Basic Parsing with Context-Free
Grammars

Some slides adapted from Karl Stratos and from Chris
Manning




Announcements

* HW 2 out

* Midterm on 10/19 (see website). Sample
guestions will be provided.

* Sign up for poll everywhere if you haven’t

* Today: dependency parsing




Soundquality on video

* If you encounter poor quality on video of lectures, send email
to support@cvn.columbia.edu with the lecture date and
timecode where the issue occurs




Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser




Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

4 /41



Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41



Valid Dependency Tree

1. (Root): 0 must not have a parent.
l

T

] i

2. (Connected): There must be a path from 0 to every i € N.
3. (Tree): A node must not have more than one parent.
l i
1 J k
4. (Acyclic): Nodes must not form a cycle.
lnfl

ll ln—?
. /\ .
ZO e Zn—l

6 /41



Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41



Projective

* Can arrows cross -> non-projective

AN N

root  John saw a dog yesterday which was a  Yorkshire Terrier

* A valid dependency tree is projective if for
every arc (i, |, j) there is a path from | to k
for all i<k<;.




Projective

* Can arrows cross -> non-projective

N A

o~
root  John saw a dog yesterday which was a  Yorkshire Terrier

* A valid dependency tree is projective if for
every arc (i, |, j) there is a path from | to k
for all i<ks;.




Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.

4

PU

PC
0BJ
ATT
ST //—\

* Economic news had little effect on financial markets
0 1 2 3 4 5 6 7 8 9

A = {(0,PRED, 3), (3,SBJ, 2), (2, ATT, 1), (3,0BJ, 5),
(3,PU,9), (5, ATT, 4), (5, ATT, 6), (6,PC, 8), (8, ATT, 7)}

4 /41



Dependency Parsing = Arc Finding

» Sentence: z1...Zy,

» Associated nodes: N = {0,1,...,m}

» Convention: leftmost root 0

» Labels: L = {PRED,SBJ,...}

Goal. Find a set of labeled, directed arcs
ACN XLxN

that corresponds to a correct dependency tree for z7 ... x,.

5/41



What information useful?

* Lexical affiniities
financial markets

* Dependency distance

* Intervening material
little in had little effect
Not /ittle gave effect

* Valency of heads (subcategorization)

£ Y
little effect on financial markets




Methods of Dependency Parsing

* Dynamic programming
Eisner (1996): algorithm with complexity O(n3) by producing
parse items with heads at the end instead of the middle

* Graph algorithms
Create a Minimum Spanning Tree for a sentence (e..g,
McDonald’s MSTParser 2005)

* Constraint Satisfaction
Edges are eliminated that don’t satisfy hard
constraints (Karlsson 1990

* Transition-based parsing (or deterministic

based parsing

Greedy choice of attachments guided by good
machine learning. MaltParser (Nivre 2003)

Slide adapted from Manning .




Greedy Transition-based
Parsing (Nivre 2003)

* Simple form of greedy discriminative
dependency parser

* Bottom-up
* Similar to shift-reduce

* The parser has:
A stack , written with top to the right
Starts with ROOT

A buffer ,written with top to the left
Starts with input sentence

A set of dependency arcs A
Which starts off empty

A set of actions




Parser Configuration

Triple ¢ = (o, 8, A) where
» o =[... 1] “stack” of A/ with i at the top
» 3=1[i ...]: "buffer” of N with i at the front
» ACN x L xN: arcs

Notation
» C denotes the space of all possible configurations.

» c.o, c.3, c.A denote stack, buffer, arcs of ¢ € C.

9/41



Configuration-Based Parsing Scheme

Initial configuration

co = ([0, [1...m[,{ })

Apply “transitions” until we reach terminal ¢y (defined later)

to t1 tr—1
cg—>Cl —» -+ —CT

and return as a parse
CT.A

10 /41



Shift and Reduce

SHIFT (0,i[5,A) = (ali, 5, A)

lllegal if 5 is empty.

REDUCE (0li,3,A) = (0,5, A)

lllegal if ¢ does not have a parent.

12 /41



Left-Arc

LEFT, (olilj,3,A) = (o], 8,AU{(4,1,7)})

l

RN

Z DR j

lllegal if either ¢ = 0 or ¢ already has a parent.

