Lexical Semantics Wrap-up and Midterm Review

How do we know when a word has more than one sense?

- ATIS examples
 - Which flights serve breakfast?
 - Does America West serve Philadelphia?
- The "zeugma" test:
 - ?Does United serve breakfast and San Jose?

Synonyms

- Word that have the same meaning in some or all contexts.
 - filbert / hazelnut
 - couch / sofa
 - big / large
 - automobile / car
 - vomit / throw up
 - Water / H₂0
- Two lexemes are synonyms if they can be successfully substituted for each other in all situations
 - If so they have the same **propositional meaning**

Synonyms

- But there are few (or no) examples of perfect synonymy.
 - Why should that be?
 - Even if many aspects of meaning are identical
 - Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
- Example:
 - Water and H₂0

Some more terminology

- Lemmas and wordforms
 - A **lexeme** is an abstract pairing of meaning and form
 - A lemma or citation form is the grammatical form that is used to represent a lexeme.
 - *Carpet* is the lemma for *carpets*
 - *Dormir* is the lemma for *duermes*.
 - Specific surface forms *carpets, sung, duermes* are called **wordforms**

• The lemma *bank* has two **senses**:

- Instead, a bank can hold the investments in a custodial account in the client's name
- But as agriculture burgeons on the east bank, the river will shrink even more.
- A sense is a discrete representation of one aspect of the meaning of a word

Synonymy is a relation between senses rather than words

- Consider the words big and large
- Are they synonyms?
 - How **big** is that plane?
 - Would I be flying on a **large** or small plane?
- How about here:
 - Miss Nelson, for instance, became a kind of **big** sister to Benjamin.
 - ?Miss Nelson, for instance, became a kind of large sister to Benjamin.
- Why?
 - big has a sense that means being older, or grown up
 - *large* lacks this sense

Antonyms

- Senses that are opposites with respect to one feature of their meaning
- Otherwise, they are very similar!
 - dark / light
 - short / long
 - hot / cold
 - up / down
 - in / out

More formally: antonyms can

- define a binary opposition or at opposite ends of a scale (*long/short, fast/slow*)
- Be reversives: rise/fall, up/down

Hyponymy

- One sense is a hyponym of another if the first sense is more specific, denoting a subclass of the other
 - *car* is a hyponym of *vehicle*
 - dog is a hyponym of animal
 - mango is a hyponym of fruit
- Conversely
 - *vehicle* is a hypernym/superordinate of *car*
 - animal is a hypernym of dog
 - *fruit* is a hypernym of *mango*

superordinate	vehicle	fruit	furniture	mammal
hyponym	car	mango	chair	dog

Hypernymy more formally

- Extensional:
 - The class denoted by the superordinate
 - extensionally includes the class denoted by the hyponym
- Entailment:
 - A sense A is a hyponym of sense B if being an A entails being a B
- Hyponymy is usually transitive
 - (A hypo B and B hypo C entails A hypo C)

 Why would hypernyms/hyponyms be important to constructing a meaning representation?

Why would hypernyms/hyponyms be important for meaning representation?

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

II. WordNet

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary
 - Versions for other languages are under development

Category	Unique Forms
Noun	117,097
Verb	11,488
Adjective	22,141
Adverb	4,601

WordNet

- Where it is:
 - <u>https://wordnet.princeton.edu/</u>

Format of Wordnet Entries

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet.

 bass¹, deep⁶ - (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

WordNet Noun Relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	breakfast $^1 ightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 ightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 ightarrow Bach^1$
Instance		From instances to their concepts	Austen $^1 ightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$\mathit{copilot}^1 ightarrow \mathit{crew}^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 ightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

WordNet Verb Relations

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From a verb (event) to a specific manner elaboration of that verb	walk $^1 ightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$\mathit{snore}^1 ightarrow \mathit{sleep}^1$
Antonym	Opposites	$increase^1 \iff decrease^1$

WordNet Hierarchies

```
Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser
   => musician, instrumentalist, player
      => performer, performing artist
         => entertainer
            => person, individual, someone...
               => organism, being
                  => living thing, animate thing,
                     => whole, unit
                        => object, physical object
                           => physical entity
                              => entity
               => causal agent, cause, causal agency
                  => physical entity
                     => entity
Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument
   => device
      => instrumentality, instrumentation
         => artifact, artefact
            => whole, unit
               => object, physical object
                  => physical entity
```

How is "sense" defined in WordNet?

- The set of near-synonyms for a WordNet sense is called a synset (synonym set); it's their version of a sense or a concept
- Example: chump as a noun to mean
 - 'a person who is gullible and easy to take advantage of'

{chump¹, fool², gull¹, mark⁹, patsy¹, fall guy¹, sucker¹, soft touch¹, mug²}

- Each of these senses share this same gloss
- Thus for WordNet, the meaning of this sense of chump <u>is</u> this list.

Wordnet example

Questions?

Midterm

Format

- Multiple Choice questions
- Short answer questions
- Problem solving
- What will it cover?
 - Anything covered in class
 - From reading that supports material in class
 - Math as needed for neural nets, machine learning, smoothing

Midterm

- Closed book, no notes, no electronics
- Will avoid asking you to recall formulas
 - That said, you should know how to compute the probability of ngrams, of POS tags, basics for smoothing, language modeling, how to do computation for neural nets.
- Will cover anything from beginning through today
- Sample midterm questions posted

Top topics

- Viterbi algorithm
- Dependency parsing
- RNNs

Questions?

