Basic Parsing with Context-Free
Grammars

Some slides adapted from Julia Hirschberg and Dan Jurafsky [1 J

Announcements

* HW 2 to go out today. Next Tuesday most
important for background to assignment

* Sign up for poll everywhere

* Today: wrap-up from last class and start
on parsing

Wrap-up on syntax

Grammar Equivalence

* Can have different grammars that generate
same set of strings (weak equivalence)
Grammar 1: NP — DetP N and DetP — a | the
Grammar 2: NP —=a N | NP — the N

* Can have different grammars that have same
set of derivation trees (strong equivalence)

With CFGs, possible only with useless rules
Grammar 2: NP —=a N | NP — the N
Grammar 3: NP —=a N | NP — the N, DetP — many

* Strong equivalence implies weak equivalence

Normal Forms &c

* There are weakly equivalent normal forms
(Chomsky Normal Form, Greibach Normal
Form)

* There are ways to eliminate useless
productions and so on

Chomsky Normal Form

A CFG is in Chomsky Normal Form (CNF) if

all productions are of one of two forms:
* A — BCwith A, B, C nonterminals
* A — g, with A a nonterminal and g a terminal

Every CFG has a weakly equivalent CFG in
CNF

Nobody Uses Simple CFGs (Except
Intro NLP Courses)

* All major syntactic theories (Chomsky, LFG,
HPSG, TAG-based theories) represent both
phrase structure and dependency, in one way
or another

* All successful parsers currently use statistics
about phrase structure and about dependency

* Derive dependency through “head
percolation”: for each rule, say which daughter
is head

Massive Ambiguity of Syntax

* For a standard sentence, and a grammar
with wide coverage, there are 1000s of
derivations!

* Example:

The large portrait painter told the delegation
that he sent money orders in a letter on
Wednesday

ead word of the one constituent that you t

letter" actually does modify?

Start the presentation to activate live content

If you see this message in presentation mode, install the add-in or get help at PollEv.com/app

ead words of the constituents that "in a lett

modify.

Start the presentation to activate live content

If you see this message in presentation mode, install the add-in or get help at PollEv.com/app

Penn Treebank (PTB)

* Syntactically annotated corpus of
newspaper texts (phrase structure)

* The newspaper texts are naturally
occurring data, but the PTB is not!

* PTB annotation represents a particular
inguistic theory (but a fairly “vanilla” one)

* Particularities

Very indirect representation of grammatical relations
(need for head percolation tables)

Completely flat structure in NP (brown bag lunch, pink-
and-yellow child seat)

Has flat Ss, flat VPs

Example from PTB
((S (NP-SBJ It)
(VP's
(NP-PRD (NP (NP the latest investment craze)
(VP sweeping
(NP Wall Street)))

(NP (NP a rash)
(PP of
(NP (NP new closed-end country funds)
(NP (NP those

(ADJP publicly traded)
portfolios)

(SBAR (WHNP-37 that)

(S (NP-SBJ *T*-37)
(VP invest
(PP-CLR in
(NP (NP stocks)
(PP of
(NP a single foreign country

Syntactic Parsing

Syntactic Parsing

. formalisms like CFGs, FSAs
define the legal strings of a language --
but only tell you ‘this is a legal string of the
language X’

. specify how to
recognize the strings of a language and
assign each string one (or more) syntactic
analyses

CFG EXample the small boy likes a girl

* Many possible CFGs for English, here is an example (fragment):
S — NP VP
VP — V NP
NP — Det N | Adj NP
N — boy | girl
V — sees | likes
Adj — big | small
DetP — a | the

*big the small girl sees a boy

John likes a girl

| like a girl

| sleep

The old dog the footsteps of the young

Modified CFG

S>NPVP VP >V

S =2 Aux NP VP VP ->V PP

S->VP PP -> Prep NP

NP - Det Nom N - old | dog | footsteps |
young | flight

NP ->PropN V = dog | include | prefer |
book

NP -> Pronoun

Nom -> Adj Nom Aux - does

Nom - N Prep ->from | to | on | of

Nom -> N Nom PropN = Bush | McCain |
Obama

Nom -> Nom PP Det - that | this | a| the
VP - V NP Adj -> old | green | red

Parse Tree for ‘The old dog the footsteps of the
young’ for Prior CFG

S

RN
A N\

DE / \
DET NOM

The old dog the rj fp

of the young

footsteps

Parsing as a Form of Search

* Searching S
Finding the right path through the automaton
Search space defined by structure of FSA

