
Basic	Parsing	with	Context-Free	
Grammars	

1 Some slides adapted from Karl Stratos and from Chris
Manning

Announcements	
•  Reading	
•  Today:	11.2-11.4	NLP	
•  Monday:	14	–	14.2	Speech	and	Language	

•  Remaining	PyTorch	review:	Thurs	2-4pm	
	

•  Midterm	on	10/21	(see	website).	Sample	quesIons	will	be	
provided.	
	

•  Today:	finish	syntax	and	start	dependency	parsing	

2	

Grammar	Equivalence	
• Can	have	different	grammars	that	generate	
same	set	of	strings	(weak	equivalence)	
•  Grammar	1:	NP	→	DetP	N	and	DetP	→		a	|	the	
•  Grammar	2:	NP	→	a	N	|	NP	→	the	N	
	

• Can	have	different	grammars	that	have	same	
set	of	derivaBon	trees	(strong	equivalence)	
• With	CFGs,	possible	only	with	useless	rules	
•  Grammar	2:	NP	→	a	N	|	NP	→	the	N	
•  Grammar	3:	NP	→	a	N	|	NP	→	the	N,	DetP	→	many	
	

• Strong	equivalence	implies	weak	equivalence	

Chomsky	Normal	Form	
A	CFG	is	in	Chomsky	Normal	Form	(CNF)	if	
all	producBons	are	of	one	of	two	forms:	
•  A	→	BC	with	A,	B,	C	nonterminals	
•  A	→	a,	with	A	a	nonterminal	and	a	a	terminal	
	

Every	CFG	has	a	weakly	equivalent	CFG	in	
CNF	
	

“Generative	Grammar”	
• Formal	languages:	formal	device	to	
generate	a	set	of	strings	(such	as		a	CFG)	
	
• LinguisBcs	(Chomskyan	linguisBcs	in	
parBcular):	approach	in	which	a	linguisBc	
theory	enumerates	all	possible	strings/
structures	in	a	language	(=competence)	
	
• Chomskyan	theories	do	not	really	use	
formal	devices	–	they	use	CFG	+	informally	
defined	transformaBons	

Nobody	Uses	Simple	CFGs	(Except	
Intro	NLP	Courses)	
• All	major	syntacBc	theories	(Chomsky,	LFG,	
HPSG,	TAG-based	theories)	represent	both	
phrase	structure	and	dependency,	in	one	way	
or	another	
	
• All	successful	parsers	currently	use	staBsBcs	
about	phrase	structure	and	about	dependency		
	
• Derive	dependency	through	“head	
percolaBon”:	for	each	rule,	say	which	daughter	
is	head	

Massive	Ambiguity	of	Syntax	
• For	a	standard	sentence,	and	a	grammar	
with	wide	coverage,	there	are	1000s	of	
derivaBons!	
	
• Example:	
•  The	large	portrait	painter	told	the	delegaBon	
that	he	sent	money	orders	in	a	le]er	on	
Wednesday	

Penn	Treebank	(PTB)	
• SyntacBcally	annotated	corpus	of	
newspaper	texts	(phrase	structure)	
• The	newspaper	texts	are	naturally	
occurring	data,	but	the	PTB	is	not!	
• PTB	annotaBon	represents	a	parBcular	
linguisBc	theory	(but	a	fairly	“vanilla”	one)	
• ParBculariBes	
•  Very	indirect	representaBon	of	grammaBcal	relaBons	
(need	for	head	percolaBon	tables)	
•  Completely	flat	structure	in	NP	(brown	bag	lunch,	pink-
and-yellow	child	seat)	
•  Has	flat	Ss,	flat	VPs	

