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Slides adapted from Dan Jurafsky,  and James Martin 



Announcements	and	Questions	
•  HW1:	Determine	whether	unigrams,	bigrams,	trigrams	or	
some	combina7on	of	the	three	works	best,	experiment	with	
ML	parameters	(e.g.,	kernel	and	C	for	SVM).	Then	do	feature	
selec7on	and	addi7onal	features	on	the	result.	

•  Keep	in	mind	that	you	can	have	lower	accuracy	without	large	
penalty	in	points.		

•  Final	exam:	tenta7vely	scheduled	for	12/21	but	will	be	
finalized	in	Nov	by	registrar.	We	will	have	the	exam	on	the	
exam	date.	

•  Class	electronic	policy:	no	open	laptops	in	class.			
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POS	tagging	as	a	sequence	classi?ication	task	
• We	are	given	a	sentence	(an	“observa7on”	or	“sequence	
of	observa7ons”)	
•  Secretariat	is	expected	to	race	tomorrow	
	

• What	is	the	best	sequence	of	tags	which	corresponds	to	
this	sequence	of	observa7ons?	
	

•  Probabilis7c	view:	
•  Consider	all	possible	sequences	of	tags	
•  Choose	the	tag	sequence	which	is	most	probable	given	the	
observa7on	sequence	of	n	words	w1…wn.	
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Getting	to	HMM	
•  Out	of	all	sequences	of	n	tags	t1…tn		want	the	single	tag	
sequence	such	that	P(t1…tn|w1…wn)	is	highest.	
	
	

•  Hat	^	means	“our	es7mate	of	the	best	one”	
	

•  Argmaxx	f(x)	means	“the	x	such	that	f(x)	is	maximized”	
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Getting	to	HMM	
•  This	equa7on	is	guaranteed	to	give	us	the	best	tag	sequence	
	

	
	
•  Intui7on	of	Bayesian	classifica7on:	

•  Use	Bayes	rule	to	transform	into	a	set	of	other	probabili7es	that	
are	easier	to	compute		
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Using	Bayes	Rule	
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Likelihood	and	prior	

n 



Two	kinds	of	probabilities	(1)	
• Tag	transi7on	probabili7es	p(ti|ti-1)	

• Determiners	likely	to	precede	adjs	and	nouns	
•  That/DT	flight/NN	
•  The/DT	yellow/JJ	hat/NN	
•  So	we	expect	P(NN|DT)	and	P(JJ|DT)	to	be	high	
•  But	P(DT|JJ)	to	be	low	

• Compute	P(NN|DT)	by	coun7ng	in	a	labeled	corpus:	



Two	kinds	of	probabilities	(2)	
• Word	likelihood	probabili7es	p(wi|ti)	

• VBZ	(3sg	Pres	verb)	likely	to	be	“is”	
• Compute	P(is|VBZ)	by	coun7ng	in	a	labeled	corpus:	
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An	Example:	the	verb	“race”	

•  Secretariat/NNP	is/VBZ	expected/VBN	to/TO	race/VB	tomorrow/
NR	

•  People/NNS	con7nue/VB	to/TO	inquire/VB	the/DT	reason/NN	
for/IN	the/DT	race/NN	for/IN	outer/JJ	space/NN	
	

•  How	do	we	pick	the	right	tag?	
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Disambiguating	“race”	

9/
20

/1
7 

11 



Disambiguating	“race”	
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Disambiguating	“race”	
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Disambiguating	“race”	
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•  P(NN|TO)	=	.00047	
•  P(VB|TO)	=	.83	
•  P(race|NN)	=	.00057	
•  P(race|VB)	=	.00012	
•  P(NR|VB)	=	.0027	
•  P(NR|NN)	=	.0012	
•  P(VB|TO)P(NR|VB)P(race|VB)	=	.00000027	
•  P(NN|TO)P(NR|NN)P(race|NN)=.00000000032	
•  So	we	(correctly)	choose	the	verb	reading,	
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De?initions	
•  A	weighted	finite-state	automaton	adds	probabili7es	to	the	arcs	

