CS 4705
Hidden Markov Models

Slides adapted from Dan Jurafsky, and James Martin



Announcements and Questions

* HW1: Determine whether unigrams, bigrams, trigrams or
some combination of the three works best, experiment with
ML parameters (e.g., kernel and C for SVM). Then do feature
selection and additional features on the result.

* Keep in mind that you can have lower accuracy without large
penalty in points.

* Final exam: tentatively scheduled for 12/21 but will be
finalized in Nov by registrar. We will have the exam on the
exam date.

* Class electronic policy: no open laptops in class.




POS tagging as a sequence classification task

* We are given a sentence (an “observation” or “sequence
of observations”)

Secretariat is expected to race tomorrow

* What is the best sequence of tags which corresponds to
this sequence of observations?

* Probabilistic view:

Consider all possible sequences of tags

Choose the tag sequence which is most probable given the
observation sequence of n words wil...wn.




Getting to HMM

* Out of all sequences of n tags t,...t, want the single tag
sequence such that P(t,...t, [w,...w,) is highest.

i = argmax P(t]|w7)
f

* Hat » means “our estimate of the best one”

* Argmax, f(x) means “the x such that f(x) is maximized”




Getting to HMM

* This equation is guaranteed to give us the best tag sequence

f] = argmax P(r7 |w])
i
* Intuition ot Bayesian classitication:

Use Bayes rule to transform into a set of other probabilities that
are easier to compute




Using Bayes Rule

P{ylx)P(x)
Py)
n_ P(wilr)P(1})

1= argtli?nax P

P(x|y) =

f} = argmax P(wi|ty) P(7)
1




Likelihood and prior

likelihood prior

——

f{ = argmax P(wi|t]) P(1})
t

nv

Pwily) = | | P(wilt:)
=1
n

Pty) ~ || P(ti|ti—1)
=1
] = argmax P(17|w]) ~ argmaxHP (wi|t;) P(t]ti—1)

ti’ tl =1 .




Two kinds of probabilities (1)

* Tag transition probabilities p(t. | t. ;)
Determiners likely to precede adjs and nouns
That/DT flight/NN
The/DT yellow/JJ hat/NN
So we expect P(NN|DT) and P(JJ|DT) to be high
But P(DT|JJ) to be low

Compute P(NN|DT) by counting in a labeled corpus:

- C(tiz1, 1)
C(DT,NN 56,509
p(NN|DT) = SPTNN) 56, 49

C(DT) 116,454




Two Kkinds of probabilities (2)

* Word likelihood probabilities p(w;|t;)
VBZ (3sg Pres verb) likely to be “is”
Compute P(is|VBZ) by counting in a labeled corpus:

C(t;,w;)

C(t;)

C(VBZ,is) _ 10,073 _ 47
C(VBZ) 21,627 °

P(W,‘|Zi) —

P(is|VBZ) =




An Example: the verb “race”

* Secretariat/NNP is/VBZ expected/VEN to/TO race/\/BE tomorrow/
NR

* People/NNS continue/VE to/T0 inquire/VE the/DT reason/INN
for/IN the/DT race/NN for/IN outer/!) space/NN

* How do we pick the right tag?




Disambiguating “race”

@@®®®

Secretariat Is  expected to race tomorrow

Secretariat Is  expected to race tomorrow .



Disambiguating “race”

292 ime

Secretariat Is  eXxpected, tomorrow

Secretariat Is  expected to race tomorrow .



Disambiguating “race”

2l

Secretariat IS expected to race tomorrow

@@@@

Secretariat Is  expected to race tomorrow

(b)




Disambiguating “race”

SRR

Secretariat Is  expected to

Voo

Secretariat Is  expected to race tomorrow .



