Homework 2: Parsing and Machine Learning

COMS W4705_001: Natural Language Processing
Prof. Kathleen McKeown, Fall 2017
Due: Saturday, October 14th, 2017, 2:00 PM

This assignment will consist of tasks in unlabeled dependency parsing. You are required to
complete this assignment in python 3.

For this assignment there will be dedicated Piazza posts pinned for each of the subtopics -
Submission Logistics, Part 1, Part 2, Provided Code, and Parsing Theory and Terminology. To
post a question, identify the topic it falls under and post a follow-up on that post. If a similar
question has been asked but you require more information, post a reply in that thread.

For questions that pertain to your implementation specifics you can post a private question.

Part 1 - Arc Standard Parser

In this part of the assignment you are given a corpus of sentences in different genres. Your task
is to complete a machine learning program that can learn a parser for the corpus. Note that
typical learned parsers available in the NLP community are learned from the Penn Treebank
which includes Wall Street Journal text and thus, these parsers work well on formal language,
but not on text that we typically find on the web. Your learned parser will be tuned for sentences
that are typically found on the web.

You will be provided with a parsing and machine learning framework that does part of the job for
you. We will be using SVM, and all parameters have already been set for you. The parsing
framework takes the training data as input and from this will learn a grammar and parser. What
is missing in the parsing framework is the code to compute the parser’s transitions and the
features that the machine learner uses. You thus have two tasks: 1) write the code that can
compute transitions and 2) experiment with different possible features so that you can get the
best results on the dev set.

Corpus: Web TreeBank - a corpus of text from 5 different genres from the web containing
16,622 sentences. The 5 genres are weblogs, newsgroups, emails, reviews, and Yahoo!
Answers. The data is in the CoNLL-X format (See appendix). There are 3 datasets: train, dev
and test. You are provided with the train and dev sets. You will be evaluated on the test set,
which does not have any genre information.

Provided Code:
Look at the file for each module in order to see what it does. You should focus on 4 of these,
which you will have to modify. The remainder are given just so that you have some idea of how
the whole program works, but you don’t need to understand each one.
hw2 /
README . txt
src/
dataset.py
dependency.py
domain_adaptation.py
domain_adaptation_eval.py
en-ud-dev.conllu
en-ud-train.conllu
eval.py
feature_extraction.py
feature_extraction_da.py
train.py
utils.py
validate_transitions.py

In part 1, you will have to make changes only in 2 files: dependency.py and
feature_extraction.py. When completed, answer the first 5 questions in README.ixt. Only
these 2 files along with your answers will be used for grading this part of your
assignment. Do not modify any other files.

Instructions:

1. Download a copy of the code into your w4705 repo. You should see all the files
mentioned above. In your repo, the folder structure should look like this:
w4705-01_<uni>/

hw2 /
src/

2. Complete the ‘shift’, ‘right_arc’, and ‘left_arc’ functions in dependency.py.
The stack, buffer and dgraph are given as arguments to each function.
Implement the code that performs the operation and updates the stack, buffer and
dgraph accordingly. See appendix for arc-standard example.
a. Input - stack, buffer, dgraph
i. Stack - List of word indices into the input sentence..
Ex: [0,3,4,6] with an input sentence of “John went to the NLP class
on Tuesday.” The tokens “ROOT”, “to”, “the”, “class” are on the stack.
ii. Buffer - List of word indexes. It will be in decreasing order.
Ex: [7,5]. “On”and “NLP” are in the buffer.

iii. Dgraph - List of arcs till now.

Ex: [(1,2),(2,3)]. Thereis an arc from “John” to “went” and another
arc from “went” to “to”.

The tuple of (stack, buffer, dgraph) will be referred to as the configuration from here on.

