Basic Parsing with Context-Free
Grammars

Some slides adapted from Karl Stratos and from Chris
Manning

Announcements

Reading
Today: 11.2-11.4 NLP
Monday: 14 — 14.2 Speech and Language

Remaining PyTorch review: Thurs 2-4pm

Midterm on 10/21 (see website). Sample questions will be
provided.

Today: finish syntax and start dependency parsing

Grammar Equivalence

* Can have different grammars that generate
same set of strings (weak equivalence)
Grammar 1: NP — DetP N and DetP — a | the
Grammar 2: NP —=a N | NP — the N

* Can have different grammars that have same
set of derivation trees (strong equivalence)

With CFGs, possible only with useless rules
Grammar 2: NP —=a N | NP — the N
Grammar 3: NP —=a N | NP — the N, DetP — many

* Strong equivalence implies weak equivalence

Chomsky Normal Form

A CFG is in Chomsky Normal Form (CNF) if

all productions are of one of two forms:
* A — BCwith A, B, C nonterminals
* A — g, with A a nonterminal and g a terminal

Every CFG has a weakly equivalent CFG in
CNF

“Generative Grammar”

* Formal languages: formal device to
generate a set of strings (such as a CFG)

* Linguistics (Chomskyan linguistics in
particular): approach in which a linguistic
theory enumerates all possible strings/
structures in a language (=competence)

* Chomskyan theories do not really use
formal devices — they use CFG + informally
defined transformations

Nobody Uses Simple CFGs (Except
Intro NLP Courses)

* All major syntactic theories (Chomsky, LFG,
HPSG, TAG-based theories) represent both
phrase structure and dependency, in one way
or another

* All successful parsers currently use statistics
about phrase structure and about dependency

* Derive dependency through “head
percolation”: for each rule, say which daughter
is head

Massive Ambiguity of Syntax

* For a standard sentence, and a grammar
with wide coverage, there are 1000s of
derivations!

* Example:

The large portrait painter told the delegation
that he sent money orders in a letter on
Wednesday

Penn Treebank (PTB)

* Syntactically annotated corpus of
newspaper texts (phrase structure)

* The newspaper texts are naturally
occurring data, but the PTB is not!

* PTB annotation represents a particular
inguistic theory (but a fairly “vanilla” one)

* Particularities

Very indirect representation of grammatical relations
(need for head percolation tables)

Completely flat structure in NP (brown bag lunch, pink-
and-yellow child seat)

Has flat Ss, flat VPs

Example from PTB
((S (NP-SBJ It)
(VP's
(NP-PRD (NP (NP the latest investment craze)
(VP sweeping
(NP Wall Street)))

(NP (NP a rash)
(PP of
(NP (NP new closed-end country funds)

(NP (NP those

(ADJP publicly traded)

portfolios)
(SBAR (WHNP-37 that)

(S (NP-SBJ *T*-37)
(VP invest
(PP-CLR in
(NP (NP stocks)
(PP of
(NP a single foreign country)))))))))

Types of syntactic
constructions

* Is this the same construction?
An elf decided to clean the kitchen
An elf seemed to clean the kitchen
An elf cleaned the kitchen

* |s this the same construction?
An elf decided to be in the kitchen

An elf seemed to be in the kitchen
An elf was in the kitchen

Types of syntactic constructions

(ctd)

°|s t

his the same construction?