P(NN|TO) =.00047

P(VB|TO) = .83

P(race|NN) = .00057

P(race|VB) =.00012

P(NR|VB) =.0027

P(NR|NN) = .0012
P(VB|TO)P(NR|VB)P(race|VB) = .00000027
P(NN|TO)P(NR|NN)P(race| NN)=.00000000032
So we (correctly) choose the verb reading,




Definitions

* A weighted finite-state automaton adds probabilities to the arcs
The sum of the probabilities leaving any arc must sum to one

* A Markov chain is a special case of a WFST

the input sequence uniquely determines which states the automaton
will go through

* Markov chains can’t represent inherently ambiguous problems
Assigns probabilities to unambiguous sequences




Markov chain for weather




Markov chain for words




Markov chain = “First-order
observable Markov Model”

* a set of states
Q =4y, 9,...0y, the state at time tiis q,
* Transition probabilities:
a set of probabilities A = a,a,,...a,1---@5-
Each a; represents the probability of transitioning from state i to state j
The set of these is the transition probability matrix A

a;,=P(q,=jlg_=1i) l<i,jsN
N

a.=1;, l=sisN

L
j=1

* Distinguished start and end states




Markov chain = “First-order
observable Markov Model”

* Current state only depends on previous state

P(q;1q,..q,.) = P(q;1q,_)




Another representation for start
state

* Instead of start state

* Special initial probability vector nt

w,=P(gq =1) l=sisN

An initial distribution over probability of start states

* Constraints:
N

Eﬂ’j =]
j=1




The weather figure using pi




The weather figure: specific
example




Markov chain for weather

What is the probability of 4 consecutive rainy days?

Sequence is rainy-rainy-rainy-rainy

l.e., state sequence is 3-3-3-3
P(3I3I3I3) =
° T,a.4,34,311311 = 0.2 x(0.6)% = 0.0432




Response




Hidden Markov Models

* We don’t observe POS tags
* We infer them from the words we see

* Observed events

* Hidden events




HMM for Ice Cream

* You are a climatologist in the year 2799
* Studying global warming

* You can’t find any records of the weather in New York, NY for
summer of 2007

* But you find Kathy McKeown’s diary

* Which lists how many ice-creams Kathy ate every date that
summer

* Our job: figure out how hot it was




Hidden Markov Model

* For Markov chains, the output symbols are the same
as the states.

See hot weather: we're in state hot

* But in part-of-speech tagging (and other things)
The output symbols are words
The hidden states are part-of-speech tags

* So we need an extension!

* A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as
the states.

* This means we don’t know which state we are in.




Hidden Markov Models

States Q =q, q,...q:
Observations O= 0, 0,...0y.

Each observation is a symbol from a vocabulary V = {v,,v,,...v\/}
Transition probabilities

Transition probability matrix A = {a;;}

a;,=P(q,=jlg_=1i) l<i,jsN
Observation likelihoods
Output probability matrix B={b.(k)}
b.(k)=P(X, =0,1q, =1)

Special initial probability vector nt

7w, =P(q =1) l=sisN



* Some constraints

Hidden Markov Models

J
w,=P(q =1) l=sisN

l

A N
Y b,(k)=1 S, -1
k=1 i=1

J




Assumptions

* Markov assumption:

* Output-independence assumption

P(q;1q,..q,.) = P(q;1q,_)

P(o, 107 ,q))=P(o, lg,)




McKeown task

* Given

* lce Cream Observation Sequence: 1,2,3,2,2,2,3...

* Produce:
* Weather Sequence: H,C,H,H,H,C...




HMM for ice cream

T[=[.8,.2] 7 6

)] [2] [P(1 ICOLD)] [5]
=1 4 P(21COLD) |=] .4
1 P IcoLD) | | 1

(




Different types of HMM structure

Ergodic =
fully-connected

Bakis = left-to-right



Transitions between the hidden states of
HMM, showing A probs




B observation likelihoods for POS HMM

2
P(“aardvark” | TO)

if’.(“race” | TO)

P(“the” | TO)
P(“to” | TO)
i:".(“zeb ra” | TO)

P(“aardvark” | VB) *aardvark” | NN)

P(“race” | VB)
P(‘the” | VB)

P(“to” | VB)

P(“race” | NN)

(

(

P(“the” | NN)

P(“to” | NN)
(“zebra” | NN)

P

P(“zebra’ | VB)



Three fundamental Problems for HMMs

* Likelihood: Given an HMM A = (A,B) and an observation
sequence O, determine the likelihood P(O, A).

* Decoding: Given an observation sequence O and an HMM A =
(A,B), discover the best hidden state sequence Q.

