a	hyponym	of	fruit	

•  Conversely	
•  vehicle	is	a	hypernym/superordinate		of	car	
•  animal	is	a	hypernym	of	dog	
•  fruit	is	a	hypernym	of	mango	

superordinate vehicle fruit furniture mammal 

hyponym car mango chair dog 



Hypernymy	more	formally	
• Extensional:	

•  The	class	denoted	by	the	superordinate	
•  extensionally	includes	the	class	denoted	by	the	
hyponym	

• Entailment:	
• A	sense	A	is	a	hyponym	of	sense	B	if	being	an	A	
entails	being	a	B	

• Hyponymy	is	usually	transiNve		
•  (A	hypo	B	and	B	hypo	C	entails	A	hypo	C)	



• Why	would	hypernyms/hyponyms	be	
important	to	construcNng	a	meaning	
representaNon?			





II.	WordNet	
• A	hierarchically	organized	lexical	database	
• On-line	thesaurus	+	aspects	of	a	dicNonary	

•  Versions	for	other	languages	are	under	
development	

Category Unique 
Forms 

Noun 117,097 

Verb 11,488 

Adjective 22,141 

Adverb 4,601 



WordNet	

•  Where	it	is:	
•  h_ps://wordnet.princeton.edu/	

	



Format	of	Wordnet	Entries	



WordNet	Noun	Relations	



WordNet	Verb	Relations	



WordNet	Hierarchies	



How	is	“sense”	deJined	in	
WordNet?	
• The	set	of	near-synonyms	for	a	WordNet	
sense	is	called	a	synset	(synonym	set);	it’s	
their	version	of	a	sense	or	a	concept	

• Example:	chump	as	a	noun	to	mean		
•  ‘a	person	who	is	gullible	and	easy	to	take	
advantage	of’	

•  Each	of	these	senses	share	this	same	gloss	
•  Thus	for	WordNet,	the	meaning	of	this	sense	of	
chump	is	this	list.	



Wordnet	example	



Questions?	



Midterm	
• Format	

• MulNple	Choice	quesNons	
•  Short	answer	quesNons	
• Problem	solving	
	

• What	will	it	cover?	
• Anything	covered	in	class	
•  From	reading	that	supports	material	in	class	
• Math	as	needed	for	neural	nets,	machine	
learning,	smoothing	



Midterm	
• Closed	book,	no	notes,	no	electronics	
	

• Will	avoid	asking	you	to	recall	formulas	
•  That	said,	you	should	know	how	to	compute	
the	probability	of	ngrams,	of	POS	tags,	basics	
for	smoothing,	language	modeling,	how	to	do	
computaNon	for	neural	nets.		
	

• Will	cover	anything	from	beginning	
through	today	
	

• Sample	midterm	quesNons	posted	
	
	



Top	topics	
• Viterbi	algorithm	
• Dependency	parsing	
• RNNs	



Questions?		



Viterbi	and	POS	



Two	kinds	of	probabilities	(1)	
• Tag	transiNon	probabiliNes	p(ti|ti-1)	

• Determiners	likely	to	precede	adjs	and	nouns	
•  That/DT	flight/NN	
•  The/DT	yellow/JJ	hat/NN	
•  So	we	expect	P(NN|DT)	and	P(JJ|DT)	to	be	high	
•  But	P(DT|JJ)	to	be	low	

• Compute	P(NN|DT)	by	counNng	in	a	labeled	corpus:	



Two	kinds	of	probabilities	(2)	
• Word	likelihood	probabiliNes	p(wi|ti)	

• VBZ	(3sg	Pres	verb)	likely	to	be	“is”	
• Compute	P(is|VBZ)	by	counNng	in	a	labeled	corpus:	

10/1
6/19 

27
 



An	Example:	the	verb	“race”	

• Secretariat/NNP	is/VBZ	expected/VBN	to/TO	
race/VB	tomorrow/NR	

• People/NNS	conNnue/VB	to/TO	inquire/VB	
the/DT	reason/NN	for/IN	the/DT	race/NN	
for/IN	outer/JJ	space/NN	
	

• How	do	we	pick	the	right	tag?	 10/1
6/19 
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Disambiguating	“race”	

10/1
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Disambiguating	“race”	

10/1
6/19 

30
 



Disambiguating	“race”	

10/1
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Disambiguating	“race”	