There is an elf in the kitchen

T
T

°|s t
It is

nere decided to be an elf in the kitchen
nere seemed to be an elf in the kitchen

nis the same construction?
raining/it rains

It decided to rain/be raining

It seemed to rain/be raining

Types of syntactic constructions
(ctd)

* Is this the same construction?
An elf decided that he would clean the kitchen
An elf seemed that he would clean the kitchen
An elf cleaned the kitchen

Types of syntactic constructions
(ctd)

Conclusion:

* to seem: whatever is embedded surface
subject can appear in upper clause

* to decide: only full nouns that are
referential can appear in upper clause

* Two types of verbs

Empirical Matter

The Big Picture

Formalisms

eData structures
eFormalisms
eAlgorithms
eDistributional Models

Maud expects
there to be a

descriptive
theory is s

riot
a bo ut Maud expects
the shit to hit
the fan
*Teri promised
the shit to hit
the

USES predicts

explanatory
theory is about

Linguistic Theory

Content: Relate morphology to semantics
e Surface representation (eg, ps)

» Deep representation (eg, dep)

e Correspondence

Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

4 /41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41

Valid Dependency Tree

1. (Root): 0 must not have a parent.
l

T

] i

2. (Connected): There must be a path from 0 to every i € N.
3. (Tree): A node must not have more than one parent.
l i
1 J k
4. (Acyclic): Nodes must not form a cycle.
lnfl

ll ln—?
. /\ .
ZO e Zn—l

6 /41

Projective

* Can arrows cross -> non-projective

AN N

root John saw a dog yesterday which was a Yorkshire Terrier

* A valid dependency tree is projective if for every arc (i, |, j)
there is a path from i to k for all i<ks;.

Projective

* Can arrows cross -> non-projective

- AN

root a dog yesterday which was a Yorkshire Terrier

* A valid dependency tree is projective if for every arc (i, |, j)
there is a path from i to k for all i<k<;.

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41

Dependency Parsing = Arc Finding

» Sentence: z1...Zy,

» Associated nodes: N = {0,1,...,m}

» Convention: leftmost root 0

» Labels: L = {PRED,SBJ,...}

Goal. Find a set of labeled, directed arcs
ACN XLxN

that corresponds to a correct dependency tree for z7 ... x,.

5/41

What information useful?

* Lexical affiniities
financial markets

* Dependency distance

* Intervening material
little in had little effect
Not /ittle gave effect

* Valency of heads (subcategorization)

£ Y
little effect on financial markets

Methods of Dependency Parsing

* Dynamic programming
Eisner (1996): algorithm with complexity O(n3) by producing
parse items with heads at the end instead of the middle

* Graph algorithms
Create a Minimum Spanning Tree for a sentence (e..g,
McDonald’s MSTParser 2005)

* Constraint Satisfaction
Edges are eliminated that don’t satisfy hard
constraints (Karlsson 1990

* Transition-based parsing (or deterministic

based parsing

Greedy choice of attachments guided by good
machine learning. MaltParser (Nivre 2003)

Slide adapted from Manning .

Greedy Transition-based
Parsing (Nivre 2003)

* Simple form of greedy discriminative
dependency parser

* Bottom-up
* Similar to shift-reduce

* The parser has:
A stack , written with top to the right
Starts with ROOT

A buffer ,written with top to the left
Starts with input sentence

A set of dependency arcs A
Which starts off empty

A set of actions

Parser Configuration

Triple ¢ = (o, 8, A) where
» o =[... 1] “stack” of A/ with i at the top
» 3=1[i ...]: "buffer” of N with i at the front
» ACN x L xN: arcs

Notation
» C denotes the space of all possible configurations.

» c.o, c.3, c.A denote stack, buffer, arcs of ¢ € C.

9/41

Configuration-Based Parsing Scheme

Initial configuration

co = ([0, [1...m[,{ })

Apply “transitions” until we reach terminal ¢y (defined later)

to t1 tr—1
cg—>Cl —» -+ —CT

and return as a parse
CT.A

10 /41

Shift and Reduce

SHIFT (0,i[5,A) = (ali, 5, A)

lllegal if 5 is empty.

REDUCE (0li,3,A) = (0,5, A)

lllegal if ¢ does not have a parent.

12 /41

Left-Arc

LEFT, (olilj,3,A) = (o], 8,AU{(4,1,7)})

l

RN

Z DR j

lllegal if either ¢ = 0 or ¢ already has a parent.

