Basic Parsing with Context-Free Grammars

Some slides adapted from Karl Stratos and from Chris Manning

Announcements

- HW 2 out
- Midterm on 10/19 (see website). Sample questions will be provided.
- Sign up for poll everywhere if you haven't
- Today: dependency parsing

Soundquality on video

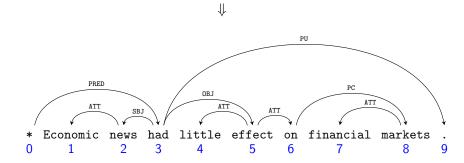
 If you encounter poor quality on video of lectures, send email to <u>support@cvn.columbia.edu</u> with the lecture date and timecode where the issue occurs

Overview

- Dependency Parsing
- Transition-Based Framework
 - Configuration
 - Transitions
- Transition Systems
 - Arc-Standard
 - Arc-Eager
- Implementation
 - Training
 - Greedy Parser
 - Beam Search Parser

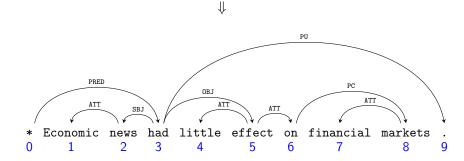
Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.



Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.



$$\begin{split} A &= \{(0, \texttt{PRED}, 3), (3, \texttt{SBJ}, 2), (2, \texttt{ATT}, 1), (3, \texttt{OBJ}, 5), \\ &\quad (3, \texttt{PU}, 9), (5, \texttt{ATT}, 4), (5, \texttt{ATT}, 6), (6, \texttt{PC}, 8), (8, \texttt{ATT}, 7)\} \end{split}$$

4 / 41

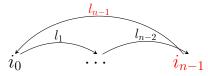
Valid Dependency Tree

1. (Root): 0 must not have a parent.

2. (Connected): There must be a path from 0 to every $i\in\mathcal{N}.$

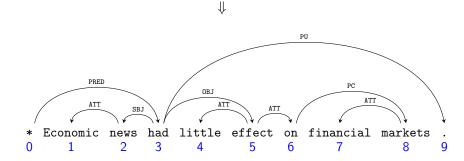
3. (Tree): A node must not have more than one parent.

4. (Acyclic): Nodes must not form a cycle.



Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.



$$\begin{split} A &= \{(0, \texttt{PRED}, 3), (3, \texttt{SBJ}, 2), (2, \texttt{ATT}, 1), (3, \texttt{OBJ}, 5), \\ &\quad (3, \texttt{PU}, 9), (5, \texttt{ATT}, 4), (5, \texttt{ATT}, 6), (6, \texttt{PC}, 8), (8, \texttt{ATT}, 7)\} \end{split}$$

4 / 41

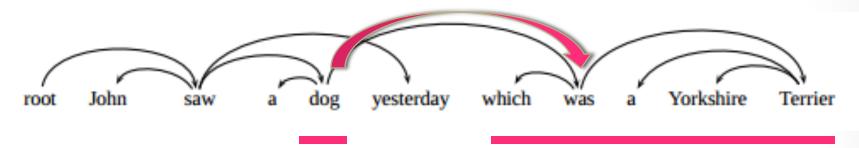
Projective

Can arrows cross -> non-projective

 A valid dependency tree is projective if for every arc (i, l, j) there is a path from I to k for all i<k<j.

Projective

Can arrows cross -> non-projective

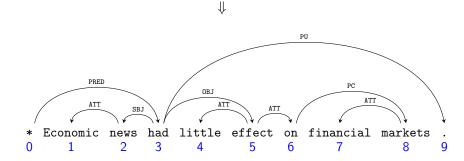


 A valid dependency tree is projective if for every arc (i, l, j) there is a path from I to k for all i<k<j.

8

Example Dependency Tree (Nivre 2013)

Economic news had little effect on financial markets.



$$\begin{split} A &= \{(0, \texttt{PRED}, 3), (3, \texttt{SBJ}, 2), (2, \texttt{ATT}, 1), (3, \texttt{OBJ}, 5), \\ &\quad (3, \texttt{PU}, 9), (5, \texttt{ATT}, 4), (5, \texttt{ATT}, 6), (6, \texttt{PC}, 8), (8, \texttt{ATT}, 7)\} \end{split}$$

4 / 41

Dependency Parsing = Arc Finding

Sentence:
$$x_1 \dots x_m$$

• Labels:
$$L = \{PRED, SBJ, \ldots\}$$

Goal. Find a set of labeled, directed arcs

$$A \subseteq \mathcal{N} \times L \times \mathcal{N}$$

that corresponds to a correct dependency tree for $x_1 \dots x_m$.