10/1
6/19 
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•  P(NN|TO)	=	.00047	
•  P(VB|TO)	=	.83	
•  P(race|NN)	=	.00057	
•  P(race|VB)	=	.00012	
•  P(NR|VB)	=	.0027	
•  P(NR|NN)	=	.0012	
•  P(VB|TO)P(NR|VB)P(race|VB)	=	.00000027	
•  P(NN|TO)P(NR|NN)P(race|NN)=.00000000032	
•  So	we	(correctly)	choose	the	verb	reading,	

10/1
6/19 
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HMMS	



Hidden	Markov	Models	
• We	don’t	observe	POS	tags	

• We	infer	them	from	the	words	we	see	
	

• Observed	events	
	

• Hidden	events	

10/1
6/19 
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Hidden	Markov	Model	
•  For	Markov	chains,	the	output	symbols	are	the	same	
as	the	states.	
•  See	hot	weather:	we’re	in	state	hot	

• But	in	part-of-speech	tagging	(and	other	things)	
•  The	output	symbols	are	words	
•  The	hidden	states	are	part-of-speech	tags	

•  So	we	need	an	extension!	
• A	Hidden	Markov	Model	is	an	extension	of	a	Markov	
chain	in	which	the	input	symbols	are	not	the	same	as	
the	states.	

•  This	means	we	don’t	know	which	state	we	are	in.	

10/1
6/19 

36
 



Hidden	Markov	Models	
• States	Q = q1, q2…qN;  	
• ObservaNons	O= o1, o2…oN;   

•  Each	observaNon	is	a	symbol	from	a	vocabulary	V	=	
{v1,v2,…vV}	

• TransiNon	probabiliNes	
•  Transition probability matrix A = {aij} 

 
	

• ObservaNon	likelihoods	
• Output probability matrix B={bi(k)} 

 
	

• Special	iniNal	probability	vector	π	

€ 

π i = P(q1 = i)    1≤ i ≤ N

€ 

aij = P(qt = j |qt−1 = i)   1≤ i, j ≤ N

€ 

bi(k) = P(Xt = ok |qt = i)   



Hidden	Markov	Models	

• Some	constraints	

	

10/1
6/19 
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€ 

π i = P(q1 = i)    1≤ i ≤ N

€ 

aij =1;    1≤ i ≤ N
j=1

N

∑

€ 

bi(k) =1
k=1

M

∑

€ 

π j =1
j=1

N

∑



Assumptions	
• Markov	assump&on:	
	
	

• Output-independence	assump&on	

10/1
6/19 
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€ 

P(qi |q1...qi−1) = P(qi |qi−1)

€ 

P(ot |O1
t−1,q1

t ) = P(ot |qt )



Three	fundamental	Problems	for	HMMs	

• Likelihood:	Given	an	HMM	λ	=	(A,B)	and	an	
observaNon	sequence	O,	determine	the	
likelihood	P(O,	λ).		
	

• Decoding:	Given	an	observaNon	sequence	O	
and	an	HMM	λ	=	(A,B),	discover	the	best	
hidden	state	sequence	Q.		
	

• Learning:	Given	an	observaNon	sequence	O	
and	the	set	of	states	in	the	HMM,	learn	the	
HMM	parameters	A	and	B.	
	
What	kind	of	data	would	we	need	to	learn	the	
HMM	parameters?		

10/1
6/19 
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Decoding	
•  The	best	hidden	sequence	

• Weather	sequence	in	the	ice	cream	task	
•  POS	sequence	given	an	input	sentence	

• We	could	use	argmax	over	the	probability	of	
each	possible	hidden	state	sequence	
• Why	not?		

• Viterbi	algorithm	
•  Dynamic	programming	algorithm	
•  Uses	a	dynamic	programming	trellis	

•  Each	trellis	cell	represents,	vt(j),	represents	the	probability	
that	the	HMM	is	in	state	j	ater	seeing	the	first	t	observaNons	
and	passing	through	the	most	likely	state	sequence	 10/1

6/19 
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Viterbi	intuition:	we	are	looking	for	
the	best	‘path’	

10/1
6/19 

42
 

      promised     to           back           the              bill

VBD

VBN

TO

VB

JJ

NN

RB

DT

NNP

VB
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      promised     to           back           the              bill
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TO
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NN

S1 S2 S4 S3 S5 

      promised     to           back           the              bill

VBD

VBN

TO

VB

JJ

NN

RB

DT

NNP

VB

NN

Slide from Dekang Lin 



Intuition	
• The	value	in	each	cell	is	computed	by	
taking	the	MAX	over	all	paths	that	lead	to	
this	cell.		

