
Basic	Parsing	with	Context-Free	
Grammars	

1 Some slides adapted from Julia Hirschberg and Dan Jurafsky 



Announcements	
• HW	2	to	go	out	today.	Next	Tuesday	most	
important	for	background	to	assignment	
	

• Sign	up	for	poll	everywhere	
	

• Today:	wrap-up	from	last	class	and	start	
on	parsing	

2 



Wrap-up	on	syntax	

3 



Grammar	Equivalence	
• Can	have	different	grammars	that	generate	
same	set	of	strings	(weak	equivalence)	
•  Grammar	1:	NP	→	DetP	N	and	DetP	→		a	|	the	
•  Grammar	2:	NP	→	a	N	|	NP	→	the	N	
	

• Can	have	different	grammars	that	have	same	
set	of	derivaLon	trees	(strong	equivalence)	
• With	CFGs,	possible	only	with	useless	rules	
•  Grammar	2:	NP	→	a	N	|	NP	→	the	N	
•  Grammar	3:	NP	→	a	N	|	NP	→	the	N,	DetP	→	many	
	

• Strong	equivalence	implies	weak	equivalence	



	Normal	Forms	&c	
• There	are	weakly	equivalent	normal	forms	
(Chomsky	Normal	Form,	Greibach	Normal	
Form)	
	

• There	are	ways	to	eliminate	useless	
producLons	and	so	on	



Chomsky	Normal	Form	
A	CFG	is	in	Chomsky	Normal	Form	(CNF)	if	
all	producLons	are	of	one	of	two	forms:	

•  A	→	BC	with	A,	B,	C	nonterminals	
•  A	→	a,	with	A	a	nonterminal	and	a	a	terminal	
	

Every	CFG	has	a	weakly	equivalent	CFG	in	
CNF	
	



Nobody	Uses	Simple	CFGs	(Except	
Intro	NLP	Courses)	

• All	major	syntacLc	theories	(Chomsky,	LFG,	
HPSG,	TAG-based	theories)	represent	both	
phrase	structure	and	dependency,	in	one	way	
or	another	
	

• All	successful	parsers	currently	use	staLsLcs	
about	phrase	structure	and	about	dependency		
	

• Derive	dependency	through	“head	
percolaLon”:	for	each	rule,	say	which	daughter	
is	head	



Massive	Ambiguity	of	Syntax	
• For	a	standard	sentence,	and	a	grammar	
with	wide	coverage,	there	are	1000s	of	
derivaLons!	
	

• Example:	
•  The	large	portrait	painter	told	the	delegaLon	
that	he	sent	money	orders	in	a	leYer	on	
Wednesday	



9 



10 



Penn	Treebank	(PTB)	
• SyntacLcally	annotated	corpus	of	
newspaper	texts	(phrase	structure)	

• The	newspaper	texts	are	naturally	
occurring	data,	but	the	PTB	is	not!	

• PTB	annotaLon	represents	a	parLcular	
linguisLc	theory	(but	a	fairly	“vanilla”	one)	

• ParLculariLes	
•  Very	indirect	representaLon	of	grammaLcal	relaLons	
(need	for	head	percolaLon	tables)	

•  Completely	flat	structure	in	NP	(brown	bag	lunch,	pink-
and-yellow	child	seat	)	

•  Has	flat	Ss,	flat	VPs	



Example	from	PTB	
(	(S	(NP-SBJ	It)	
					(VP	's	
									(NP-PRD	(NP	(NP	the	latest	investment	craze)	
	 						(VP	sweeping	
	 												(NP	Wall	Street)))	
	 		:	
	 		(NP	(NP	a	rash)	
	 						(PP	of	
	 	 	(NP	(NP	new	closed-end	country	funds)	
	 	 						,	
	 	 						(NP	(NP	those	
	 	 	 						(ADJP	publicly	traded)	
	 	 	 						poraolios)	
	 	 	 		(SBAR	(WHNP-37	that)	
	 	 	 								(S	(NP-SBJ	*T*-37)	
	 	 	 	 			(VP	invest	
	 	 	 	 							(PP-CLR	in	
	 	 	 	 	 					(NP	(NP	stocks)	
	 	 	 	 	 											(PP	of	
	 	 	 	 	 														(NP	a	single	foreign	country)))))))))))	



Syntactic	Parsing	

13 



Syntactic	Parsing	
• DeclaraLve	formalisms	like	CFGs,	FSAs	
define	the	legal	strings	of	a	language	--	
but	only	tell	you	‘this	is	a	legal	string	of	the	
language	X’	

• Parsing	algorithms	specify	how	to	
recognize	the	strings	of	a	language	and	
assign	each	string	one	(or	more)	syntacLc	
analyses	

14 



CFG:	Example	
•  Many	possible	CFGs	for	English,	here	is	an	example	(fragment):	