•  The	sum	of	the	probabili7es	leaving	any	arc	must	sum	to	one	
	

•  A	Markov	chain	is	a	special	case	of	a	WFST		
•  the	input	sequence	uniquely	determines	which	states	the	automaton	
will	go	through	
	

•  Markov	chains	can’t	represent	inherently	ambiguous	problems	
•  Assigns	probabili7es	to	unambiguous	sequences	
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Markov	chain	for	weather	
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Markov	chain	for	words	
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Markov	chain	=		“First-order	
observable	Markov	Model”	
•  a	set	of	states		

•  Q	=	q1,	q2…qN;		the	state	at	7me	t	is	qt	
•  Transi7on	probabili7es:		

•  a	set	of	probabili7es	A	=	a01a02…an1…ann.		
•  Each	aij	represents	the	probability	of	transi7oning	from	state	i	to	state	j	
•  The	set	of	these	is	the	transi7on	probability	matrix	A	

	
	

•  Dis7nguished	start	and	end	states	

9/
20

/1
7 

19 € 

aij = P(qt = j |qt−1 = i)   1≤ i, j ≤ N
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aij =1;    1≤ i ≤ N
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Markov	chain	=		“First-order	
observable	Markov	Model”	

• Current	state	only	depends	on	previous	state		
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Another	representation	for	start	
state	

•  Instead	of	start	state		

•  Special	ini7al	probability	vector	π	
	

•  An	ini7al	distribu7on	over	probability	of	start	states	

•  Constraints:	
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The	weather	?igure	using	pi	
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The	weather	?igure:	speci?ic	
example	
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Markov	chain	for	weather	
•  What	is	the	probability	of	4	consecu7ve	rainy	days?	
•  Sequence	is	rainy-rainy-rainy-rainy	
•  I.e.,	state	sequence	is	3-3-3-3	
•  P(3,3,3,3)	=		

•  π1a11a11a11a11	=	0.2	x	(0.6)3	=	0.0432	
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Response	
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Hidden	Markov	Models	
•  We	don’t	observe	POS	tags	

•  We	infer	them	from	the	words	we	see	
	

•  Observed	events	
	

•  Hidden	events	

9/
20

/1
7 

26 



HMM	for	Ice	Cream	
•  You	are	a	climatologist	in	the	year	2799	
•  Studying	global	warming	
•  You	can’t	find	any	records	of	the	weather	in	New	York,	NY	for	
summer	of	2007	

•  But	you	find	Kathy	McKeown’s	diary	
•  Which	lists	how	many	ice-creams	Kathy	ate	every	date	that	
summer	

•  Our	job:	figure	out	how	hot	it	was	
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Hidden	Markov	Model	
•  For	Markov	chains,	the	output	symbols	are	the	same	
as	the	states.	
•  See	hot	weather:	we’re	in	state	hot	

• But	in	part-of-speech	tagging	(and	other	things)	
•  The	output	symbols	are	words	
•  The	hidden	states	are	part-of-speech	tags	

•  So	we	need	an	extension!	
• A	Hidden	Markov	Model	is	an	extension	of	a	Markov	
chain	in	which	the	input	symbols	are	not	the	same	as	
the	states.	

•  This	means	we	don’t	know	which	state	we	are	in.	
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Hidden	Markov	Models	
•  States	Q = q1, q2…qN;  	
•  Observa7ons	O= o1, o2…oN;   

•  Each	observa7on	is	a	symbol	from	a	vocabulary	V	=	{v1,v2,…vV}	
•  Transi7on	probabili7es	

• Transition probability matrix A = {aij} 
 
	

•  Observa7on	likelihoods	
• Output probability matrix B={bi(k)} 

 
	

•  Special	ini7al	probability	vector	π	

€ 

π i = P(q1 = i)    1≤ i ≤ N

€ 

aij = P(qt = j |qt−1 = i)   1≤ i, j ≤ N

€ 

bi(k) = P(Xt = ok |qt = i)   



