
Homework 3 COMS 4705 Fall 2017
Prof. Kathleen McKeown

The assignment consists of a programming part and a written part. For the programming
part, make sure you have set up the development environment as mentioned in the Prerequisites
file. Then download the source code and extract it in the same directory as the embedding file(as
mentioned in the Prerequisites) . The rest of the details for the programming assigment can be
found inside the ’hw3.ipynb’ file.

The written portion of the assignment will discuss a neural network model that produces word
embeddings. For understanding word embeddings we suggest the following readings : class slides
and textbook chapter 10. The appendix in this document also has a high level overview. You
may notice different resources using different notation. The concepts remain the same. For this
assignment we will be using the notation as discussed in the section ’Skip-gram Neural Network
architecture’. We use upper case letters to denote matrices and lower case letters to denote row/-
column vectors.

1 Skip-gram models

The skip-gram neural network model produces word embeddings by reducing the task of the neural
network to predicting the context words for a given input word.

Consider the sentence ’The quick brown fox jumped over the lazy dog’. For training data we
define a window, let’s say 2, and produce pairs of words looking within the window size on both
sides of the current word.

Given the input word, we would like the probability of the context words to be higher than the
rest of the words in the vocabulary. For every sample pair noted in the diagram above the input
is the first word in the sample. The output label is the second word in the sample pair. The input
and output words are converted to a one hot vector of size vocab sizeX1.

Now that we have our training data let’s look at the neural network architecture. It will be a
simple feed forward network with one hidden layer. The hidden layer weights at the end of training
will become our word embeddings!

1.1 Skip-gram Neural Network architecture

1. Input layer - The training samples are broken down into smaller batches each with batch size
number of samples. We will be passing one batch of samples for a single iteration to our

1

http://www.cs.columbia.edu/~kathy/NLP/2017/HW/HW3_Prerequisites.pdf
http://www.cs.columbia.edu/~kathy/NLP/2017/HW/HW3/hw3_code.zip


neural network. Once we complete the forward propogation and backward propogation, we
pass in the next batch. Each one hot vector is 1Xvocab size. We will stack the input one
hot vectors of all the samples. We will feed into the network the transpose of the horizontally
stacked one-hot vectors. The dimensions of the input, Ain to our neural network will be
therefore be vocab sizeXbatch size.

1. Fully connected feed forward layer - The feed forward layer (or hidden layer) will have hd1
number of nodes. The layer does a affine transformation and activation of the input values.
Ain is the input to the layer and A1 is the output of the layer. W1 and b1 are the weights
associated with hidden layer.

Z1 = W1Ain + b1

A1 = f1(Z1)

2. Output layer - The output layer will have vocab size nodes. We do a final output affine
transformation and softmax (fout) activation to get the probabilities for the vocabulary vector.

For each sample, we calculate our loss on the predicted vocabulary vector to our label vector.

Zout = WoutA1 + bout

Aout = fout(Zout)

Loss = crossentropyloss(y,Aout)

We predict the label by looking at the index of highest probability for each sample.

predicted label[i] = argmax(Aout.T [i])

2



Questions

Weights are usually normalized values between [-1,1]. For easy calculations we will be using integers
in the assignment.

Question 1. You are given the following values vocab = 5, 000, batch size = 100, hd1 = 128.
Write the dimensions of Ain,W1, b1, A1,Wout, bout, Aout. (7 points)

Question 2. Forward propogation - You are given the following W1, b1,Wout, bout, A1 and the
activation function f1. For the purpose of easier calculations we will assume fout is the same as f1.
Calculate Z1, A1, Zout and Aout. (4+2+4+2 points)

W1 =


3 2 −1 0 −3 2
4 −1 −2 3 5 −6
2 −1 3 4 −3 1
6 −4 2 −5 1 2

 b1 =


1
2
1
2


Wout =

[
3 −1 2 −4
1 −5 −1 3

]
bout =

[
4
−5

]

Ain =



1 2
4 5
1 3
3 1
1 4
2 1


f1(x) = fout(x) = relu(x) =

{
x if x > 0

0 if x <= 0

Question 3. Backward propogation - You are given the ∂Loss/∂Aout.

∂Loss

∂Aout
=

[
3 5
2 −4

]
Use W1, b1, Z1,Wout, bout from q2 to solve the questions below.

a. Write the formula for calculating ∂Loss/∂Wout , ∂Loss/∂bout and ∂Loss/∂Aout. (2 point
each)

b. Calculate the ∂Loss wrt W1, b1,Wout, bout given the derivative of relu. (5+4+5+4 points
each)

relu der(x) =

{
1 if x > 0

0 if x <= 0

c. Update the W1, b1,Wout, bout using the gradients with a learning rate of 0.01. (1 points each)

Question 4. The GloVe and word2vec libraries provide pre-trained word embeddings for dimen-
sions from 50 - 300. In an NLP application task what are the trade-offs of using word embeddings
of smaller vs larger dimensions? (5 points)

3



APPENDIX

Word Embeddings

In very simplistic terms, Word Embeddings are the texts converted into numbers and there may
be different numerical representations of the same text. A Word Embedding format generally tries
to map a word using a dictionary to a vector.

A vector representation of a word may be a one-hot encoded vector where 1 stands for the
position where the word exists and 0 everywhere else. This is just a very simple method to represent
a word in the vector form.

The different types of word embeddings can be broadly classified into two categories-

• Frequency based Embedding - The embeddings Count vectors, TF-IDF vectors that you have
come across in this course till now broadly fall under this category. The dimensions of the
such vectors are decided by the vocabulary size of the train data.

• Prediction based Embedding - The frequency methods limited each dimension in the vector to
independent though words rarely are. It was not capable of representing semantic or syntactic
information. For example, the word ’house’ and the word ’houses’ would be mapped to a
different dimension in the vector. By looking at the vectors themselves you would not be able
to conclude any relation between the 2 words.

The vectors produced by these methods would also result in high computational cost due to
the large matrix multiplications required in neural networks.

Word vectors proved to be limited in their word representations until Mikolov et al. introduced
word2vec.

The word2vec methods were prediction based in the sense that they provided probabilities to
the words in limited dimensions and proved to be state of the art for tasks like word analogies
and word similarities. They were also able to achieve tasks like ’king’-’man’+’woman’=’queen’
, which was considered a result almost magical.

We can visualize the learned vectors by projecting them down to 2 dimensions using dimen-
sionality reduction techniques. When we inspect these visualizations it becomes apparent
that the vectors capture some general, and in fact quite useful, semantic information about
words and their relationships to one another. Some of the induced vector space specialize
towards certain semantic relationships, e.g. male-female, verb tense and even country-capital
relationships between words, as illustrated in the figure below -

4



Word2vec is not a single algorithm but a combination of two techniques CBOW(Continuous
bag of words) and skip-gram model. Both of these are achieved through shallow neural
network architecture. They learn weights which act as word vector representations. For first
part of this assignment we will look at skip-gram architecture.

5


	Skip-gram models
	Skip-gram Neural Network architecture