•  S	→	NP	VP	
•  VP	→		V	NP	
•  NP	→	Det	N	|	Adj	NP	
•  N	→		boy	|	girl	
•  V	→		sees	|	likes	
•  Adj	→		big	|	small	
•  DetP	→		a	|	the	
	
	
	

•  *big	the	small	girl	sees	a	boy	
•  John	likes	a	girl	
•  I	like	a	girl	
•  I	sleep	
•  The	old	dog	the	footsteps	of	the	young	

the small boy likes a girl 



ModiMied	CFG	
S à NP VP VP à V 
S à Aux NP VP VP -> V PP 
S -> VP PP -> Prep NP 
NP à Det Nom 
 

N à old | dog | footsteps | 
young | flight 

NP  àPropN V à dog | include | prefer | 
book 

NP -> Pronoun 
Nom -> Adj Nom Aux à does 
Nom à N Prep àfrom | to | on | of 
Nom à N Nom PropN à Bush | McCain | 

Obama 
Nom à Nom PP Det à that |  this | a| the 
VP à V NP Adj -> old | green | red 



Parse Tree for ‘The old dog the footsteps of the 
young’ for Prior CFG 

S 

NP VP 

NP V 

DET 
NOM 

N PP 

DET NOM 

N 

The old dog the 

footsteps 
of the young 



Parsing	as	a	Form	of	Search	
• Searching	FSAs	

•  Finding	the	right	path	through	the	automaton	
•  Search	space	defined	by	structure	of	FSA	

• Searching	CFGs	
•  Finding	the	right	parse	tree	among	all	possible	
parse	trees	

•  Search	space	defined	by	the	grammar	

• Constraints	provided	by	the	input	sentence	
and	the	automaton	or	grammar	 18 



Top-Down	Parser	
• Builds	from	the	root	S	node	to	the	leaves	
• ExpectaLon-based	
• Common	search	strategy	

•  Top-down,	lei-to-right,	backtracking	
•  Try	first	rule	with	LHS	=	S	
•  Next	expand	all	consLtuents	in	these	trees/rules	
•  ConLnue	unLl	leaves	are	POS	
•  Backtrack	when	candidate	POS	does	not	match	input	
string	 19 



Rule	Expansion		
• “The	old	dog	the	footsteps	of	the	young.”	
	

• Where	does	backtracking	happen?		
	

• What	are	the	computaLonal	disadvantages?	
	

• What	are	the	advantages?	

20 



21 



Bottom-Up	Parsing	
• Parser	begins	with	words	of	input	and	builds	
up	trees,	applying	grammar	rules	whose	RHS	
matches	
	 	Det			N			V			Det			N									Prep	Det		N	
	 	The	old	dog	the	footsteps	of	the	young.	
	
		Det			Adj		N			Det			N									Prep	Det		N	
	 	The	old	dog	the	footsteps	of	the	young.	
	Parse	conLnues	unLl	an	S	root	node	reached	or	no	
further	node	expansion	possible	

		 22 



	
	

Det			N			V			Det			N									Prep	Det		N	
The	old	dog	the	footsteps	of	the	young.	
Det		Adj		N			Det			N									Prep	Det		N		
	

23 



Bottom-up	parsing	
• When	does	disambiguaLon	occur?	
	
	

• What	are	the	computaLonal	advantages	
and	disadvantages?	

24 



25 



What’s	right/wrong	with….	

•  Top-Down	parsers	–	they	never	explore	illegal	parses	(e.g.	
which	can’t	form	an	S)	--	but	waste	Lme	on	trees	that	can	
never	match	the	input	

•  BoYom-Up	parsers	–	they	never	explore	trees	inconsistent	
with	input	--	but	waste	Lme	exploring	illegal	parses	(with	no	
S	root)	

•  For	both:	find	a	control	strategy	--	how	explore	search	space	
efficiently?	
•  Pursuing	all	parses	in	parallel	or	backtrack	or	…?	
•  Which	rule	to	apply	next?	
•  Which	node	to	expand	next?	 26 



Some	Solutions	
Dynamic	Programming	Approaches	–	Use	a	
chart	to	represent	par<al	results	
	

• CKY	Parsing	Algorithm	
•  BoYom-up	
•  Grammar	must	be	in	Normal	Form	
•  The	parse	tree	might	not	be	consistent	with	linguisLc	theory	

• Early	Parsing	Algorithm	
•  Top-down	
•  ExpectaLons	about	consLtuents	are	confirmed	by	input	
•  A	POS	tag	for	a	word	that	is	not	predicted	is	never	added	

• Chart	Parser	 27 



Earley	Parsing	
• Allows	arbitrary	CFGs	
• Fills	a	table	in	a	single	sweep	over	the	
input	words	
•  Table	is	length	N+1;	N	is	number	of	words	
•  Table	entries	represent	