3. Complete the ‘oracle_std’ function in dependency.py.
The oracle_std predicts the next transition to be made given the current stack, buffer,
dgraph and the gold_arcs. You should be implementing the arc-standard algorithm here.
a. Input - stack, buffer, dgraph, gold_arcs
i. Stack - List of word indexes. Ex: [0, 3,4, 6]
ii. Buffer - List of word indexes . Ex: [5]
ii. Dgraph - List of arcs till now. Ex: [(1,2),(2,3)]
iv. Gold_arcs - List of arcs from the training data. Ex:
[(1.2),(2,3)(3,4)(5,8)(6,5)]
b. Output - transition
i. Transition - string. One of [‘shift’, ‘right-arc’, ‘left-arc’]

4. Run ‘python3 validate_transitions.py’

validate_transitions.py will pick a valid projective tree from ‘en-ud-train.conliu’. It will
output the gold arcs and the set of transitions according to your implementation. Use this
output to validate your implementation of ‘transitions.py’.

It is important that you have the right implementation for the ML output to be correct. See
Appendix for a run through of an example.

5. Run ‘python3 eval.py’.
This script outputs 3 things.
a. Precision - Number of correct predicted arcs/Number of predicted arcs.
b. Recall - Number of correct predicted arcs/Number of gold arcs.
c. F1-Harmonic mean of precision and recall.

As you can see our ML model isn’'t doing too well with predicting the arcs. Looks like we
need more features.

6. Add feature types in ‘get_features’ in ‘feature_extraction.py’.

Add sufficient feature types to achieve good results. Your score will be evaluated relative
to other students’ scores.

a. Input - config, sentence_dictionary
i. config - tuple of (stack, buffer, dgraph)
ii. sentence_dictionary - dictionary of lists where the key is a CoNLL field
header, and the list (value) is the CoNLL field values for the sentence.
(See appendix)
b. Output - list of string features

[‘Feature_X_vall' , ‘Feature_Y_vall’', ‘Feature_X_val2' ..]

For this you are required to develop an intuition on what information is required to learn
transitions and produce the dependency arcs. Add your own feature types and label
them accordingly. Append your feature types to the features list.

For example, the actual text (“form”) of the word on top of the stack may be informative.
This feature type has been implemented for you as a sample. The feature type here is
‘top of the stack wordform’. We label it is as ‘TOP_STK_FORM_<FORM_VAL>’.

Feature Type Example:

In the input below, config includes stack, buffer and arcs in that order. Sentence_dict is a
representation of the input and the gold arcs. It includes the POS tag sequence, the
actual words in the sentence, the text as a list (FORM), the head of each word in the list
(HEAD) (e.g., the head of “watch” is 0 which is the root and the head of “airlift” is
“watch”), the coarse-grained parts-of-speech (CPOSTAG), and the lemmas for each
word in the sentence (LEMMA).

Input - config : ([@,1],[3,2],[1])
sentence_dict: {
"POSTAG' : [‘ROOT’, 'VB', 'DT', 'NN'],
"TEXT': ' Watch the airlift\n',
"FORM': [‘ROOT’, 'Watch', 'the', 'airlift'],
"HEAD': ['ROOT’,'®"', '3', '"1'],
"CPOSTAG': [‘ROOT’, 'VERB', 'DET', 'NOUN'],
"LEMMA' : [“ROOT', 'watch', 'the',
'airlift'],
}
Output - ['TOP_STK_FORM_watch’]

NOTE - Do not use HEAD while creating new feature types. HEAD is the index of a
token’s parent in the dependency tree, which we would be trying to predict.

We call it a feature type as it translates into a number of boolean features, and each
input configuration can have only one of them set to true. Each feature type will increase
your feature vector size by the number of possible values the type can have. (E.g., the
above example will increase your feature vector size by the number of forms that can
possibly be on top of the stack--approximately the vocabulary size.)

. Run ‘python3 eval.py’ again.
To see how your additional features are doing, run evaluate.py.

8. For the first 5 questions in your README.txt, note down your answers. You will submit
these answers as a pdf on Courseworks. The questions are repeated below for your
reference.
a. Output of your validate_transitions.py
b. List all the feature types you implemented. [Ex: ‘TOP_STK _TOKEN_’, ‘..., “...."]
For our reference.
c. Explain any 6 feature types in detail. What does the feature type represent? Why
do you think this is useful for transition predictions?
d. How do you interpret precision and recall in context of this task?
What is your final F1 score on the dev set?
You should report your final F1 score on the dev set. Since you will be evaluated
on your F1 score on the test set, the scores you report are a reference. We will
be running your code separately for grading.

