
HW4 - Summarization 
COMS W4705 Natural Language Processing - Due Date: December 7, noon 

 
Introduction 
 
In this assignment, we’ll be diving deeper into more advanced architectures of neural networks, which 
have helped in the field of summarization. There are two types of summarization: extractive and 
abstractive. Extractive summarization entails concatenating extracts from a sentence/corpus to form a 
summary, whereas abstractive summarization involves paraphrasing from the sentences/corpus. This 
assignment focuses on abstractive summarization. 
 
The task of summarization is a problem in a space of much more general problems called  sequence to 
sequence problems. In a sequence to sequence problem, we take in an input sequence   and, , , .. xx1 x2 x3 . n  
produce an output sequence  (as opposed to, for example, producing a single label as in, , , .. yy1 y2 y3 . m  
sentiment analysis). 
 
For summarization,  are the words of the article and  are words of summary., , , .. xx1 x2 x3 . n , , , .. yy1 y2 y3 . m  
(Typically m is much less n in this case.) Another instance of a sequence to sequence problem is neural 
machine translation, in which  are words in the input language and  are, , , .. xx1 x2 x3 . n , , , .. yy1 y2 y3 . m  
words in the output language.  
 
A special framework of Deep Learning models called encoder-decoder networks is used for tackling 
these problems. An encoder converts the input sentence into an “encoded state”; the decoder then takes as 
input the encoded information and, at each time step, picks the word y which maximizes 

where x is the sequence seen so far and h is the encoded state. We highly recommendrgmax(P (y|x, ))a h  
reading this paper to understand a general encoder-decoder framework. 
 
The implementation part of the assignment includes (All coding-specific instructions are present in the 
Jupyter Notebook which you will find under Assignments on courseworks): 

1. Developing a unidirectional LSTM based encoder-decoder network for title generation 
corresponding to each input sentence. 

2. Improvement over the previous architecture by using attention 
 
Before looking into the coding specifics, it is essential to understand the architecture of LSTMs. Over the 
years, there have been various excellent blog posts/primers which give an in-depth overview of LSTMs 
and their usefulness. We recommend taking a look at the following: 

1. Understanding LSTM Networks by Christopher Olah 
2. Exploring LSTMs by Edwin Chen 
3. Beginner’s guide to Recurrent Networks and LSTMs 
4. Neural Network Models for NLP by Yaov Goldberg 

https://arxiv.org/pdf/1409.0473.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://blog.echen.me/2017/05/30/exploring-lstms/
https://deeplearning4j.org/lstm.html
http://u.cs.biu.ac.il/~yogo/nnlp.pdf


 
Tips:  
Training will take quite a long time (i.e., hours), and then you may need to debug and re-train. Thus, it 
would make sense to train on a small set of examples first to do your debugging. For instance, if your 
system is working, you should be able to perfectly fit your training data if you use only a dozen examples 
(i.e., accuracy on the training set should be 100%), which should run fairly quickly. We recommend using 
batch sizes of around 500 - 600 when you train on the whole dataset to ensure that training time is not 
very long. 
 
Also, we STRONGLY recommend that you start early. You have three weeks for the project. Think 
about coding up your model in the first week, debugging in the second week, and analyzing your output 
and writing up your ideas for how to address problems in the third week.  
 

Implementation: 
1. Unidirectional LSTM Encoder-Decoder 
 
The first model which you have to implement is a unidirectional LSTM encoder-decoder. Step by step 
instructions on vectorizing the input are provided in the Jupyter notebook. Follow the instructions to 
prepare the input, and then create the model. Once the model has been created and trained, use it to 
predict titles on the test data. Evaluate the predicted titles using the ROUGE score and report it. For 
specifics on ROUGE grading, please refer to the “Evaluation” section below. 
 
2. Tensorboard visualizations 
 
Tensorflow provides information on validation accuracy, loss, etc., using a tool called tensorboard. You 
can use tensorboard by simply typing the command “tensorboard” on the command line. Attach the plots 
of loss and accuracy from the tensorboard display in your notebook. 

3. Unidirectional LSTM Encoder Decoder with Attention 
In the encoder decoder approach, the output is only learned from the final state of the encoder. However, 
we can improve accuracy by giving a weighted sum of all the states to the decoder. This approach is 
called attention. You can read more about it here. An excellent visualization of attention is available at 
this blog post. You need to implement an attention-based approach for the encoder-decoder model and 
report ROUGE score improvements.  You are provided a custom keras layer for attention and you should 
read about it in the Jupyter notebook. For specifics on ROUGE grading, please refer to the “Evaluation” 
section below. 
 