13 /41



Right-Arc

RIGHT, (0lilj, 5, A) = (oli, 8, AU{(i,1,7)})

l

RN

’l DR j

lllegal if j already has a parent.

14 / 41



Definition

2|L| + 1 possible transitions 7
» SHIFT: (0,i|8,A) = (0li, 8, A)
» LEFT,; foreach [ € L:

(alilj, B, A) = (o5, 8, AU{(4,1,9)})

» RIGHT, foreach [ € L:

(olilj, B, A) = (oli, 8, AU{(i,1,5)})

Terminal condition: c.oc = [0] and ¢.f =[]

19 /41






Example for arc-standard

* They sleep all night

START
[[ROOT]] [They sleep all night]




Example for arc-standard

* They sleep all night

START

[[ROOT]J [They sleep all night ]
SHIFT

[[ROOT] They} [sleep all night]




Example for arc-standard

* They sleep all night

START

[[ROOT]J [They sleep all night ]
SHIFT

[[ROOT] They} [sleep all night]

SHIFT
[[ROOT] They sIeepJ [all night]




Example for arc-standard

* They sleep all night

A
LEFT ARC s
[ [ROOT] They sleep ] NSUBJ (sleep -> They
$

[ [ROOT] sIeep] [all night]




Example for arc-standard

* They sleep all night

LEFT ARC Arcs
[[ROOT] They sleep J NSUBJ (sleep -> They
L 4
[ [ROOT] sIeepJ [all night]
SHIFT

uROOT] sleep aIIJ [night]




Example for arc-standard

* They sleep all night

LEFT ARC
[[ROOT] They sleep J NSUBJ (sleep -> They
4
[ [ROOT] sIeepJ [all night]
SHIFT
uROOT] sleep aIIJ [night]
SHIFT
[[ROOT] sleep all night J [ ]

Arcs




Example for arc-standard

* They sleep all night

LEFT ARC NSUBJ (S|ee irfl;_f]e )
[ ROOT] sleep all nightJ : y
EFTARC § ATT (night -> all

[ [ROOT] sleep night} [j




Example for arc-standard

* They sleep all night

EFT ARC Ares

[ 'ROOT] sleep all night J NSUBJ (sleep -> They)
EFTARC § ATT (night -> all)

[ [ROOT] sleep night}
RIGHT ARC ﬂ/ OBJ(sleep -> night)

[[ROOT] sleep ] [j




Example for arc-standard

* They sleep all night

EFT ARC Arcs
[ 'ROOT] sleep all night J NSUBJ (sleep -> They)
EFTARC § ATT (night -> all)
[ [ROOT] sleep night}
RIGHT ARC ﬂ/ OBJ(sleep -> night)
[ ROOT] sleep }
RIGHT ARC § PRED (ROOT -> sleep)

[{ROOT} J C] FINiSH




Definition

2|L| + 1 possible transitions 7
» SHIFT: (0,i|8,A) = (0li, 8, A)
» LEFT,; foreach [ € L:

(alilj, B, A) = (o5, 8, AU{(4,1,9)})

» RIGHT, foreach [ € L:

(olilj, B, A) = (oli, 8, AU{(i,1,5)})

Terminal condition: c.oc = [0] and ¢.f =[]

19 /41



Properties
» Makes exactly 2m transitions to parse x7 ... Zy,,. Why?

» Bottom-up: a node must collect all its children before
getting a parent. Why?

» Sound: if ¢ is terminal, c.A forms a valid projective tree.