Example	from	PTB	
((S	(NP-SBJ	It)	
					(VP	's	
									(NP-PRD	(NP	(NP	the	latest	investment	craze)	
	 						(VP	sweeping	
	 												(NP	Wall	Street)))	
	 		:	
	 		(NP	(NP	a	rash)	
	 						(PP	of	
	 	 	(NP	(NP	new	closed-end	country	funds)	
	 	 						,	
	 	 						(NP	(NP	those	
	 	 	 						(ADJP	publicly	traded)	
	 	 	 						poreolios)	
	 	 	 		(SBAR	(WHNP-37	that)	
	 	 	 								(S	(NP-SBJ	*T*-37)	
	 	 	 	 			(VP	invest	
	 	 	 	 							(PP-CLR	in	
	 	 	 	 	 					(NP	(NP	stocks)	
	 	 	 	 	 											(PP	of	
	 	 	 	 	 														(NP	a	single	foreign	country)))))))))))	

Types	of	syntactic	
constructions	
• Is	this	the	same	construcBon?	
• An	elf	decided	to	clean	the	kitchen	
• An	elf	seemed	to	clean	the	kitchen		
An	elf	cleaned	the	kitchen	
• Is	this	the	same	construcBon?	
• An	elf	decided	to	be	in	the	kitchen	
• An	elf	seemed	to	be	in	the	kitchen	
An	elf	was	in	the	kitchen	

Types	of	syntactic	constructions	
(ctd)	
• Is	this	the	same	construcBon?	
There	is	an	elf	in	the	kitchen	
•  There	decided	to	be	an	elf	in	the	kitchen	
•  There	seemed	to	be	an	elf	in	the	kitchen	

• Is	this	the	same	construcBon?	
It	is	raining/it	rains	
•  It	decided	to	rain/be	raining	
•  It	seemed	to	rain/be	raining	

Types	of	syntactic	constructions	
(ctd)	

• Is	this	the	same	construcBon?	
• An	elf	decided	that	he	would	clean	the	kitchen	
•  	An	elf	seemed	that	he	would	clean	the	kitchen		
An	elf	cleaned	the	kitchen	

Types	of	syntactic	constructions	
(ctd)	
Conclusion:		
• to	seem:	whatever	is	embedded	surface	
subject	can	appear	in	upper	clause	
• to	decide:	only	full	nouns	that	are	
referenBal	can	appear	in	upper	clause	
• Two	types	of	verbs	

The	Big	Picture		 Empirical Matter

Formalisms

• Data structures
• Formalisms
• Algorithms
• Distributional Models

Maud expects
there to be a
riot
*Teri promised
there to be a
riot
Maud expects
the shit to hit
the fan
*Teri promised
the shit to hit
the

or

Linguistic Theory

Content: Relate morphology to semantics
•  Surface representation (eg, ps)
•  Deep representation (eg, dep)
•  Correspondence

uses

descriptive
theory is

about

explanatory
theory is about

predicts

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

3

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Valid Dependency Tree

1. (Root): 0 must not have a parent.

0 · · · i

l

2. (Connected): There must be a path from 0 to every i ∈ N .

3. (Tree): A node must not have more than one parent.

i j k

l l′

4. (Acyclic): Nodes must not form a cycle.

i0 · · · in−1

l1 ln−2

ln−1

6 / 41

Projective	
•  Can	arrows	cross	->	non-projecIve	
	
	
	
	
	
	

•  A	valid	dependency	tree	is	projecIve	if	for	every	arc	(i,	l,	j)	
there	is	a	path	from	i	to	k	for	all	i<k<j.		

3	

Projective	
•  Can	arrows	cross	->	non-projecIve	
	
	
	
	
	

•  A	valid	dependency	tree	is	projecIve	if	for	every	arc	(i,	l,	j)	
there	is	a	path	from	i	to	k	for	all	i<k<j.		

4	

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Dependency Parsing = Arc Finding

I Sentence: x1 . . . xm

I Associated nodes: N = {0, 1, . . . ,m}
I Convention: leftmost root 0

I Labels: L = {PRED, SBJ, . . .}

Goal. Find a set of labeled, directed arcs

A ⊆ N × L×N

that corresponds to a correct dependency tree for x1 . . . xm.