What information useful?

- Lexical affiniities
 - financial markets
- Dependency distance
- Intervening material
 - little in had little effect
 - Not little gave effect
- Valency of heads (subcategorization)

• little effect on financial markets

Methods of Dependency Parsing

• Dynamic programming

Eisner (1996): algorithm with complexity O(n³) by producing parse items with heads at the end instead of the middle

Graph algorithms

Create a Minimum Spanning Tree for a sentence (e..g, McDonald's MSTParser 2005)

Constraint Satisfaction

Edges are eliminated that don't satisfy hard constraints (Karlsson 1990

 Transition-based parsing (or deterministic based parsing Greedy choice of attachments guided by good machine learning. MaltParser (Nivre 2003)

Greedy Transition-based

- Parsing (Nivre 2003) • Simple form of greedy discriminative
 - Simple form of greedy discriminative dependency parser
 - Bottom-up
 - Similar to shift-reduce
 - The parser has:
 - A stack , written with top to the right
 - Starts with ROOT
 - A buffer ,written with top to the left
 - Starts with input sentence
 - A set of dependency arcs A
 - Which starts off empty
 - A set of actions

Parser Configuration

Triple $c = (\sigma, \beta, A)$ where • $\sigma = [\dots i]$: "stack" of \mathcal{N} with i at the top • $\beta = [i \dots]$: "buffer" of \mathcal{N} with i at the front • $A \subseteq \mathcal{N} \times L \times \mathcal{N}$: arcs

Notation

- C denotes the space of all possible configurations.
- $c.\sigma$, $c.\beta$, c.A denote stack, buffer, arcs of $c \in C$.

Configuration-Based Parsing Scheme

Initial configuration

$$c_0 := ([0], [1 \dots m], \{\})$$

Apply "transitions" until we reach **terminal** c_T (defined later)

$$c_0 \xrightarrow{t_0} c_1 \xrightarrow{t_1} \cdots \xrightarrow{t_{T-1}} c_T$$

and return as a parse

$$c_T.A$$

Shift and Reduce

SHIFT $(\sigma, i|\beta, A) \Rightarrow (\sigma|i, \beta, A)$

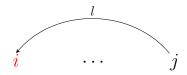
Illegal if β is empty.

REDUCE $(\sigma | \mathbf{i}, \beta, A) \Rightarrow (\sigma, \beta, A)$

Illegal if i does not have a parent.

Left-Arc

$\mathsf{LEFT}_l \ (\sigma|\mathbf{i}|j,\beta,A) \Rightarrow (\sigma|j,\beta,A \cup \{(j,l,i)\})$

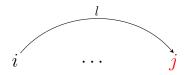


Illegal if either i = 0 or i already has a parent.

13/41

Right-Arc

$\mathbf{RIGHT}_l \ (\sigma|i|j,\beta,A) \Rightarrow (\sigma|i,\beta,A \cup \{(i,l,j)\})$



Illegal if j already has a parent.

14/41

Definition

 $2\left|L\right|+1$ possible transitions \mathcal{T}^{std}

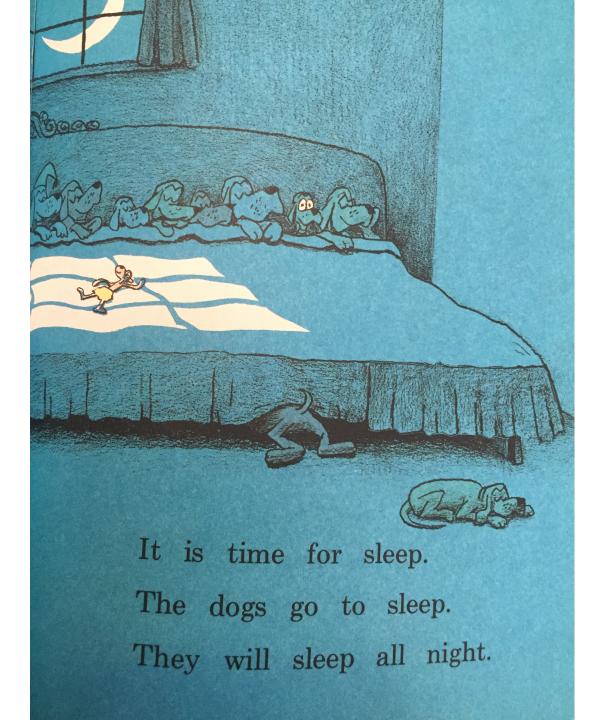
- ▶ SHIFT: $(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)$
- **LEFT**_l for each $l \in L$:

$$(\sigma|\mathbf{i}|j,\beta,A) \Rightarrow (\sigma|j,\beta,A \cup \{(j,l,i)\})$$

