
Basic	Parsing	with	Context-Free	
Grammars	

1 Some slides adapted from Karl Stratos and from Chris
Manning

Announcements	
• HW	2	out	
	

• Midterm	on	10/19	(see	website).	Sample	
ques>ons	will	be	provided.	
	

• Sign	up	for	poll	everywhere	if	you	haven’t	
	

• Today:	dependency	parsing	
2

Soundquality	on	video	
•  If	you	encounter	poor	quality	on	video	of	lectures,	send	email	
to		support@cvn.columbia.edu	with	the	lecture	date	and	
;mecode	where	the	issue	occurs	

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

3

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Valid Dependency Tree

1. (Root): 0 must not have a parent.

0 · · · i

l

2. (Connected): There must be a path from 0 to every i ∈ N .

3. (Tree): A node must not have more than one parent.

i j k

l l′

4. (Acyclic): Nodes must not form a cycle.

i0 · · · in−1

l1 ln−2

ln−1

6 / 41

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Projective	
• Can	arrows	cross	->	non-projec>ve	
	
	
	
	
	
	

• A	valid	dependency	tree	is	projec>ve	if	for	
every	arc	(i,	l,	j)	there	is	a	path	from	I	to	k	
for	all	i<k<j.		 7

Projective	
• Can	arrows	cross	->	non-projec>ve	
	
	
	
	
	

• A	valid	dependency	tree	is	projec>ve	if	for	
every	arc	(i,	l,	j)	there	is	a	path	from	I	to	k	
for	all	i<k<j.		 8

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

⇓

* Economic news had little effect on financial markets .
0 1 2 3 4 5 6 7 8 9

PRED

SBJ
ATT

OBJ

PU

ATT
ATT

PC

ATT

A = {(0, PRED, 3), (3, SBJ, 2), (2, ATT, 1), (3, OBJ, 5),
(3, PU, 9), (5, ATT, 4), (5, ATT, 6), (6, PC, 8), (8, ATT, 7)}

4 / 41

Dependency Parsing = Arc Finding

I Sentence: x1 . . . xm

I Associated nodes: N = {0, 1, . . . ,m}
I Convention: leftmost root 0

I Labels: L = {PRED, SBJ, . . .}

Goal. Find a set of labeled, directed arcs

A ⊆ N × L×N

that corresponds to a correct dependency tree for x1 . . . xm.

5 / 41

What	information	useful?		
• Lexical	affinii>es	

•  financial	markets	
	

• Dependency	distance	
	

•  Intervening	material	
•  li.le	in	had	li.le	effect	
•  Not	li.le	gave	effect	

• Valency	of	heads	(subcategoriza>on)	
	
•  li.le	effect	on	financial	markets	

11

Methods	of	Dependency	Parsing	
• Dynamic	programming	
Eisner	(1996):	algorithm	with	complexity	O(n3)	by	producing	
parse	items	with	heads	at	the	end	instead	of	the	middle	

• Graph	algorithms	
Create	a	Minimum	Spanning	Tree	for	a	sentence	(e..g,	
McDonald’s	MSTParser	2005)	

• Constraint	Sa>sfac>on	
Edges	are	eliminated	that	don’t	sa>sfy	hard	
constraints	(Karlsson	1990	

• Transi>on-based	parsing	(or	determinis>c	
based	parsing	
Greedy	choice	of	acachments	guided	by	good	
machine	learning.	MaltParser	(Nivre	2003)	 12

Slide adapted from Manning

Greedy	Transition-based	
Parsing	(Nivre	2003)	
• Simple	form	of	greedy	discrimina>ve	
dependency	parser	

• Bocom-up	
• Similar	to	shid-reduce	
• The	parser	has:	

•  A	stack	,	wricen	with	top	to	the	right	
•  Starts	with	ROOT	

•  A	buffer	,wricen	with	top	to	the	led	
•  Starts	with	input	sentence	

•  A	set	of	dependency	arcs	A	
•  Which	starts	off	empty	

•  A	set	of	ac>ons	 13

Parser Configuration

Triple c = (σ, β,A) where

I σ = [. . . i]: “stack” of N with i at the top

I β = [i . . .]: “buffer” of N with i at the front

I A ⊆ N × L×N : arcs

Notation

I C denotes the space of all possible configurations.

I c.σ, c.β, c.A denote stack, buffer, arcs of c ∈ C.

9 / 41

Configuration-Based Parsing Scheme

Initial configuration

c0 := ([0], [1 . . .m], { })

Apply “transitions” until we reach terminal cT (defined later)

c0
t0−→ c1

t1−→ · · · tT−1−−−→ cT

and return as a parse

cT .A

10 / 41

Shift and Reduce

SHIFT (σ, i|β,A)⇒ (σ|i, β, A)

Illegal if β is empty.

REDUCE (σ|i, β, A)⇒ (σ, β,A)

Illegal if i does not have a parent.

12 / 41

Left-Arc

LEFTl (σ|i|j, β, A)⇒ (σ|j, β, A ∪ {(j, l, i)})

i · · · j

l

Illegal if either i = 0 or i already has a parent.

13 / 41

Right-Arc

RIGHTl (σ|i|j, β, A)⇒ (σ|i, β, A ∪ {(i, l, j)})

i · · · j

l

Illegal if j already has a parent.