Deliverables:
- Completed dependency.py (4 functions).

- Additional feature types in ‘feature_extraction.py’.
- Answers to first 5 questions in the README.txt.

Grading:
dependency.py Shift 3
Right Arc 6
Left Arc 6
Oracle standard 10
README questions | 1. Validate_transitions output 4
3. Explanation of 6 feature types 6*2
4. Interpretation of precision and recall | 2+2
F1 score (test) 25
Total 70

Part 2 - Domain Adaptation

For this part of the assignment you will use the learned parser from Part 1 and carry out
experiments to learn how well a parser trained on one domain performs on another. You will

modify the training set to include text just from the newsgroups genre and test how well it
performs on weblogs and Yahoo Answers!.

Note that some features that you used for Part 1 will generalize well from one domain to another
and some will not. You are also asked to experiment with different features to find which ones
do perform well across domains.

In part 2, you will have to make changes only in 2 files: domain_adaptation.py and
feature_extraction_da.py. When completed, note answers to the 2 questions in README .txt.
Only these 2 files along with your answers will be used for grading this part of your
assignment. Do not modify any other files. However, you are required to go through
‘domain_adaptation_eval.py’ to understand how the evaluation will run.

Instructions:
1. Modify ‘domain_adaptation.py’ and ‘feature_extraction_da.py’ to run your domain
adaptation experiments described above.
domain_adaptation.py is expected to write the files ‘model da.pkl and
‘feature_dict_da.pkl' that will be called for evaluation. You can reference the provided
code for your implementation.

2. Run ‘python3 domain_adaptation_eval.py’.
The script will output your score on each on the test genres.

3. For the questions 6,7 under the heading ‘Part 2 - Domain adaptation’ in README.txt,
note down your answers. Again, these answers are to be submitted on Courseworks.
The questions are repeated below for your reference.

a. Average F1 score from 10 runs of domain_adaptation_eval.py.
As it is a smaller training set you may notice varying F1 scores. Write the
average score over 10 runs. The scores you report are a reference. We will be
running your code separately for grading.
Format for each line:
‘train_genre : <train_genre>, test_genre : <test_genre>, Avg F1 : <F1_score>’

b. Provide an explanation of the performance of the feature types in domain
adaptation. What features generalized well? What features did not?

Deliverables:

- Completed ‘domain_adaptation.py’.
- Completed ‘feature_extraction_da.py’.
- Answers to questions 6,7 in the README.txt.

Grading:

README question 7. Domain adaptation explanation | 10
Avg F1 score (dev) 20
Total 30

Code Submission

Run the following commands to commit and tag your homework.
. git add dependency.py

. git add feature_extractor.py

. git add domain_adaptation.py

. git add feature_extractor_da.py

. git commit -m “<your comment>"

. git tag -m "I finished HW2" done_HW2
. git push origin master

. git push origin done_HW2

oSQ 0D QOO T O

Written Submission

Compile your answers along with the 7 questions into a file called ‘w4705 _01_hw2_<uni>.pdf.
Make sure to note your name and uni on the first page.

Submit your answers as a pdf on Courseworks.

https://courseworks2.columbia.edu/courses/39465/assignments/107756

APPENDIX

Arc-Standard example

The below example uses the arc-standard algorithm to produce the dependency parse. For this
assignment you will not be looking to learn the label/relation of the arcs. The arc set will be (i,j)
instead of (i,l,j), where i and j are word indices and | is a label.

