Classification using a Generative Approach

• Previously on *NLP*...
 • discriminative models $P(C|D)$
 • “here is a line with all the social media posts on one side and the scientific articles on the other side; which side is this example on?”

• Now...
 • *generative* models $P(C, D)$
 • “here are some characteristics of social media posts, and here are some characteristics of scientific articles; which is this example more like?”
Classification using a Generative Approach

- We’ll look in detail at the Naïve Bayes classifier and Maximum Likelihood Expectation

- But we need some background in probability first...
Probabilities in NLP

• Speech recognition:
 • “recognize speech” vs “wreck a nice beach”

• Machine translation:
 • “l’avocat general”: “the attorney general” vs. “the general avocado”

• Information retrieval:
 • If a document includes three occurrences of “stir” and one of “rice”, what is the probability that it is a recipe?

• Probabilities make it possible to combine evidence from multiple sources systematically
Probability Theory

- Random experiment (trial): an experiment with uncertain outcome
 - e.g., flipping a coin, picking a word from text

- Sample space: the set of all possible outcomes for an experiment
 - e.g., flipping 2 fair coins, $\Omega = \{HH, HT, TH, TT\}$

- Event: a subset of the sample space, $E \subseteq \Omega$
 - E happens iff the outcome is in E, e.g.,
 - $E = \{HH\}$ (all heads)
 - $E = \{HH, TT\}$ (same face)
Events

- Probability of Event: $0 \leq P(E) \leq 1$, s.t.
 - $P(A \cup B) = P(A) + P(B)$, if $(A \cap B) = \emptyset$
 - e.g., $A=$ same face, $B=$ different face

- \emptyset is the impossible event (empty set)
 - $P(\emptyset) = 0$

- Ω is the certain event (entire sample space)
 - $P(\Omega) = 1$
Example: Roll a Die

- Sample space: $\Omega = \{1,2,3,4,5,6\}$

- Fair die: $P(1) = P(2) = \cdots = P(6) = 1/6$

- Unfair die: $P(1) = 0.3, \ P(2) = 0.2, \ldots$

- N-dimensional die: $\Omega = \{1,2,3,4,\ldots,N\}$

- Example in modeling text:
 - Roll a die to decide which word to write in the next position
 - $\Omega = \{\text{cat, dog, tiger, ...}\}$
Example: Flip a Coin

• Sample space: $\Omega = \{\text{Heads, Tails}\}$

• Fair coin: $P(H) = 0.5, P(T) = 0.5$

• Unfair coin: $P(H) = 0.3, P(T) = 0.7$

• Flipping three coins:
 • $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}$

• Example in modeling text:
 • Flip a coin to decide whether or not to include a word in a document
 • Sample space = \{appear, absence\}
Probabilities

• Probability distribution
 • a function that distributes a probability mass of 1 throughout the sample space Ω
 • $0 \leq P(\omega) \leq 1$ for each outcome $\omega \in \Omega$
 • $\sum_{\omega \in \Omega} P(\omega) = 1$

• Probability of an event E
 • $P(E) = \sum_{\omega \in E} P(\omega)$

• Example: a fair coin is flipped three times
 • What is the probability of 3 heads?
 • What is the probability of 2 heads?
Probabilities

- Joint probability: \(P(A \cap B) \)
 - also written as \(P(A, B) \)

- Conditional probability: \(P(A|B) = \frac{P(A \cap B)}{P(B)} \)
Conditional Probability

• \(P(B|A) = \frac{P(A \cap B)}{P(A)} \)

• \(P(A \cap B) = P(A)P(B|A) = P(B)P(A|B) \)

• So, \(P(A|B) = \frac{P(B|A)P(A)}{P(B)} \) (Bayes’ Rule)

• For independent events, \(P(A \cap B) = P(A)P(B) \), so \(P(A|B) = P(A) \)
Conditional Probability