Viterbi and POS

Two kinds of probabilities (1)

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be low
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$
$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two kinds of probabilities (2)

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is | VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

(10/1) 6/19

27

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race | NN) = .00057
- P(race | VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.0000000032
- So we (correctly) choose the verb reading,

HMMS

Hidden Markov Models

- We don't observe POS tags
 - We infer them from the words we see
- Observed events
- Hidden events

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - The hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.
Hidden Markov Models

- States $Q = q_1, q_2...q_{N;}$
- Observations $O = o_1, o_2...o_{N}$;
 - Each observation is a symbol from a vocabulary V = {v₁,v₂,...v_V}
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}\ a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$
- Observation likelihoods
 - Output probability matrix $B = \{b_i(k)\}$ $b_i(k) = P(X_t = o_k | q_t = i)$
- Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Hidden Markov Models

• Some constraints

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \le i \le N$$

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

$$\sum_{k=1}^{N} b_i(k) = 1 \qquad \sum_{k=1}^{N} \pi$$

k=1

 $\sum_{j=1} \pi_j = 1$

(10/1) 6/19

Assumptions

Markov assumption:

$$P(q_i | q_1 ... q_{i-1}) = P(q_i | q_{i-1})$$

• Output-independence assumption $P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$

Three fundamental Problems for HMMs

- *Likelihood*: Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood P(O, λ).
- **Decoding**: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the best hidden state sequence Q.
- Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

What kind of data would we need to learn the HMM parameters?

10/1

Decoding

- The best hidden sequence
 - Weather sequence in the ice cream task
 - POS sequence given an input sentence
- We could use argmax over the probability of each possible hidden state sequence
 - Why not?
- Viterbi algorithm
 - Dynamic programming algorithm
 - Uses a dynamic programming trellis
 - Each trellis cell represents, v_t(j), represents the probability that the HMM is in state j after seeing the first t observations and passing through the most likely state sequence

10/1

Viterbi intuition: we are looking for the best 'path'

Slide from Dekang Lin

Intuition

• The value in each cell is computed by taking the MAX over all paths that lead to this cell.

$$v_t(j) = \max_{1 \le i \le N-1} v_{t-1}(i) a_{ij} b_j(o_t)$$

 An extension of a path from state i at time t-1 is computed by multiplying:

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

10/1 .6/19

The Viterbi Algorithm

function VITERBI(observations of len T, state-graph) returns best-path

```
\begin{array}{l} num-states \leftarrow \text{NUM-OF-STATES}(state-graph)\\ \text{Create a path probability matrix } viterbi[num-states+2,T+2]\\ viterbi[0,0] \leftarrow 1.0\\ \text{for each time step } t \text{ from 1 to } T \text{ do}\\ \text{for each state } s \text{ from 1 to } num-states \text{ do}\\ viterbi[s,t] \leftarrow \max_{1 \leq s' \leq num-states} viterbi[s',t-1] * a_{s',s} * b_s(o_t)\\ backpointer[s,t] \leftarrow \arg\max_{1 \leq s' \leq num-states} viterbi[s',t-1] * a_{s',s}\\ \text{Backtrace from highest probability state in final column of } viterbi[] \text{ and return path} \end{array}
```

(10/1) 6/19

The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

10/1

What is P(VB|TO)? What is P(NN|TO)? Why does this make sense?

What is P(TO|VB)? What is P(TO|NN)? Why does this make sense?

The B matrix for the POS HMM

	Ι	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the difference in the probabilities.

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

	Ι	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0
Figure 4.16 Observation likelihoods (the horrow) computed from the 97 tes				

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Problem

 I want to race (possible states: PPS VB TO NN)

The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

The B matrix for the POS HMM

	Ι	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the difference in the probabilities.

Dependency Parsing

Dependency parsing

• An example from the NY Times today:

Last week, on the third floor of a small building in San Francisco's Mission District, a woman scrambled the tiles of a Rubik's Cube

Dependency parsing

• An example from the NY Times today:

Last week, on the third floor of a small building in San Francisco's Mission District, a woman scrambled the tiles of a Rubik's Cube

Dependency parsing

• An example from the NY Times today:

Last week, on the third floor, a woman scrambled the tiles of a Rubik's Cube

RNNs and LSTMs

Recurrent Neural Networks

 $h \downarrow t = \sigma(W \downarrow h h \downarrow t - 1 + W \downarrow x x \downarrow t)$

Slide from Radev

RNN

 $\begin{aligned} h \downarrow t &= \sigma(W \downarrow h \, h \downarrow t - 1 + W \downarrow x \, x \downarrow t \,) \\ y \downarrow t &= softmax(W \downarrow y \, h \downarrow t \,) \end{aligned}$

Slide from Radev

RNN

Updating Parameters of an RNN

RNN – I had in mind your facts, buddy, not hers.

In this overview, w refers to the weights But there are different kinds of weights Let's be more specific

Y₃

sigm oid

RNN – I had in mind your facts, buddy, not hers.

Y₃

sigm oid

RNN – I had in mind your facts, buddy, not hers.

W are the weights: the word embedding matrix multiplication with x_t yields the embedding for x U is another weight matrix H_0 is often not specified. H is the hidden layer.

Y₃

sigm

oid

Updating Parameters of an RNN

Backpropagation through time Gold label = 0 (negative) Adjust weights using gradient Repeat many times with all examples

Slide from Radev

Уз

Cost
$u \downarrow t = \sigma(W \downarrow h h \downarrow t - 1 + W \downarrow x x \downarrow t)$

LSTM for Sequences

Problem 10 from sample midterm questions