• **RIGHT** $_l$ for each $l \in L$:

$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|i,\beta,A\cup\{(i,l,j)\})$$

Terminal condition: $c.\sigma = [0]$ and $c.\beta = []$



• They sleep all night

START [ROOT] They sleep all night

9

They sleep all night

START [ROOT] They sleep all night SHIFT [ROOT] They sleep all night

They sleep all night

START [ROOT] They sleep all night

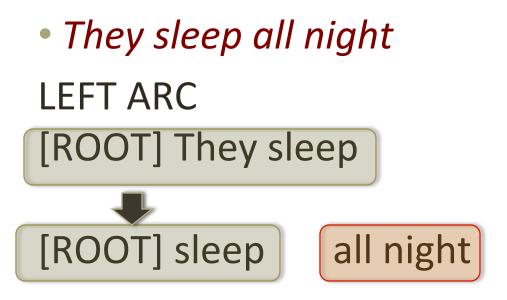
SHIFT

[ROOT] They sleep all night

SHIFT

[ROOT] They sleep all night

20



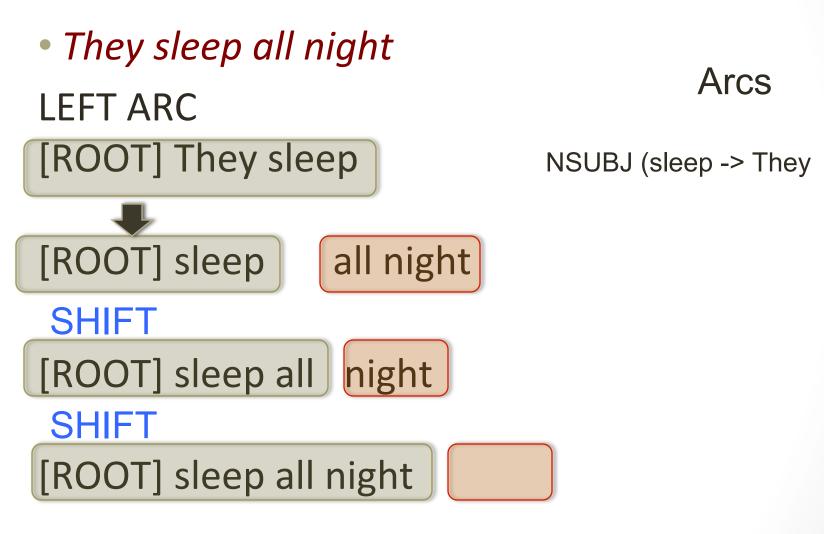
Arcs

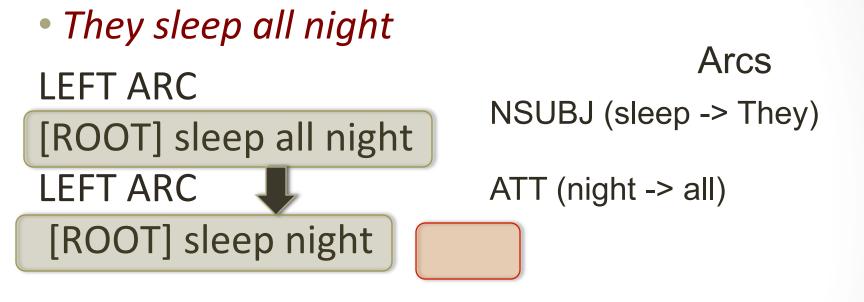
NSUBJ (sleep -> They

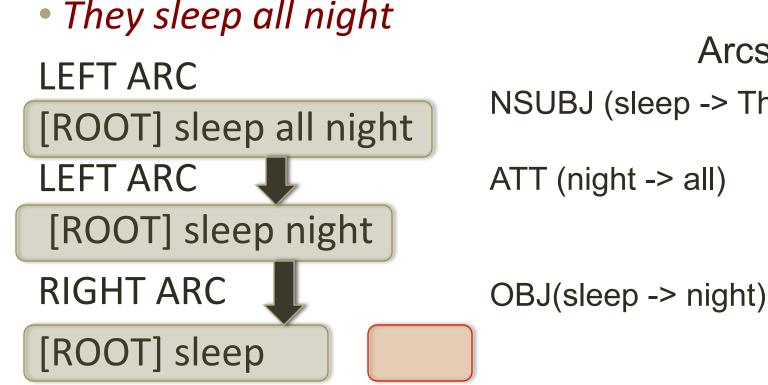
〔21〕

NSUBJ (sleep -> They

22

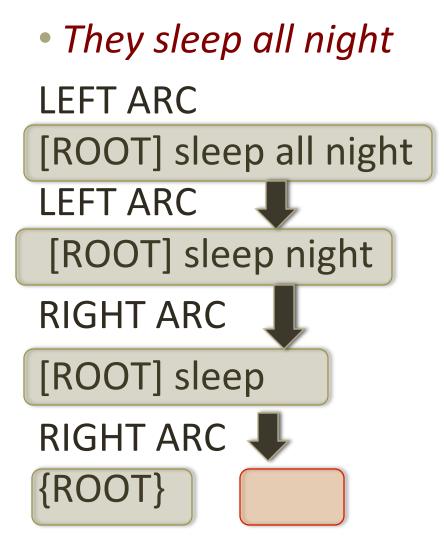






Arcs NSUBJ (sleep -> They)

ATT (night -> all)



Arcs NSUBJ (sleep -> They)

ATT (night -> all)

OBJ(sleep -> night)

PRED (ROOT -> sleep)

FINiSH

26

Definition

 $2\left|L\right|+1$ possible transitions \mathcal{T}^{std}