Hidden	Markov	Models	

•  Some	constraints	
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Assumptions	
• Markov	assump5on:	

• Output-independence	assump5on	
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McKeown	task	
•  Given	

•  Ice	Cream	Observa7on	Sequence:	1,2,3,2,2,2,3…	
	

•  Produce:	
• Weather	Sequence:	H,C,H,H,H,C…	
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HMM	for	ice	cream	
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Different	types	of	HMM	structure	

Bakis = left-to-right 
 

Ergodic =  
fully-connected 
 



Transitions	between	the	hidden	states	of	
HMM,	showing	A	probs	
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B	observation	likelihoods	for	POS	HMM	



Three	fundamental	Problems	for	HMMs	

•  Likelihood:	Given	an	HMM	λ	=	(A,B)	and	an	observa7on	
sequence	O,	determine	the	likelihood	P(O,	λ).		
	

•  Decoding:	Given	an	observa7on	sequence	O	and	an	HMM	λ	=	
(A,B),	discover	the	best	hidden	state	sequence	Q.		
	

•  Learning:	Given	an	observa7on	sequence	O	and	the	set	of	
states	in	the	HMM,	learn	the	HMM	parameters	A	and	B.	
	
What	kind	of	data	would	we	need	to	learn	the	HMM	
parameters?		
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Response	
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Decoding	
•  The	best	hidden	sequence	

• Weather	sequence	in	the	ice	cream	task	
•  POS	sequence	given	an	input	sentence	

• We	could	use	argmax	over	the	probability	of	
each	possible	hidden	state	sequence	
• Why	not?		

• Viterbi	algorithm	
•  Dynamic	programming	algorithm	
•  Uses	a	dynamic	programming	trellis	

•  Each	trellis	cell	represents,	vt(j),	represents	the	probability	
that	the	HMM	is	in	state	j	aver	seeing	the	first	t	observa7ons	
and	passing	through	the	most	likely	state	sequence	
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Viterbi	intuition:	we	are	looking	for	
the	best	‘path’	
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Intuition	
•  The	value	in	each	cell	is	computed	by	taking	the	MAX	over	all	
paths	that	lead	to	this	cell.		

	
•  An	extension	of	a	path	from	state	i	at	7me	t-1	is	computed	by	
mul7plying:	
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The	Viterbi	Algorithm	
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The	A	matrix	for	the	POS	HMM	
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What is P(VB|TO)? What is P(NN|TO)? Why does this make 
sense? 
 
What is P(TO|VB)? What is P(TO|NN)? Why does this make 
sense? 
 
 



The	B	matrix	for	the	POS	HMM	
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Look at P(want|VB) and P(want|NN). Give an explanation for the 
difference in the probabilities.  



Viterbi	example	
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Viterbi	example	
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Viterbi	example	
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J=NN 

I=S 



The	A	matrix	for	the	POS	HMM	
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Viterbi	example	
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X 

J=NN 

I=S 

 .041X 



The	B	matrix	for	the	POS	HMM	
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Look at P(want|VB) and P(want|NN). Give an explanation for the 
difference in the probabilities.  



Viterbi	example	
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J=NN 
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Viterbi	example	
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J=NN 

I=S 
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Viterbi	example	
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J=NN 

I=S 

0 

0 

0 

.025 

Show the 4 formulas you would use to 
compute the value at this node and the max. 



Computing	the	Likelihood	of	an	observation	

•  Forward	algorithm	
	

•  Exactly	like	the	viterbi	algorithm,	except	
•  To	compute	the	probability	of	a	state,	sum	the	probabili7es	from	
each	path	
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Error	Analysis:	ESSENTIAL!!!	
•  Look	at	a	confusion	matrix	
	

•  See	what	errors	are	causing	problems	
•  Noun	(NN)	vs	ProperNoun	(NN)	vs	Adj	(JJ)	
•  Adverb	(RB)	vs		Prep	(IN)	vs	Noun	(NN)	
•  Preterite	(VBD)	vs	Par7ciple	(VBN)	vs	Adjec7ve	(JJ)	
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