13 /41

Right-Arc

RIGHT, (0lilj, 5, A) = (oli, 8, AU{(i,1,7)})

l

RN

’l DR j

lllegal if j already has a parent.

14 / 41

Definition

2|L| + 1 possible transitions 7
» SHIFT: (0,i|8,A) = (0li, 8, A)
» LEFT,; foreach [€ L:

(alilj, B, A) = (o5, 8, AU{(4,1,9)})

» RIGHT, foreach [€ L:

(olilj, B, A) = (oli, 8, AU{(i,1,5)})

Terminal condition: c.oc = [0] and ¢.f =[]

19 /41

Example for arc-standard

* They sleep all night

START
[[ROOT]] [They sleep all night]

Example for arc-standard

* They sleep all night

START

[[ROOT]J [They sleep all night]
SHIFT

[[ROOT] They} [sleep all night]

Example for arc-standard

* They sleep all night

START

[[ROOT]J [They sleep all night]
SHIFT

[[ROOT] They} [sleep all night]

SHIFT
[[ROOT] They sIeepJ [all night]

Example for arc-standard

* They sleep all night

A
LEFT ARC s
[[ROOT] They sleep] NSUBJ (sleep -> They
$

[[ROOT] sIeep] [all night]

Example for arc-standard

* They sleep all night

LEFT ARC Arcs
[[ROOT] They sleep J NSUBJ (sleep -> They
L 4
[[ROOT] sIeepJ [all night]
SHIFT

uROOT] sleep aIIJ [night]

Example for arc-standard

* They sleep all night

LEFT ARC
[[ROOT] They sleep J NSUBJ (sleep -> They
4
[[ROOT] sIeepJ [all night]
SHIFT
uROOT] sleep aIIJ [night]
SHIFT
[[ROOT] sleep all night J []

Arcs

Example for arc-standard

* They sleep all night

LEFT ARC NSUBJ (S|ee irfl;_f]e)
[ROOT] sleep all nightJ : y
EFTARC § ATT (night -> all

[[ROOT] sleep night} [j

Example for arc-standard

* They sleep all night

EFT ARC Ares

['ROOT] sleep all night J NSUBJ (sleep -> They)
EFTARC § ATT (night -> all)

[[ROOT] sleep night}
RIGHT ARC ﬂ/ OBJ(sleep -> night)

[[ROOT] sleep] [j

Example for arc-standard

* They sleep all night

EFT ARC Arcs
['ROOT] sleep all night J NSUBJ (sleep -> They)
EFTARC § ATT (night -> all)
[[ROOT] sleep night}
RIGHT ARC ﬂ/ OBJ(sleep -> night)
[ROOT] sleep }
RIGHT ARC § PRED (ROOT -> sleep)

[{ROOT} J C] FINiSH

Definition

2|L| + 1 possible transitions 7
» SHIFT: (0,i|8,A) = (0li, 8, A)
» LEFT,; foreach [€ L:

(alilj, B, A) = (o5, 8, AU{(4,1,9)})

» RIGHT, foreach [€ L:

(olilj, B, A) = (oli, 8, AU{(i,1,5)})

Terminal condition: c.oc = [0] and ¢.f =[]

19 /41

Properties
» Makes exactly 2m transitions to parse x7 ... Zy,,. Why?

» Bottom-up: a node must collect all its children before
getting a parent. Why?

» Sound: if ¢ is terminal, c.A forms a valid projective tree.