* Searching S

Finding the right parse tree among all possible
parse trees

Search space defined by the grammar

* Constraints provided by the input sentence
and the automaton or grammar

Top-Down Parser

* Builds from the root S node to the leaves
* Expectation-based

* Common search strategy
Top-down, left-to-right, backtracking
Try first rule with LHS =S
Next expand all constituents in these trees/rules
Continue until leaves are POS

Backtrack when candidate POS does not match input
string

Rule Expansion
* “The old dog the footsteps of the young.”
Where does backtracking happen?

What are the computational disadvantages?

What are the advantages?

What are the computational disadvantages?

Start the presentation to activate live content

If you see this message in presentation mode, install the add-in or get help at PollEv.com/app

Bottom-Up Parsing

* Parser begins with words of input and builds
up trees, applying grammar rules whose RHS
matches

Det N V Det N Prep Det N
The old dog the footsteps of the young.

Det Adj N Det N Prep Det N
The old dog the footsteps of the young.

Parse continues until an S root node reached or no
further node expansion possible

Det N V Det N Prep Det N
The old dog the footsteps of the young.
Det Adj N Det N Prep Det N

Bottom-up parsing

* When does disambiguation occur?

* What are the computational advantages
and disadvantages?

What are the computational disadvantages?

Start the presentation to activate live content

If you see this message in presentation mode, install the add-in or get help at PollEv.com/app

What's right/wrong with....

* Top-Down parsers — they never explore illegal parses (e.g.
which can’t form an S) -- but waste time on trees that can
never match the input

* Bottom-Up parsers — they never explore trees inconsistent

with input -- but waste time exploring illegal parses (with no
S root)

* For both: find a control strategy -- how explore search space
efficiently?
Pursuing all parses in parallel or backtrack or ...?
Which rule to apply next?
Which node to expand next?

Some Solutions

Dynamic Programming Approaches — Use a
chart to represent partial results

* CKY Parsing Algorithm

Bottom-up
Grammar must be in Normal Form
The parse tree might not be consistent with linguistic theory

* Early Parsing Algorithm
Top-down

Expectations about constituents are confirmed by input
A POS tag for a word that is not predicted is never added

* Chart Parser

Earley Parsing

* Allows arbitrary CFGs

* Fills a table in a single sweep over the
input words

Table is length N+1; N is number of words

Table entries represent
Completed constituents and their locations
In-progress constituents
Predicted constituents

States

* The table-entries are called states and are
represented with dotted-rules.

S->-VP A VP is predicted
NP -> Det - Nominal An NP is in progress

VP ->V NP - A VP has been found

States/Locations

* It would be nice to know where these things are
in the input so...

S->-VP[0,0] A VP is predicted at the
start of the sentence

NP -> Det - Nominal [1,2] An NP isin progress; the
Det goes from 1to 2

VP ->V NP - [0,3] A VP has been found
starting at 0 and ending at

Graphically

VP ->V NP .

S ->.VP

NP -> Det . Nominal

Earley

* As with most dynamic programming
approaches, the answer is found by
looking in the table in the right place.

* In this case, there should be an S state in
the final column that spans from O to n+1
and is complete.

* If that’s the case you’re done.
S—> o - [0,n+1]

Earley Algorithm

* March through chart left-to-right.

* At each step, apply 1 of 3 operators

Predictor

Create new states representing top-down
expectations

Scanner

Match word predictions (rule with word after dot)
to words

Completer

When a state is complete, see what rules were
looking for that completed constituent

Predictor

* Given a state

With a non-terminal to right of dot (not a part-of-speech
category)

Create a new state for each expansion of the non-terminal

Place these new states into same chart entry as generated
state, beginning and ending where generating state ends.