- ▶ SHIFT: $(\sigma, i | \beta, A) \Rightarrow (\sigma | i, \beta, A)$
- **LEFT**_l for each $l \in L$:

$$(\sigma|\mathbf{i}|j,\beta,A) \Rightarrow (\sigma|j,\beta,A \cup \{(j,l,i)\})$$

• **RIGHT** $_l$ for each $l \in L$:

$$(\sigma|i|j,\beta,A) \Rightarrow (\sigma|i,\beta,A\cup\{(i,l,j)\})$$

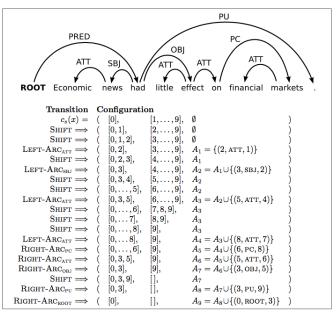
Terminal condition: $c.\sigma = [0]$ and $c.\beta = []$

Properties

- Makes exactly 2m transitions to parse $x_1 \dots x_m$. Why?
- Bottom-up: a node must collect all its children before getting a parent. Why?
- **Sound**: if c is terminal, c.A forms a valid projective tree.
- ► Complete: every valid projective tree A can be produced from c₀ by some sequence of transitions t₀...t_{T-1} ∈ T^{std}.

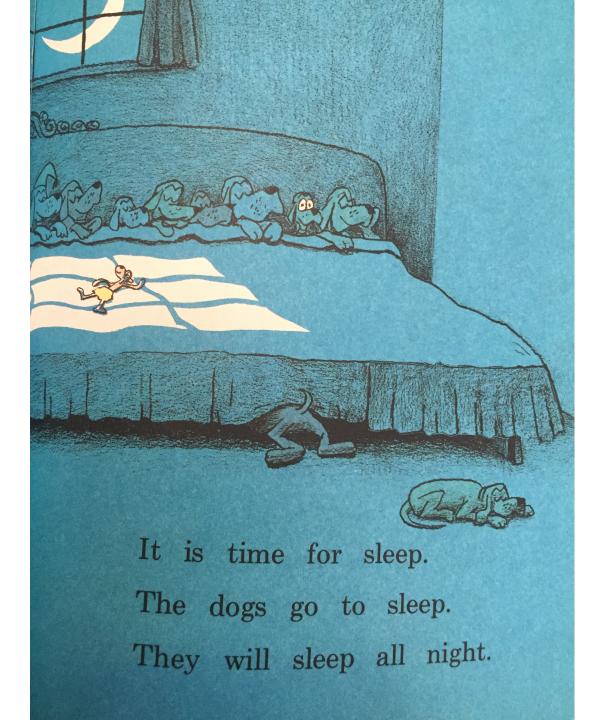
 $t_i = \mathsf{Oracle}^{\mathsf{std}}(c_i)$ $c_{i+1} = t_i(c_i)$

Example Parse (Nivre 2013)



How do we decide the next arc?