5 / 41

What	information	useful?		
• Lexical	affinii>es	

•  financial	markets	
	

• Dependency	distance	
	

•  Intervening	material	
•  li.le	in	had	li.le	effect	
•  Not	li.le	gave	effect	

• Valency	of	heads	(subcategoriza>on)	
	
•  li.le	effect	on	financial	markets	

11

Methods	of	Dependency	Parsing	
• Dynamic	programming	
Eisner	(1996):	algorithm	with	complexity	O(n3)	by	producing	
parse	items	with	heads	at	the	end	instead	of	the	middle	

• Graph	algorithms	
Create	a	Minimum	Spanning	Tree	for	a	sentence	(e..g,	
McDonald’s	MSTParser	2005)	

• Constraint	Sa>sfac>on	
Edges	are	eliminated	that	don’t	sa>sfy	hard	
constraints	(Karlsson	1990	

• Transi>on-based	parsing	(or	determinis>c	
based	parsing	
Greedy	choice	of	acachments	guided	by	good	
machine	learning.	MaltParser	(Nivre	2003)	 12

Slide adapted from Manning

Greedy	Transition-based	
Parsing	(Nivre	2003)	
• Simple	form	of	greedy	discrimina>ve	
dependency	parser	

• Bocom-up	
• Similar	to	shid-reduce	
• The	parser	has:	

•  A	stack	,	wricen	with	top	to	the	right	
•  Starts	with	ROOT	

•  A	buffer	,wricen	with	top	to	the	led	
•  Starts	with	input	sentence	

•  A	set	of	dependency	arcs	A	
•  Which	starts	off	empty	

•  A	set	of	ac>ons	 13

Parser Configuration

Triple c = (σ, β,A) where

I σ = [. . . i]: “stack” of N with i at the top

I β = [i . . .]: “buffer” of N with i at the front

I A ⊆ N × L×N : arcs

Notation

I C denotes the space of all possible configurations.

I c.σ, c.β, c.A denote stack, buffer, arcs of c ∈ C.

9 / 41

Configuration-Based Parsing Scheme

Initial configuration

c0 := ([0], [1 . . .m], { })

Apply “transitions” until we reach terminal cT (defined later)

c0
t0−→ c1

t1−→ · · · tT−1−−−→ cT

and return as a parse

cT .A

10 / 41

Shift and Reduce

SHIFT (σ, i|β,A)⇒ (σ|i, β, A)

Illegal if β is empty.

REDUCE (σ|i, β, A)⇒ (σ, β,A)

Illegal if i does not have a parent.

12 / 41

Left-Arc

LEFTl (σ|i|j, β, A)⇒ (σ|j, β, A ∪ {(j, l, i)})

i · · · j

l

Illegal if either i = 0 or i already has a parent.

13 / 41

Right-Arc

RIGHTl (σ|i|j, β, A)⇒ (σ|i, β, A ∪ {(i, l, j)})

i · · · j

l

Illegal if j already has a parent.

14 / 41

Definition

2 |L|+ 1 possible transitions T std

I SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
I LEFTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j, l, i)})

I RIGHTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, l, j)})

Terminal condition: c.σ = [0] and c.β = []

19 / 41

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	

18

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	
	
[ROOT]	They			sleep	all	night	
	
	
	
	

19

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	
	
[ROOT]	They			sleep	all	night	
	
	
[ROOT]	They	sleep				all	night	
	
	

20

SHIFT

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
	

21

Arcs

NSUBJ (sleep -> They

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
[ROOT]	sleep	all			night	
	
	 22

Arcs

NSUBJ (sleep -> They

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
[ROOT]	sleep	all			night	
	
[ROOT]	sleep	all	night	
	
	

23

Arcs

NSUBJ (sleep -> They

SHIFT

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
	
	

24

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
RIGHT	ARC	
[ROOT]	sleep	
	
	

25

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

OBJ(sleep -> night)

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
RIGHT	ARC	
[ROOT]	sleep	
RIGHT	ARC	
{ROOT}	
	
	

26

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

OBJ(sleep -> night)

PRED (ROOT -> sleep)

FINiSH

Definition

2 |L|+ 1 possible transitions T std

I SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
I LEFTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j, l, i)})

I RIGHTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, l, j)})

Terminal condition: c.σ = [0] and c.β = []

19 / 41

Properties

I Makes exactly 2m transitions to parse x1 . . . xm. Why?