Example Parse (Nivre 2013)

PU
PRED
OB|
'A/W_\ SB| /E\ ATT F\
ROOT Economic news had little effect on financial markets
Transition Configuration

eol) = ([0], (L....9, @)
SHIFT = [[0,1], 2,....9, @)
SurrT = ([0,1,2), [3,...,9], @)
Lerr-Ancye = (0,2, [3,...,8, A ={(2,arr,1)})
surrr = { [0,2,3), 4...,9], A }
LEFT-ARCa: = ([[0,3], [4...,8], Az=4:U{(3,582)})
SurFr =+ ([0,3,4], [5y...,8], A)
Surrr =+ ([0,...,5], [6,...,9], A]
LErFT-ARCr = ([0,3,5], [6,...,8], Az=Az:0{(5 arr,4)})
Sprr = ([0,...,6], [7.8,9], As)
Surrr =+ ([0,...7], [B,9], Ag)
SurFr =+ [[0,....8], [9], Ag)
LEFT-ARCur =+ ([0,...8], [9], As = As0{(8,aTT.T)})
RicHT-ARCp; = [[D,...,6], [9], Ay = Ayu (6, ro,8)})
RiGRT-ARC,yw = ([0,3,5], 9], Ag = AgU (5, aTT, 8])
RIGHT-ARCee, = ([0, 3], 91, A7 = AgU{(3,081,5)})
Surrr =+ ([0,3,9], [], Az)
RicHT-ARCr; = ([0, 3], I Ag = A70]{(3,pu,9)})
RiGHT-ARCL, e =+ ([0, [1, Ay = Aqu{{0, rooT, 3})

CoNLL data format

Dependency parsing is a well-known problem in Natural Language Processing. It was the
shared task of CoNLL, a conference for evaluating machine learning algorithms, for two
consecutive years, and provides a fun introduction to more complex parsing algorithms.

The CoNLL data format is a tab-separated text file, where the ten fields are:

1) ID - a token counter, which restarts at 1 for each new sentence

2) FORM - the word form, or a punctuation symbol.

3) LEMMA - the lemma or the stem of the word form, or an underscore if this is not available
4) CPOSTAG - course-grained part-of-speech tag

5) POSTAG - fine-grained part-of-speech tag

6) FEATS - unordered set of additional syntactic features, separated by |

7) HEAD - the head of the current token, either an ID or O if the token links to the root node.
The data is not guaranteed to be projective, so multiple HEADs may be 0.

8) DEPREL - the type of dependency relation to the HEAD. The set of dependency relations
depends on the treebank.

9) PHEAD - the projective head of the current token. PHEAD/PDEPREL are available for some
data sets, and are guaranteed to be projective. If not available, they will be underscores.

10) PDEPREL - the dependency relationship to the PHEAD, if available.

DEPREL, FEATS, PHEAD and PDEPREL are not applicable for our assignment.

This data is stored as a dictionary of label to list of values for every sentence and made
available for training.

Data Format:

sentence_dict : {
"POSTAG' : [‘ROOT','VB', 'DT', 'NN'],
"TEXT': ' Watch the airlift\n',
"FORM': ['ROOT’, 'Watch', 'the', 'airlift'],
'"HEAD': [‘ROOT','@', '3', '1'],
"CPOSTAG': [‘ROOT’, '"VERB', 'DET', 'NOUN'],
"LEMMA' : [‘ROOT’, 'watch', 'the', 'airlift'],
}

Projective Trees
Arc-standard can parse only projective dependency trees. We filter the sentences in the train
data and use only the projective trees for our training and testing.

A valid dependency tree is projective if for every arc (i,j) there is a path fromito k for all i < k <j.
Here i,k,j are word indices.

Example of a projective dependency tree -

A 5NE S)
* ' 2 3 4 5
Example of a non-projective but valid dependency tree -
A Y
* 1 2 3 < 5

Precision+Recall

https://en.wikipedia.org/wiki/Precision _and recall

Visualizing the CoNLL dependency tree
While working on features you can use the MatlParser jar to visualize the CoNLL data. This
would make it easy to think about dependency parsing in general and also the features.

If you are using Google Cloud resources for this assignment then X-forwarding, which you set
up in Homework 0, and java is required for this to work. You will have to clean the data and
remove some examples to get this working. The MaltParser is not required for completion of the
assignment, but it is a useful tool.

Usage: java -jar MaltEval.jar -g en-ud-train_clean.conllu -v 1

http://www.maltparser.org/download.html
https://en.wikipedia.org/wiki/Precision_and_recall