» Complete: every valid projective tree A can be produced

from ¢y by some sequence of transitions ty...t7_1 € T

t; = Oracle™(¢;)

cit1 = ti(e;)

20 /41



Example Parse (Nivre 2013)

PRED

ATT

ROOT Economic

Transition

cs(z) =

SHIFT =

SHIFT =
LEFT-ARCypp =
SHIFT =
LEFT-ARCsp; =
SHIFT =

SHIFT =
LEFT-ARCy1r =
SHIFT =

SHIFT =

SHIFT =
LEFT-ARCurr =
RIGHT-ARCpe =
RIGHT-ARC,y =
RIGHT-ARCp, =
SHIFT =
RIGHT-ARCy; =
RIGHT- ARCroor =

SBJ

news had little effect on financial markets
Configuration
( [, [L,....9], ©
( [0,1], 2,....9, 0
( [0,1,2 By, 9, 0
( [0,2], By 9], A, ={(2,arT,1)}
( [0,2,3, [4,....9, A4
( [o0,3], 4,...,9), Az = AU{(3,584,2)}
( [0,3,4], 5,..., 9], A,
( [o,..., 5], [6,..., 9], Ay
( [0,3,5, [6,..., 9], Asz= AU{(5, aTT,4)}
( [0,....6], [7,8,9], As
( [o,...7, [89], Az
( [,-.-.8, [, Az
( [0,...8, [9], As = AsU{(8, aTT,T)}
{ [0,...,6], [9), As = AU{(6, 7, 8)}
( [0,3,5], 9], Ag = A;U{(5, ATT,6)}
( [0,3], 9], A; = AsU{(3,081,5)}
( [0,3,9 11 A7
( [0,3], I As = A7U{(3,PU,9)}
( [o], [l Ay = AsU{(0, ROOT, 3)}

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

22 /41



How do we decide the next
arc?

* Each action can be predicted by a discriminative
classifier over each legal move (Nivre and Hall
2005)

SVM

Max of 3 untyped choices; max of |R| X 2 +1 when typed
where R is # dependency labels

Features: top of stack word, top of stack POS what else?
* No search in greedy search
Could do beam search
* It provides VERY fast linear time parsing

* The model’s accuracy is slightly below the best
parser

* It provides fast, close to state of the art parsing







Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser




Getting Training Data

» Treebank: sentence-tree pairs (z(1), AM) ... (z(M) AM))
» Assume all projective

» For each AU, use an oracle to extract
(e, t) . (L, )

where tgfll(cgzzl).A = AU,

» We can now use this to train a classifier

29 /41



Oracle

Input: gold arcs A%, non-terminal configuration ¢ = (o, 3, A)
Output: transition t € T to apply on ¢

1. Return SHIFT if o] = 1.
2. Otherwise o = [... i j] for some i < j:

2.1 Return LEFT, if (j,1,1) € A&,
2.2 Return RIGHT; if (i,1,5) € A®" and for all ' € L,j' € N,

(4, V,5') € A= = (0" eA

2.3 Return SHIFT otherwise.

21/41



Linear Classifier

» Parameters: w; € R? foreach t € T

» Each c € C for sentence x is “featurized” as ¢”(c) € R

» Classical approach: binary features providing useful signals
» Assumes we have access to POS tags of 1 ...x,,.

20134871 0 otherwise

67 s (c) = 1 if 2. 4[0)-POS = VBD with leftmost arc SUBJ
19883771 0 otherwise

1 ifw.pgp = cat
0 otherwise

Piz(c) =

30/41



Linear Classifier (Continued)

» Score of t €T at c € C for z:

score,(t|c) == wy - ¢*(c)

» From here on, we assume {w;},.+ trained from data.

31/41



Important Aside

Each ¢; is computed from past decisions ¢ ...1;_ 1.

ci =t 1(tio(---to(co)))

So the score function on ¢; is really a function of ¢y...¢; 1.

score, (t|c) = score,(t|ty...1; 1)

Will use ¢; and tg...t;—1 interchangeably.

32/41



Overview

* Dependency Parsing

* Transition-Based Framework

Configuration
Transitions

* Transition Systems
Arc-Standard
Arc-Eager

* Implementation
Training
Greedy Parser
Beam Search Parser




Greedy

At each configuration ¢;, pick

t; < argmax score,(t|ty...t; 1)
te LEGAL(c;)

34 /41



Parsing Algorithm

Input: {w;}, ;. sentence x of length m
Output: arcs representing a dependency tree for x

1. c+ ¢
2. While ¢.8 # [,
2.1 Select
t < argmax score,(t|c)
tELEGAL(c)

2.2 Make a transition: ¢ < t(c).
3. Return c.A.

35/ 41



	dependency-parsing
	trans based dependency parsing