I Bottom-up: a node must collect all its children before
getting a parent. Why?

I Sound: if c is terminal, c.A forms a valid projective tree.

I Complete: every valid projective tree A can be produced
from c0 by some sequence of transitions t0 . . . tT−1 ∈ T std.

ti = Oraclestd(ci)

ci+1 = ti(ci)

20 / 41

Example Parse (Nivre 2013)

22 / 41

How	do	we	decide	the	next	
arc?	
•  Each	ac>on	can	be	predicted	by	a	discrimina>ve	
classifier	over	each	legal	move	(Nivre	and	Hall	
2005)	

•  SVM	
•  Max	of	3	untyped	choices;	max	of	|R|	X	2	+1	when	typed	
where	R	is	#	dependency	labels	

•  Features:	top	of	stack	word,	top	of	stack	POS	what	else?		
• No	search	in	greedy	search	

•  Could	do	beam	search	
•  It	provides	VERY	fast	linear	>me	parsing	
•  The	model’s	accuracy	is	slightly	below	the	best	
parser	

•  It	provides	fast,	close	to	state	of	the	art	parsing	 30

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

31

Getting Training Data

I Treebank: sentence-tree pairs (x(1), A(1)) . . . (x(M), A(M))
I Assume all projective

I For each A(j), use an oracle to extract

(c
(j)
0 , t

(j)
0) . . . (c

(j)
T−1, t

(j)
T−1)

where t
(j)
T−1(c

(j)
T−1).A = A(j).

I We can now use this to train a classifier

(x(j), c
(j)
i) 7→ t

(j)
i

29 / 41

Oraclestd

Input: gold arcs Agold, non-terminal configuration c = (σ, β,A)
Output: transition t ∈ T std to apply on c

1. Return SHIFT if |σ| = 1.

2. Otherwise σ = [. . . i j] for some i < j:

2.1 Return LEFTl if (j, l, i) ∈ Agold.
2.2 Return RIGHTl if (i, l, j) ∈ Agold and for all l′ ∈ L, j′ ∈ N ,

(j, l′, j′) ∈ Agold ⇒ (j, l′, j′) ∈ A

2.3 Return SHIFT otherwise.

21 / 41

Linear Classifier

I Parameters: wt ∈ Rd for each t ∈ T

I Each c ∈ C for sentence x is “featurized” as φx(c) ∈ Rd.
I Classical approach: binary features providing useful signals
I Assumes we have access to POS tags of x1 . . . xm.

φx20134(c) :=

{
1 if xc.σ[0].POS = NN and xc.β[0].POS = VBD

0 otherwise

φx1988(c) :=

{
1 if xc.σ[0].POS = VBD with leftmost arc SUBJ

0 otherwise

φx42(c) :=

{
1 if xc.β[1] = cat

0 otherwise

30 / 41

Linear Classifier (Continued)

I Score of t ∈ T at c ∈ C for x:

scorex(t|c) := wt · φx(c)

=

d∑
i=1: φxi (c)=1

[wt]i

I From here on, we assume {wt}t∈T trained from data.

31 / 41

Important Aside

Each ci is computed from past decisions t0 . . . ti−1.

ci = ti−1(ti−2(· · · t0(c0)))

So the score function on ci is really a function of t0 . . . ti−1.

scorex(t|c) = scorex(t|t1 . . . ti−1)

Will use ci and t0 . . . ti−1 interchangeably.

32 / 41

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

33

Greedy

At each configuration ci, pick

ti ← argmax
t∈ LEGAL(ci)

scorex(t|t0 . . . ti−1)

34 / 41

Parsing Algorithm

Input: {wt}t∈T , sentence x of length m
Output: arcs representing a dependency tree for x

1. c← c0
2. While c.β 6= [],

2.1 Select

t̂← argmax
t∈LEGAL(c)

scorex(t|c)

2.2 Make a transition: c← t̂(c).

3. Return c.A.

35 / 41

	dependency-parsing
	trans based dependency parsing