•  Completed	consLtuents	and	their	locaLons	
•  In-progress	consLtuents	
•  Predicted	consLtuents	
	 28 



States	
• The	table-entries	are	called	states	and	are	
represented	with	doYed-rules.	
S	->	·	VP 	 	 	 	A	VP	is	predicted	

NP	->	Det	·	Nominal 	 	An	NP	is	in	progress	

VP	->	V	NP	·	 	 	 	A	VP	has	been	found	
	

29 



States/Locations	
• It	would	be	nice	to	know	where	these	things	are	
in	the	input	so…	
S	->	·	VP	[0,0] 	 	 	A	VP	is	predicted	at	the	 	

	 	 	 	 	start	of	the	sentence	

NP	->	Det	·	Nominal		[1,2] 	An	NP	is	in	progress;	the		
	 	 	 	 	Det	goes	from	1	to	2	

VP	->	V	NP	·	 	[0,3] 	 	A	VP	has	been	found	 	
	 	 	 	 	starLng	at	0	and	ending	at	3	

	 30 



Graphically	

31 



Earley	
• As	with	most	dynamic	programming	
approaches,	the	answer	is	found	by	
looking	in	the	table	in	the	right	place.	

• In	this	case,	there	should	be	an	S	state	in	
the	final	column	that	spans	from	0	to	n+1	
and	is	complete.	

• If	that’s	the	case	you’re	done.	
•  S	–>	α	·	[0,n+1]	

32 



Earley	Algorithm	
• March	through	chart	lei-to-right.	
• At	each	step,	apply	1	of	3	operators	

• Predictor	
•  Create	new	states	represenLng	top-down	
expectaLons	

•  Scanner	
•  Match	word	predicLons	(rule	with	word	aier	dot)	
to	words	

• Completer	
• When	a	state	is	complete,	see	what	rules	were	
looking	for	that	completed	consLtuent	

33 



Predictor	
• Given	a	state	

• With	a	non-terminal	to	right	of	dot	(not	a	part-of-speech	
category)	

•  Create	a	new	state	for	each	expansion	of	the	non-terminal	
•  Place	these	new	states	into	same	chart	entry	as	generated	
state,	beginning	and	ending	where	generaLng	state	ends.		

•  So	predictor	looking	at	
•  S	->	.	VP	[0,0]			

•  		results	in	
•  VP	->	.	Verb	[0,0]	
•  VP	->	.	Verb	NP	[0,0]	

34 



Scanner	
• Given	a	state	

• With	a	non-terminal	to	right	of	dot	that	is	a	part-of-speech	
category	

•  If	the	next	word	in	the	input	matches	this	POS	
•  Create	a	new	state	with	dot	moved	over	the	non-terminal	
•  So	scanner	looking	at	VP	->	.	Verb	NP	[0,0]	
•  If	the	next	word,	“book”,	can	be	a	verb,	add	new	state:	

•  VP	->	Verb	.	NP	[0,1]	
•  Add	this	state	to	chart	entry	following	current	one	
•  Note:	Earley	algorithm	uses	top-down	input	to	disambiguate	POS!	
Only	POS	predicted	by	some	state	can	get	added	to	chart!	

35 



Completer	
•  Applied	to	a	state	when	its	dot	has	reached	right	end	of	
role.	

•  Parser	has	discovered	a	category	over	some	span	of	
input.	

•  Find	and	advance	all	previous	states	that	were	looking	
for	this	category	
•  copy	state,	move	dot,	insert	in	current	chart	entry	

•  Given:	
•  NP	->	Det	Nominal	.	[1,3]	
•  VP	->	Verb.	NP	[0,1]	

•  Add	
•  VP	->	Verb	NP	.	[0,3]	 36 



How	do	we	know	we	are	done?	
• Find	an	S	state	in	the	final	column	that	
spans	from	0	to	n+1	and	is	complete.	
	

• If	that’s	the	case	you’re	done.	
•  S	–>	α	·	[0,n+1]	

37 



Earley	
•  More	specifically…	

	
1.  Predict	all	the	states	you	can	upfront	

	
2.  Read	a	word	

1.  Extend	states	based	on	matches	
2.  Add	new	predicLons	
3.  Go	to	2	

	

3.  Look	at	N+1	to	see	if	you	have	a	winner	 38 



Example	
• Book	that	flight	
• We	should	find…	an	S	from	0	to	3	that	is	a	
completed	state…	

	

39 



CFG	for	Fragment	of	English	
S à NP VP VP à V 
S à Aux NP VP PP -> Prep NP 
NP à Det Nom 
 

N à old | dog | footsteps | 
young | flight 

NP  àPropN V à dog | include | prefer | 
book 

Nom -> Adj Nom Aux à does 
Nom à N Prep àfrom | to | on | of 
Nom à N Nom PropN à Bush | McCain | 