• Six-sided fair die
 • \(P(D \text{ even}) = ? \)
 • \(1/2 \)
 • \(P(D \geq 4) = ? \)
 • \(1/2 \)
 • \(P(D \text{ even}|D \geq 4) = ? \)
 • \(\frac{2/6}{1/2} = 2/3 \)
 • \(P(D \text{ odd}|D \geq 4) = ? \)
 • \(\frac{1/6}{1/2} = 1/3 \)
• Multiple conditions: \(P(D \text{ odd}|D \geq 4, \ D \leq 5) = ? \)
 • \(\frac{1/6}{2/6} = 1/2 \)
Independence

• Two events are independent when
 \[P(A \cap B) = P(A)P(B) \]

• Unless \(P(B) = 0 \) this is equivalent to saying that
 \[P(A) = P(A|B) \]

• If two events are not independent, they are considered dependent
Independence

• *What are some examples of independent events?*

• *What about dependent events?*
Response
Naïve Bayes Classifier

- We use Baye’s rule: \(P(C|D) = \frac{P(D|C)P(C)}{P(D)} \)
 - Here \(C = \text{Class} \), \(D = \text{Document} \)

- We can simplify and ignore \(P(D) \) since it is independent of class choice

\[
P(C|D) \approx P(D|C)P(C) \approx P(C) \prod_{i=1, n} P(w_i|C)
\]

- This estimates the probability of \(D \) being in class \(C \) assuming that \(D \) has \(n \) tokens and \(w \) is a token in \(D \).
But Wait...

- What is D?
 - $D = w_1 w_2 w_3 \ldots w_n$

- So what is $P(D|C)$, really?
 - $P(D|C) = P(w_1 w_2 w_3 \ldots w_n | C)$
 - But $w_1 w_2 w_3 \ldots w_n$ is not in our training set so we don’t know its probability
 - How can we simplify this?
Conditional Probability Revisited

• Recall the definition of conditional probability
 1. \(P(A|B) = \frac{P(AB)}{P(B)} \), or equivalently
 2. \(P(AB) = P(A|B)P(B) \)

• What if we have more than two events?
 • \(P(ABC \ldots N) = P(A|BC \ldots N) \times P(B|C \ldots N) \times \cdots \times P(M|N) \times P(N) \)
 • This is the chain rule for probability
 • We can prove this rule by induction on \(N \)
Independence Assumption

• So what is $P(D|C)$?

 \[= P(w_1w_2w_3 \ldots w_n|C) = P(w_1|w_2w_3 \ldots w_nC) \times P(w_2|w_3 \ldots w_nC) \times \ldots \times P(w_n|C) \times P(C) \]

• This is still not very helpful...

• We make the “naïve” assumption that all words occur independently of each other

 • Recall that for independent events w_1 and w_2 we have $P(w_1|w_2) = P(w_1)$

 • That’s this step! $P(D|C) \approx \prod_{i=1}^{n} P(w_i|C)$
Independence Assumptions

• *Is the Naïve Bayes assumption a safe assumption?*

• *What are some examples of words that might be dependent on other words?*
Using Labeled Training Data

- $P(C|D) \approx P(C) \prod_{i=1,n} P(w_i|C)$

- $P(C) = \frac{D_c}{D}$
 - the number of training documents with label C
 - divided by the total number of training documents

- $P(w_i|C) = \frac{\text{Count}(w_i,C)}{\sum_{v_i \in V} \text{Count}(v_i,C)}$
 - the number of times word w_i occurs with label C
 - divided by the number of times all words in the vocabulary V occur with label C

- This is the maximum-likelihood estimate (MLE)
Using Labeled Training Data

• Can you think of ways to improve this model?

• Some issues to consider...
 • What if there are words that do not appear in the training set?
 • What if the plural of a word never appears in the training set?
 • How are extremely common words (e.g., “the”, “a”) handled?
Response
A Quick Note on the MLE...

• The counts seem intuitively right, but how do we know for sure?

• We are trying to find values of $P(C)$ and $P(w_i|C)$ that maximize the likelihood of the training set

• i.e. we want the largest possible value of

$$P(T) = \prod_{t \in T} [P(c_t) \prod_{w_i \in t} P(w_i|c_t)]$$

 • Here T is the training set and t is a training example

• We can find these values by taking the log, then taking the derivative, then solving for 0
Questions?
Reading for next time

- C 5.1 – 5.5, Speech and Language