- Each action can be predicted by a discriminative classifier over each legal move (Nivre and Hall 2005)
 - SVM
 - Max of 3 untyped choices; max of |R| X 2 +1 when typed where R is # dependency labels
 - Features: top of stack word, top of stack POS what else?
- No search in greedy search
 - Could do beam search
- It provides VERY fast linear time parsing
- The model's accuracy is slightly below the best parser
- It provides fast, close to state of the art parsing



Overview

- Dependency Parsing
- Transition-Based Framework
 - Configuration
 - Transitions
- Transition Systems
 - Arc-Standard
 - Arc-Eager
- Implementation
 - Training
 - Greedy Parser
 - Beam Search Parser

Getting Training Data

• **Treebank**: sentence-tree pairs $(x^{(1)}, A^{(1)}) \dots (x^{(M)}, A^{(M)})$

- Assume all projective
- For each $A^{(j)}$, use an oracle to extract

$$(c_0^{(j)}, t_0^{(j)}) \dots (c_{T-1}^{(j)}, t_{T-1}^{(j)})$$

where
$$t_{T-1}^{(j)}(c_{T-1}^{(j)}).A = A^{(j)}.$$

We can now use this to train a classifier

$$(x^{(j)},c^{(j)}_i)\mapsto t^{(j)}_i$$

Oraclestd

Input: gold arcs A^{gold} , non-terminal configuration $c = (\sigma, \beta, A)$ **Output**: transition $t \in \mathcal{T}^{\text{std}}$ to apply on c

- 1. Return **SHIFT** if $|\sigma| = 1$.
- 2. Otherwise $\sigma = [\dots i j]$ for some i < j:
 - 2.1 Return **LEFT**_l if $(j, l, i) \in A^{\text{gold}}$.
 - 2.2 Return **RIGHT**_l if $(i, l, j) \in A^{\text{gold}}$ and for all $l' \in L, j' \in \mathcal{N}$,

$$(j,l',j')\in A^{\rm gold} \qquad \Rightarrow \qquad (j,l',j')\in A$$

2.3 Return SHIFT otherwise.

Linear Classifier

- Parameters: $w_t \in \mathbb{R}^d$ for each $t \in \mathcal{T}$
- Each $c \in \mathcal{C}$ for sentence x is "featurized" as $\phi^x(c) \in \mathbb{R}^d$.
 - Classical approach: binary features providing useful signals
 - Assumes we have access to POS tags of $x_1 \dots x_m$.

$$\begin{split} \phi^x_{20134}(c) &:= \left\{ \begin{array}{ll} 1 & \text{if } x_{c.\sigma[0]}.\text{POS} = \text{NN and } x_{c.\beta[0]}.\text{POS} = \text{VBD} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi^x_{1988}(c) &:= \left\{ \begin{array}{ll} 1 & \text{if } x_{c.\sigma[0]}.\text{POS} = \text{VBD with leftmost arc SUBJ} \\ 0 & \text{otherwise} \end{array} \right. \\ \phi^x_{42}(c) &:= \left\{ \begin{array}{ll} 1 & \text{if } x_{c.\beta[1]} = \text{cat} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Linear Classifier (Continued)

• Score of
$$t \in \mathcal{T}$$
 at $c \in \mathcal{C}$ for x :

$$score_x(t|c) := w_t \cdot \phi^x(c)$$
$$= \sum_{i=1: \ \phi^x_i(c)=1}^d [w_t]_i$$

From here on, we assume $\{w_t\}_{t \in \mathcal{T}}$ trained from data.

31/41

Important Aside

Each c_i is computed from **past decisions** $t_0 \dots t_{i-1}$.

$$c_i = t_{i-1}(t_{i-2}(\cdots t_0(c_0)))$$

So the score function on c_i is really a **function of** $t_0 \dots t_{i-1}$.

$$score_x(t|c) = score_x(t|t_1 \dots t_{i-1})$$

Will use c_i and $t_0 \dots t_{i-1}$ interchangeably.

Overview

- Dependency Parsing
- Transition-Based Framework
 - Configuration
 - Transitions
- Transition Systems
 - Arc-Standard
 - Arc-Eager
- Implementation
 - Training
 - Greedy Parser
 - Beam Search Parser

At each configuration c_i , pick

$$t_i \leftarrow \underset{t \in \text{ legal}(c_i)}{\operatorname{arg max}} \operatorname{score}_x(t|t_0 \dots t_{i-1})$$

Parsing Algorithm

Input: $\{w_t\}_{t \in T}$, sentence x of length m**Output**: arcs representing a dependency tree for x

1. $c \leftarrow c_0$ 2. While $c.\beta \neq []$,

2.1 Select

$$\hat{t} \leftarrow \underset{t \in \text{legal}(c)}{\operatorname{arg\,max}} \operatorname{score}_{x}(t|c)$$

2.2 Make a transition: $c \leftarrow \hat{t}(c)$.

3. Return c.A.