Obama 
Nom à Nom PP Det à that |  this | a| the 
VP à V NP Adj -> old | green | red 



S à NP VP, S -> VP  VP à V 
S à Aux NP VP PP -> Prep NP 
NP à Det Nom 
 

N à old | dog | footsteps | 
young | flight 

NP  àPropN, NP -> 
Pro 

V à dog | include | prefer | 
book 
Aux à does 

Nom à N Prep àfrom | to | on | of 
Nom à N Nom PropN à Bush | McCain | 

Obama 
Nom à Nom PP Det à that |  this | a| the 
VP à V NP, VP -> V 
NP PP, VP -> V PP,  
VP -> VP PP 

Adj -> old | green | red 



S à NP VP, S -> VP  VP à V 
S à Aux NP VP PP -> Prep NP 
NP à Det Nom 
 

N à old | dog | footsteps | 
young | flight 

NP  àPropN, NP -> 
Pro 

V à dog | include | prefer | 
book 
Aux à does 

Nom à N Prep àfrom | to | on | of 
Nom à N Nom PropN à Bush | McCain | 

Obama 
Nom à Nom PP Det à that |  this | a| the 
VP à V NP, VP -> V 
NP PP, VP -> V PP,  
VP -> VP PP 

Adj -> old | green | red 



Example	

43 



Example	

44 

Completer 



Example	

45 

Completer 



Example	

46 



Details	
• What	kind	of	algorithms	did	we	just	
describe		
• Not	parsers	–	recognizers	

•  The	presence	of	an	S	state	with	the	right	aYributes	
in	the	right	place	indicates	a	successful	recogniLon.	

•  But	no	parse	tree…	no	parser	
•  That’s	how	we	solve	(not)	an	exponenLal	problem	
in	polynomial	Lme	

47 



Converting	Earley	from	Recognizer	
to	Parser	
• With	the	addiLon	of	a	few	pointers	we	
have	a	parser	

• Augment	the	“Completer”	to	point	to	
where	we	came	from.	

48 



Augmenting	the	chart	with	
structural	information	

S8 
S9 

S10 

S11 

S13 
S12 

S8 

S9 
S8 



Retrieving	Parse	Trees	from	Chart	
•  All	the	possible	parses	for	an	input	are	in	the	table	
	

• We	just	need	to	read	off	all	the	backpointers	from	every	
complete	S	in	the	last	column	of	the	table	
	

•  Find	all	the	S	->	X	.		[0,N+1]	
	

•  Follow	the	structural	traces	from	the	Completer	
	

•  Of	course,	this	won’t	be	polynomial	Lme,	since	there	could	be	
an	exponenLal	number	of	trees	
	

• We	can	at	least	represent	ambiguity	efficiently	 50 



Left	Recursion	vs.	Right	Recursion	

• Depth-first	search	will	never	terminate	if	
grammar	is	le9	recursive	(e.g.	NP	-->	NP	
PP)	

51 

),( ** εαα ⎯→⎯ΑΒ⎯→⎯Α



• SoluLons:	
• Rewrite	the	grammar	(automaLcally?)	to	a	
weakly	equivalent	one	which	is	not	lei-
recursive	
e.g.	The	man	{on	the	hill	with	the	telescope…}	
NP	à	NP	PP	(wanted:		Nom	plus	a	sequence	of	PPs)	
NP	à	Nom	PP	
NP	à	Nom	
Nom	à	Det	N	
…becomes…	
NP	à	Nom	NP’	
Nom	à	Det	N	
NP’	à	PP	NP’	(wanted:		a	sequence	of	PPs)	
NP’	à	e	
•  Not	so	obvious	what	these	rules	mean…	



• Harder	to	detect	and	eliminate	non-immediate	
le9	recursion	

•  NP	-->	Nom	PP	
•  Nom	-->	NP	
	

•  Fix	depth	of	search	explicitly	
	

• Rule	ordering:	non-recursive	rules	first	
•  NP	-->	Det	Nom	
•  NP	-->	NP	PP	

53 



Another	Problem:		Structural	
ambiguity	

• MulLple	legal	structures	
• AYachment	(e.g.	I	saw	a	man	on	a	hill	with	a	
telescope)	

• CoordinaLon	(e.g.	younger	cats	and	dogs)	
• NP	brackeLng	(e.g.	Spanish	language	teachers)	

54 



55 



56 

NP vs. VP Attachment 



• SoluLon?			
• Return	all	possible	parses	and	disambiguate	
using	“other	methods”	

57 



Summing	Up	
• Parsing	is	a	search	problem	which	may	be	
implemented	with	many	control	strategies	
•  Top-Down	or	BoYom-Up	approaches	each	
have	problems	
•  Combining	the	two	solves	some	but	not	all	issues	

•  Lei	recursion	
•  SyntacLc	ambiguity	

58 