 

https://arxiv.org/abs/1601.06823
https://distill.pub/2016/augmented-rnns/#attentional-interfaces


4. Unidirectional LSTM Encoder-Decoder with Attention and Beam Search 
(30 points Extra Credit) 
 
So far, these models use a Greedy approach to predict the output. A Greedy approach, however, is not 
optimal. The Greedy way of computing the maximum likely sequence is computationally expensive (This 
is similar to the Viterbi Algorithm). We can improve the speed and score by implementing beam search 
with a finite beam width and try to get a better estimate of the output sequence. For extra credit, 
implement beam search on the decoder (you choose how it is implemented, what the beam size is, etc.). 
  

Dataset 
 
The data for this assignment is available on CourseWorks under Assignments. Note that this data is only 
for use by the class. It should not be shared. Your dataset consists of the following files: 
 
Training data: 
 
train_article.txt - This file contains train data sentences, where each sentence is the first line of an 
article. 
train_title.txt - This file contains the train title/summary corresponding to the article sentences in above 
file. 
 
Test data: 
 
test_article.txt - This file contains test data sentences, where each sentence is the first line of an article. 
test_title.txt - This file contains the test title/summary corresponding to the article sentences in above file. 
 

Evaluation: 
 
You will be evaluating your summaries using their ROUGE scores. The grading will be relative based on 
the highest Rouge-1 and Rouge-2 scores achieved by your classmates. For each model, you will receive 
15 points for implementing a working model and will be allocated 10 points on your Rouge score relative 
to your classmates. Therefore, we recommend you try to tune the model hyperparameters, use 
cross-validation etc., to achieve a higher score; you may experiment with things like bidirectional LSTMs 
as well.  You should only submit one model without attention and one with attention. Your scores are 
evaluated based on these models, so submit only your best.  
 
Note that your model will not actually be optimizing ROUGE, but will be optimizing a loss function like 
cross entropy. ROUGE is an evaluation applied to the finished model. When training, therefore, make 
sure to track your cross entropy and see that it is decreasing over time.  
 

https://en.wikipedia.org/wiki/ROUGE_(metric)


Analysis: 
 
Select 15 article/summary pairs from your final attention model for an error analysis. Choose 5 that you 
think are good and 5 that you think are bad, with the remaining 5 selected randomly. Create a table where 
you show system output for each of the systems you developed (i.e., the plain LSTM, LSTM with 
attention, and also beam search if you performed it) along with the input and the gold summary in the test 
data. You may model this on the table used in the paper https://arxiv.org/pdf/1509.00685.pdf in Section 8, 
Results and shown on the last page before references.  
 
For the same 15 examples, visualize the attention weights and include the diagrams in your output; an 
example diagram can be found on the first page of the above paper. Discuss how the attention weights 
show whether the system is working for these examples (4-5 sentences, not including images or captions).  
 
Identify the problems that your system has the most trouble with. These may include repetition of words, 
ungrammaticality, syntactic problems such as attachment which make the resulting summary syntactically 
fluent but semantically incorrect, reference issues (e.g., using pronouns that are not resolved or NP 
references that are incorrect), wrong phrases dropped from the sentence, improper handling of proper 
nouns, etc. Also note how much abstraction vs. extraction your system does. Is your system making 
lexical substitutions, generalizing, compressing? Compare your different system outputs to reveal the pros 
and cons of each.  
 
Select one of the problems that you identified and provide a proposal for what you would do to correct the 
problem. Suppose you were to either augment this model or re-do this in a traditional supervised approach 
perhaps using parses of the input or pos tagging. For example, your augmentation may modify the output 
of the LSTM to remove additional clauses.  How would you approach this and what features would you 
use? Be creative. Provide a 1-3 page description.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://arxiv.org/pdf/1509.00685.pdf


 
Grading scheme (100 points, 30 extra credit points): 
 

Preparing Input 5 

Unidirectional LSTM encoder decoder  10 

Tensorboard Visualization  5 

Unidirectional LSTM Encoder Decoder With 
Attention 

15 

Perplexity reasoning (see Jupyter notebook) 5 

Relative grade for rouge results (10 for without 
attention and 10 for decoder with attention) 

20 

Analysis 40 total 

                Selection of sentences and analysis of 
errors, comparisons (discuss all 15 sentences) 

15 

               Visualizations (15 sentences) and 
description 

10 

               Proposal for addressing error 15 

Beam Search (Extra credit) 30 

 
 
 
 