* Learning: Given an observation sequence O and the set of
states in the HMM, learn the HMM parameters A and B.

What kind of data would we need to learn the HMM
parameters?




Response




Decoding

* The best hidden sequence
Weather sequence in the ice cream task
POS sequence given an input sentence

* We could use argmax over the probability of
each possible hidden state sequence

Why not?

* Viterbi algorithm
Dynamic programming algorithm

Uses a dynamic programming trellis

Each trellis cell represents, v,(j), represents the probability
that the HMM is in state j after seeing the first t observations
and passing through the most likely state sequence




Viterbi intuition: we are looking for
the best ‘path’

promised to back the bill

Slide from Dekang Lin .



Intuition

* The value in each cell is computed by taking the MAX over all
paths that lead to this cell.

* An extension of a path from state i at time t-1 is computed by
multiplying:

(i) = glféaz\’;‘_lv"l(i) aij bj(or)

vi—1(i) the previous Viterbi path probability from the previous time step

ai; the transition probability from previous state g; to current state g;

bj(o;) the state observation likelihood of the observation symbol o; given
the current state j




The Viterbi Algorithm

function VITERBI(observations of len T, state-graph) returns best-path

num-states < NUM-OF-STATES(state-graph)
Create a path probabaility matrix viterbi[num-states+2,T+2]
viterbi[0,0] — 1.0
for each time step ¢ from 1 to 7T do
for each state s from 1 to num-states do

viterbi[s.t] «— max viterbi[s’,t— 1] * ag s * bs(ot)
1 < < num-states
backpointer[s.t]«<—  argmax viterbi[s',t — 1] * as g

1 < 5'< num-states
Backtrace from highest probabaility state in final column of viterbif | and return path



The A matrix for the POS HMM

VB TO NN PPSS
<s> 019 0043 041 067
VB 0038 035 047 0070
TO 83 0 00047 0
NN 0040 016 087 0045
PPSS 23 00079 0012 00014

Figure 4.15  Tag transition probabilities (the a array. p(7;|f;—1) computed from the
87-tag Brown corpus without smoothing. The rows are labeled with the conditioning
event; thus P(PPSS|VB) is .0070. The symbol <s>> is the start-of-sentence symbol.

What is P(VB|TO)? What is P(NN|TO)? Why does this make
sense?

What is P(TO|VB)? What is P(TO|NN)? Why does this make
sense?



The B matrix for the POS HMM

I want to race
VB 0 0093 0 00012
TO 0 0 99 0
NN 0 000054 0 00057
PPSS 37 0 0 0

I Figure 4.16 Observation likelihoods (the & array) computed from the 87-tag

Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the

difference in the probabilities.
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The A matrix for the POS HMM

VB TO NN PPSS

<S> 019 0043 041 067

VB 0038 035 047 0070
TO 83 0 00047 0

NN .0040 016 087 0045
PPSS 23 00079 0012 00014

Figure 4.15  Tag transition probabilities (the a array. p(7;|f;—1) computed from the
87-tag Brown corpus without smoothing. The rows are labeled with the conditioning
event; thus P(PPSS|VB) is .0070. The symbol <s>> is the start-of-sentence symbol.
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The B matrix for the POS HMM

I want to race
VB 0 0093 0 00012
TO 0 0 99 0
NN 0 000054 0 00057
PPSS 37 0 0 0

I Figure 4.16 Observation likelihoods (the & array) computed from the 87-tag

Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the

difference in the probabilities.
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Computing the Likelihood of an observation

* Forward algorithm

* Exactly like the viterbi algorithm, except

* To compute the probability of a state, sum the probabilities from
each path




* Look at a confusion matrix

Error Analysis: ESSENTIAL!!!

IN JJ NN NNP RB VBD VBN
IN - 2 7
JJ 2 - 3.3 2.1 1.7 2 2.7
NN 8.7 - 2
NNP 2 3.3 4.1 - 2
RB 2.2 20 S -
VBD 3 S - 44
VBN 2.8 2.6

* See what errors are causing problems

Noun (NN) vs ProperNoun (NN) vs Adj (JJ)

Adverb (RB) vs Prep (IN) vs Noun (NN)

Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)