So predictor looking at
S->.VP[0,0]
results in
VP -> . Verb [0,0]
VP -> . Verb NP [0,0]

Scanner

* Given a state

With a non-terminal to right of dot that is a part-of-speech
category

If the next word in the input matches this POS
Create a new state with dot moved over the non-terminal
So scanner looking at VP -> . Verb NP [0,0]

If the next word, “book”, can be a verb, add new state:
VP ->Verb . NP [0,1]

Add this state to chart entry following current one

Note: Earley algorithm uses top-down input to disambiguate P
Only POS predicted by some state can get added to chart!

Completer

* Applied to a state when its dot has reached right end of
role.

* Parser has discovered a category over some span of
input.
* Find and advance all previous states that were looking
for this category
copy state, move dot, insert in current chart entry
* Given:
NP -> Det Nominal . [1,3]
VP ->Verb. NP [0,1]
* Add
VP ->Verb NP . [0,3]

How do we know we are done?

* Find an S state in the final column that
spans from O to n+1 and is complete.

* If that’s the case you’re done.
S—> - [0,n+1]

Earley

* More specifically...

Predict all the states you can upfront

Read a word
Extend states based on matches
Add new predictions
Goto?2

[38)

Look at N+1 to see if you have a winner

Example

* Book that flight

* We should find... an S from 0 to 3 that is a
completed state...

CFG for Fragment of English

S 2> NP VP VP 2>V

S 2 Aux NP VP PP -> Prep NP

NP - Det Nom N - old | dog | footsteps |
young | flight

NP ->PropN V = dog | include | prefer |
book

Nom -> Adj Nom Aux - does

Nom = N Prep =>from | to | on | of

Nom = N Nom PropN = Bush | McCain |
Obama

Nom - Nom PP Det - that | this | a| the

VP - V NP Adj -> old | green | red

S>NPVP,S->VP VP >V
S =2 Aux NP VP PP -> Prep NP
NP = Det Nom N - old | dog | footsteps |

young | flight

NP ->PropN, NP ->
Pro

V - dog | include | prefer |
book

Aux = does

Nom = N

Prep ->from | to | on | of

Nom = N Nom

PropN - Bush | McCain |
Obama

Nom - Nom PP

Det - that| this | a| the

VP > V NP, VP -> V
NP PP, VP -> V PP,

VP -> VP PP

Adj -> old | green | red

S>NPVP,S->VP VP >V
S =2 Aux NP VP PP -> Prep NP
NP = Det Nom N - old | dog | footsteps |

young | flight

NP ->PropN, NP ->
Pro

V - dog | include | prefer |
book

Aux = does

Nom = N

Prep ->from | to | on | of

Nom = N Nom

PropN - Bush | McCain |
Obama

Nom - Nom PP

Det - that| this | a| the

VP > V NP, VP -> V
NP PP, VP -> V PP,

VP -> VP PP

Adj -> old | green | red

Example

Chart[0] SO 7 — 3

S — eNPVP
2 S — eAux NP VP
3 S — eVP

S4 NP —
S5 NP —
S6 NP —
S7T VP —
S8 VP —
S9 VP —
S10 VP —
S11 VP —

e Pronoun

e Proper-Noun
e Det Nominal
o Verb

o Verb NP

e Verb NP PP
e Verb PP

o VPPP

0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0

Dummy start state

Predictor
Predictor

Predictor
Predictor

Predictor
Predictor
Predictor
Predictor

Predictor
Predictor

Predictor

Example
Chart[1] S12 Verb — book e

S17 S — VPoe

S18 VP — VPePP

S19 NP — e Pronoun
S20 NP — e Proper-Noun
S21 NP — e Det Nominal
S22 PP — e Prep NP

[0.1]
[0.1°
[0.1°
[0.0°
[0.0]
[0.1
[0.1]
[1.1°
[1.1]
{11

[1.1]

Scanner
Completer
Completer

Completer

Predictor

Completer
Completer
Predictor
Predictor
Predictor
Predictor

[4¢)

Example
Chart[1] S12 Verb — book e

B AR G L D

S18 VP — VPePP

S19 NP — e Pronoun
S20 NP — e Proper-Noun
S21 NP — e Det Nominal
S22 PP — e Prep NP

[0.1]
[0.1°
[0.1°
[0.0°
[0.0]
[0.1
[0.1]
[1.1°
[1.1]
{11

[1.1]