» Complete: every valid projective tree A can be produced

from ¢y by some sequence of transitions ty...t7_1 € T

t; = Oracle™(¢;)

cit1 = ti(e;)

20 /41

Example Parse (Nivre 2013)

PRED

ATT

ROOT Economic

Transition

cs(z) =

SHIFT =

SHIFT =
LEFT-ARCypp =
SHIFT =
LEFT-ARCsp; =
SHIFT =

SHIFT =
LEFT-ARCy1r =
SHIFT =

SHIFT =

SHIFT =
LEFT-ARCurr =
RIGHT-ARCpe =
RIGHT-ARC,y =
RIGHT-ARCp, =
SHIFT =
RIGHT-ARCy; =
RIGHT- ARCroor =

SBJ

news had little effect on financial markets
Configuration
([, [L,....9], ©
([0,1], 2,....9, 0
([0,1,2 By, 9, 0
([0,2], By 9], A, ={(2,arT,1)}
([0,2,3, [4,....9, A4
([o0,3], 4,...,9), Az = AU{(3,584,2)}
([0,3,4], 5,..., 9], A,
([o,..., 5], [6,..., 9], Ay
([0,3,5, [6,..., 9], Asz= AU{(5, aTT,4)}
([0,....6], [7,8,9], As
([o,...7, [89], Az
([,-.-.8, [, Az
([0,...8, [9], As = AsU{(8, aTT,T)}
{ [0,...,6], [9), As = AU{(6, 7, 8)}
([0,3,5], 9], Ag = A;U{(5, ATT,6)}
([0,3], 9], A; = AsU{(3,081,5)}
([0,3,9 11 A7
([0,3], I As = A7U{(3,PU,9)}
([o], [l Ay = AsU{(0, ROOT, 3)}

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

22 /41

How do we decide the next
arc?

* Each action can be predicted by a discriminative
classifier over each legal move (Nivre and Hall
2005)

SVM

Max of 3 untyped choices; max of |R| X 2 +1 when typed
where R is # dependency labels

Features: top of stack word, top of stack POS what else?
* No search in greedy search
Could do beam search
* It provides VERY fast linear time parsing

* The model’s accuracy is slightly below the best
parser

* It provides fast, close to state of the art parsing

Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser

Getting Training Data

» Treebank: sentence-tree pairs (z(1), AM) ... (z(M) AM))
» Assume all projective

» For each AU, use an oracle to extract
(e, t) . (L,)

where tgfll(cgzzl).A = AU,

» We can now use this to train a classifier

29 /41

Oracle

Input: gold arcs A%, non-terminal configuration ¢ = (o, 3, A)
Output: transition t € T to apply on ¢

1. Return SHIFT if o] = 1.
2. Otherwise o = [... i j] for some i < j:

2.1 Return LEFT, if (j,1,1) € A&,
2.2 Return RIGHT; if (i,1,5) € A®" and for all ' € L,j' € N,

(4, V,5') € A= = (0" eA

2.3 Return SHIFT otherwise.

21/41

Linear Classifier

» Parameters: w; € R? foreach t € T

» Each c € C for sentence x is “featurized” as ¢”(c) € R

» Classical approach: binary features providing useful signals
» Assumes we have access to POS tags of 1 ...x,,.

20134871 0 otherwise

67 s (c) = 1 if 2. 4[0)-POS = VBD with leftmost arc SUBJ
19883771 0 otherwise

1 ifw.pgp = cat
0 otherwise

Piz(c) =

30/41

Linear Classifier (Continued)

» Score of t €T at c € C for z:

score,(t|c) == wy - ¢*(c)

» From here on, we assume {w;},.+ trained from data.

31/41

Important Aside

Each ¢; is computed from past decisions ¢ ...1;_ 1.

ci =t 1(tio(---to(co)))

So the score function on ¢; is really a function of ¢y...¢; 1.

score, (t|c) = score,(t|ty...1; 1)

Will use ¢; and tg...t;—1 interchangeably.

32/41

Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser

Greedy

At each configuration ¢;, pick

t; < argmax score,(t|ty...t; 1)
te LEGAL(c;)

34 /41

Parsing Algorithm

Input: {w;}, ;. sentence x of length m
Output: arcs representing a dependency tree for x

1. c+ ¢
2. While ¢.8 # [,
2.1 Select
t < argmax score,(t|c)
tELEGAL(c)

2.2 Make a transition: ¢ < t(c).
3. Return c.A.

35/ 41

	dependency-parsing
	trans based dependency parsing