14 / 41

Definition

2 |L|+ 1 possible transitions T std

I SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
I LEFTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j, l, i)})

I RIGHTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, l, j)})

Terminal condition: c.σ = [0] and c.β = []

19 / 41

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	

18

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	
	
[ROOT]	They			sleep	all	night	
	
	
	
	

19

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
START	
[ROOT]			They	sleep	all	night	
	
[ROOT]	They			sleep	all	night	
	
	
[ROOT]	They	sleep				all	night	
	
	

20

SHIFT

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
	

21

Arcs

NSUBJ (sleep -> They

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
[ROOT]	sleep	all			night	
	
	 22

Arcs

NSUBJ (sleep -> They

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	They	sleep			
	
[ROOT]	sleep							all	night	
	
[ROOT]	sleep	all			night	
	
[ROOT]	sleep	all	night	
	
	

23

Arcs

NSUBJ (sleep -> They

SHIFT

SHIFT

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
	
	

24

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
RIGHT	ARC	
[ROOT]	sleep	
	
	

25

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

OBJ(sleep -> night)

Example	for	arc-standard	
• They	sleep	all	night	
LEFT	ARC	
[ROOT]	sleep	all	night			
LEFT	ARC	
	[ROOT]	sleep	night	
RIGHT	ARC	
[ROOT]	sleep	
RIGHT	ARC	
{ROOT}	
	
	

26

Arcs
NSUBJ (sleep -> They)

ATT (night -> all)

OBJ(sleep -> night)

PRED (ROOT -> sleep)

FINiSH

Definition

2 |L|+ 1 possible transitions T std

I SHIFT: (σ, i|β,A)⇒ (σ|i, β, A)
I LEFTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j, l, i)})

I RIGHTl for each l ∈ L:

(σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i, l, j)})

Terminal condition: c.σ = [0] and c.β = []

19 / 41

Properties

I Makes exactly 2m transitions to parse x1 . . . xm. Why?

I Bottom-up: a node must collect all its children before
getting a parent. Why?

I Sound: if c is terminal, c.A forms a valid projective tree.

I Complete: every valid projective tree A can be produced
from c0 by some sequence of transitions t0 . . . tT−1 ∈ T std.

ti = Oraclestd(ci)

ci+1 = ti(ci)

20 / 41

Example Parse (Nivre 2013)

22 / 41

How	do	we	decide	the	next	
arc?	
•  Each	ac>on	can	be	predicted	by	a	discrimina>ve	
classifier	over	each	legal	move	(Nivre	and	Hall	
2005)	

•  SVM	
•  Max	of	3	untyped	choices;	max	of	|R|	X	2	+1	when	typed	
where	R	is	#	dependency	labels	

•  Features:	top	of	stack	word,	top	of	stack	POS	what	else?		
• No	search	in	greedy	search	

•  Could	do	beam	search	
•  It	provides	VERY	fast	linear	>me	parsing	
•  The	model’s	accuracy	is	slightly	below	the	best	
parser	

•  It	provides	fast,	close	to	state	of	the	art	parsing	 30

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

31

Getting Training Data

I Treebank: sentence-tree pairs (x(1), A(1)) . . . (x(M), A(M))
I Assume all projective

I For each A(j), use an oracle to extract

(c
(j)
0 , t

(j)
0) . . . (c

(j)
T−1, t

(j)
T−1)

where t
(j)
T−1(c

(j)
T−1).A = A(j).

I We can now use this to train a classifier

(x(j), c
(j)
i) 7→ t

(j)
i

29 / 41

Oraclestd

Input: gold arcs Agold, non-terminal configuration c = (σ, β,A)
Output: transition t ∈ T std to apply on c

1. Return SHIFT if |σ| = 1.

2. Otherwise σ = [. . . i j] for some i < j:

2.1 Return LEFTl if (j, l, i) ∈ Agold.
2.2 Return RIGHTl if (i, l, j) ∈ Agold and for all l′ ∈ L, j′ ∈ N ,

(j, l′, j′) ∈ Agold ⇒ (j, l′, j′) ∈ A

2.3 Return SHIFT otherwise.

21 / 41

Linear Classifier

I Parameters: wt ∈ Rd for each t ∈ T

I Each c ∈ C for sentence x is “featurized” as φx(c) ∈ Rd.
I Classical approach: binary features providing useful signals
I Assumes we have access to POS tags of x1 . . . xm.

φx20134(c) :=

{
1 if xc.σ[0].POS = NN and xc.β[0].POS = VBD

0 otherwise

φx1988(c) :=

{
1 if xc.σ[0].POS = VBD with leftmost arc SUBJ

0 otherwise

φx42(c) :=

{
1 if xc.β[1] = cat

0 otherwise

30 / 41

Linear Classifier (Continued)

I Score of t ∈ T at c ∈ C for x:

scorex(t|c) := wt · φx(c)

=

d∑
i=1: φxi (c)=1

[wt]i

I From here on, we assume {wt}t∈T trained from data.

31 / 41

Important Aside

Each ci is computed from past decisions t0 . . . ti−1.

ci = ti−1(ti−2(· · · t0(c0)))

So the score function on ci is really a function of t0 . . . ti−1.

scorex(t|c) = scorex(t|t1 . . . ti−1)

Will use ci and t0 . . . ti−1 interchangeably.

32 / 41

Overview	
• Dependency	Parsing	
	

•  Transi>on-Based	Framework	
•  Configura>on	
•  Transi>ons	
	

•  Transi>on	Systems	
•  Arc-Standard	
•  Arc-Eager	
	

•  Implementa>on	
•  Training	
•  Greedy	Parser	
•  Beam	Search	Parser	
	

33

Greedy

At each configuration ci, pick

ti ← argmax
t∈ LEGAL(ci)

scorex(t|t0 . . . ti−1)

34 / 41

Parsing Algorithm

Input: {wt}t∈T , sentence x of length m
Output: arcs representing a dependency tree for x

1. c← c0
2. While c.β 6= [],

2.1 Select

t̂← argmax
t∈LEGAL(c)

scorex(t|c)

2.2 Make a transition: c← t̂(c).

3. Return c.A.

35 / 41

	dependency-parsing
	trans based dependency parsing