Scanner
Completer
Completer

Completer
Predictor

Completer
Completer
Predictor
Predictor
Predictor
Predictor

Example

Chart[2] S23 Det — that e [1.2] Scanner
S24 NP — Det e Nominal (12| Completer
S25 Nominal — e Noun 22| Predictor
S26 Nominal — e Nominal Noun [2.2] Predictor
S27 Nominal — e Nominal PP [2.2] Predictor
Chart[3] S28 Noun — flight e 223} Scanner
S29 Nominal — Noun e 23| Completer
S30 NP — Det Nominal e (R3] Completer
S31 Nominal — Nominal e Noun [2.3] Completer
S32 Nominal — Nominal e PP [2.3] Completer
S33 VP — Verb NP e 0.3 Completer
S34 VP — Verb NP e PP 0.3 Completer
S35 PP — e Prep NP 3.3 Predictor
S36 S — FVPe 0.3 Completer

Details

* What kind of algorithms did we just
describe

Not parsers — recognizers

The presence of an S state with the right attributes
in the right place indicates a successful recognition.

But no parse tree... no parser

That’s how we solve (not) an exponential problem
in polynomial time

Converting Earley from Recognizer

to Parser
* With the addition of a few pointers we
have a parser

* Augment the “Completer” to point to
where we came from.

Augmenting the chart with

structural information

Chart[1]
S8 Verb — book e 0,11 Scanner
59 VP — Verbe 0,1] Completer S8
SI0-§ — VPe 0,1] Completer s9
St VP — Verb e NP 0,1] Completer S8
SI2. NP — e Det NOMINAL [1,1] Predictor
SI3° NP — o Proper-Noun [1,1] Predictor
Chart[2]
Det — thate 1,2] Scanner
NP — Dete NOMINAL 1,2] Completer
NOMINAL — o Noun 2,2] Predictor
NOMINAL — o Noun NOMINAL [2,2] Predictor

Retrieving Parse Trees from Chart

All the possible parses for an input are in the table

We just need to read off all the backpointers from every
complete S in the last column of the table

Find all the S->X. [O,N+1]

Follow the structural traces from the Completer

Of course, this won’t be polynomial time, since there could b
an exponential number of trees

We can at least represent ambiguity efficiently

* Depth-first search will never terminate if
grammar is (e.g. NP --> NP
PP)

(A——aAB,a——¢)

/\w /\ /\
/\ /\
AN

HF FF

Solutions:

Rewrite the grammar (automatically?) to a
weakly equivalent one which is not left-
recursive

e.g. The man {on the hill with the telescope...}

NP = NP PP (wanted: Nom plus a sequence of PPs)

NP = Nom PP

NP = Nom

Nom - Det N

...becomes...

NP = Nom NP’

Nom = Det N

NP’ = PP NP’ (wanted: a sequence of PPs)

NP’ = e

Not so obvious what these rules mean...

* Harder to detect and eliminate non-immediate

left recursion

* NP -->Nom PP
* Nom --> NP

* Fix depth of search explicitly

* Rule ordering: non-recursive rules first

NP --> Det Nom
NP --> NP PP

Another Problem: Structural
ambiguity

* Multiple legal structures

* Attachment (e.g. | saw a man on a hill with a
telescope)

* Coordination (e.g. younger cats and dogs)
* NP bracketing (e.g. Spanish language teachers)

“One morning |
shot an elephant in
my pajamas. How
he got into my
pajamas I'll never
know.”

~Groucho Marx

American comedian
1890-1877

e A panle g rag e

NP vs. VP Attachment

S

VP

NP NP NP NP /\N P
| /\ | 2N P
PRO V DT IN PRO PRO V DT N IN PRO NS

| shot an elephant in my pajamas. | shot an elephant in my pajamas.

Key: N = Noun | NS = Plural Noun | NP = Noun Phrase | PRO = Pronoun |V =Verb | VP = Verb Phrase |
DT = Determiner | IN = preposition | PP = Prepositional Phrase [5
5 |

* Solution?

* Return all possible parses and disambiguate
using “other methods”

Summing Up

* Parsing is a search problem which may be
implemented with many control strategies

or approaches each
have problems

Combining the two solves some but not all issues
Left recursion
Syntactic ambiguity