	
• An	extension	of	a	path	from	state	i	at	Nme	
t-1	is	computed	by	mulNplying:	

10/1
6/19 
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The	Viterbi	Algorithm	

10/1
6/19 
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The	A	matrix	for	the	POS	HMM	

10/1
6/19 
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What is P(VB|TO)? What is P(NN|TO)? Why does this make 
sense? 
 
What is P(TO|VB)? What is P(TO|NN)? Why does this make 
sense? 
 
 



The	B	matrix	for	the	POS	HMM	

10/1
6/19 

46
 

Look at P(want|VB) and P(want|NN). Give an explanation for the 
difference in the probabilities.  





Problem	
• I	want	to	race		(possible	states:	PPS	VB	TO	
NN)	



Viterbi	example	

10/1
6/19 
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t=1 



Viterbi	example	

10/1
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t=1 

X 



Viterbi	example	

10/1
6/19 
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t=1 

X 

J=NN 

I=S 



The	A	matrix	for	the	POS	HMM	
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6/19 

52
 



Viterbi	example	
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t=1 

X 

J=NN 

I=S 

 .041X 



The	B	matrix	for	the	POS	HMM	
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Look at P(want|VB) and P(want|NN). Give an explanation for the 
difference in the probabilities.  



Viterbi	example	
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t=1 

X 

J=NN 

I=S 

 .041X 0 
0 



Viterbi	example	
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t=1 

X 

J=NN 

I=S 

 .041X 0 
0 

0 

0 

.025 



Viterbi	example	

10/1
6/19 
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t=1 

J=NN 

I=S 

0 

0 

0 

.025 

Show the 4 formulas you would use to 
compute the value at this node and the max. 



Dependency	Parsing	



Dependency	parsing	
• An	example	from	the	NY	Times	today:	

Last	week,	on	the	third	floor	of	a	small	
building	in	San	Francisco’s	Mission	District,	
a	woman	scrambled	the	Dles	of	a	Rubik’s	
Cube	



Dependency	parsing	
• An	example	from	the	NY	Times	today:	

Last	week,	on	the	third	floor	of	a	small	
building	in	San	Francisco’s	Mission	District,	
a	woman	scrambled	the	Dles	of	a	Rubik’s	
Cube	



Dependency	parsing	
• An	example	from	the	NY	Times	today:	

Last	week,	on	the	third	floor,	a	woman	
scrambled	the	Dles	of	a	Rubik’s	Cube	



RNNs	and	LSTMs	
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Recurrent	Neural	Networks	
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RNN	
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RNN	
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Updating	Parameters	of	an	
RNN	
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Backpropagation through time 
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RNN	–	I	had	in	mind	your	facts,	
buddy,	not	hers.	
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In this overview, w refers to the weights 
But there are different kinds of weights 
Let’s be more specific 



RNN	–	I	had	in	mind	your	facts,	
buddy,	not	hers.	
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RNN	–	I	had	in	mind	your	facts,	
buddy,	not	hers.	
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W are the weights: the word embedding matrix 
multiplication with xt yields the embedding for x 
U is another weight matrix 
H0 is often not specified. H is the hidden layer. 

σ



RNN	–	I	had	in	mind	your	facts,	
buddy,	not	hers.	
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RNN	–	I	had	in	mind	your	facts,	
buddy,	not	hers.	
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Y = positive? 
Y = negative? Final embedding run through the sigmoid 

function -> [0,1] 
1 = positive 
0= negative 
Often final h is used as word embedding for 
the sentence 



Updating	Parameters	of	an	
RNN	
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Backpropagation through time 
Gold label = 0 (negative) 
Adjust weights using gradient 
Repeat many times with all examples 
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Transforming	RNN	to	LSTM	

𝑢↓𝑡 = 𝜎( 𝑊↓ℎ ℎ↓𝑡−1 + 𝑊↓𝑥 𝑥↓𝑡 ) 
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Transforming	RNN	to	LSTM	
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Transforming	RNN	to	LSTM	

𝑐↓𝑡 = 𝑓↓𝑡 ⊙ 𝑐↓𝑡−1 + 𝑖↓𝑡 ⊙ 𝑢↓𝑡  
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Transforming	RNN	to	LSTM	
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Transforming	RNN	to	LSTM	
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Transforming	RNN	to	LSTM	
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Transforming	RNN	to	LSTM	

𝑖↓𝑡 = 𝜎( 𝑊↓ℎ𝑖 ℎ↓𝑡−1 + 𝑊↓𝑥𝑖 𝑥↓𝑡 ) 
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Transforming	RNN	to	LSTM	
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LSTM	for	Sequences	
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Problem	10	from	sample	
midterm	questions	


