
CS 4705
N-Grams and Corpus Linguistics

Questions from last time?

• The textbook is now available in Book Culture
(112th St)

• Everyone in the class (both hybrid and in-
person) can now find the videos on Canvas.
Look for “Video Library” on left panel. Videos
are available 24-48 hours after the class.

• Apparently the courseworks link is under
Summer 2017

• The textbook, Jurafsky and Martin, is NOW
available at Book Culture.

This class: Language Modeling

• Why is language modeling useful?

• Computing language models

• An example

• Evaluating language models

• Smoothing

• HW0

• “But it must be recognized that the notion
of “probability of a sentence” is an entirely
useless one, under any known
interpretation of this term.” Noam
Chomsky (1969)

• “Anytime a linguist leaves the group the
recognition rate goes up.”

Fred Jelinek (1988)

Next Word Prediction

• Stocks plunged this ….

• Let’s meet in Times ….

• I took the subway to ….

Response

Seinfeld

• I was in the city

• I was on the island

• I got on the train

• I got in the taxi

Next Word Prediction

• From a NY Times story…

• Stocks plunged this ….

• Stocks plunged this morning, despite a cut in
interest rates

• Stocks plunged this morning, despite a cut in
interest rates by the Federal Reserve, as Wall
...

• Stocks plunged this morning, despite a cut in
interest rates by the Federal Reserve, as Wall
Street began

Human Word Prediction

• Clearly, at least some of us have the ability
to predict future words in an utterance.

• How?

• Domain knowledge

• Syntactic knowledge

• Lexical knowledge

Slide from Dragomir Radev

Claim

• A useful part of the knowledge needed to
allow Word Prediction can be captured
using simple statistical techniques

• We'll rely on the notion of the probability
of a sequence (of letters, words,…)

• Formula:

• P(wn|w1 w2 w3 …. Wn-1)

Slide from Dragomir Radev

Applications
• Speech recognition

• P(“recognize speech” > P(“wreck a nice beach”)

• Text generation
• P(“three houses”) > P(“three house”)

• Spelling correction
• P(“my cat eats fish”) > P(“my xat eats fish”)

• Machine Translation
• P(“the blue house”) > P(“the house blue”)

• Other uses
• OCR
• Summarization
• Document classification

Slide from Dragomir Radev

N-Gram Models of Language

• Markov assumption: Use the previous N-1
words in a sequence to predict the next
word

• Language Model (LM)

• unigrams, bigrams, trigrams,…

• How do we train these models?

• Very large corpora

Slide from Dragomir Radev

Corpora

• Corpora are online collections of text and
speech
• Brown Corpus

• Wall Street Journal

• AP newswire

• Hansards

• DARPA/NIST text/speech corpora (Call Home,
ATIS, switchboard, Broadcast News, TDT,
Communicator)

• TRAINS, Radio News

Slide from Dragomir Radev

Google 1-T Corpus

1 trillion word tokens

• Number of tokens – 1,024,908,267,229

• Number of sentences – 95,119,665,584

• Number of unigrams – 13,588,391

• Number of bigrams – 314,843,401

• Number of trigrams – 977,069,902

• Number of fourgrams – 1,313,818,354

• Number of fivegrams – 1,176,470,663
Slide from Dragomir Radev

Google N-Gram Release

• serve as the incoming 92

• serve as the incubator 99

• serve as the independent 794

• serve as the index 223

• serve as the indication 72

• serve as the indicator 120

• serve as the indicators 45

• serve as the indispensable 111

• serve as the indispensible 40

• serve as the individual 234

Slide from Dragomir Radev

Counting Words in Corpora

• What is a word?

• e.g., are cat and cats the same word?

• September and Sept?

• zero and oh?

• Is _ a word? * ? ‘(‘ ?

• How many words are there in don’t ? Gonna ?

• In Japanese and Chinese text -- how do we
identify a word?

Slide from Dragomir Radev

Terminology

• Sentence: unit of written language

• Utterance: unit of spoken language

• Word Form: the inflected form as it actually appears in the
corpus

• Lemma: an abstract form, shared by word forms having the
same stem, part of speech, and word sense – stands for the class
of words with stem

• Types: number of distinct words in a corpus (vocabulary size)

• Tokens: total number of words

Simple N-Grams

• Assume a language has T word types in its lexicon, how likely is
word x to follow word y?

• Simplest model of word probability: 1/T

• Alternative 1: estimate likelihood of x occurring in new
text based on its general frequency of occurrence
estimated from a corpus (unigram probability)

popcorn is more likely to occur than unicorn

• Alternative 2: condition the likelihood of x occurring in
the context of previous words (bigrams, trigrams,…)

mythical unicorn is more likely than mythical popcorn

Computing the Probability of a
Word Sequence
• Compute the product of component

conditional probabilities?
• P(the mythical unicorn) = P(the)

P(mythical|the) * P(unicorn|the mythical)

• The longer the sequence, the less likely we
are to find it in a training corpus

P(Most biologists and folklore specialists believe that
in fact the mythical unicorn horns derived from the
narwhal)

• Solution: approximate using n-grams

Bigram Model

• Approximate by
• P(unicorn|the mythical) by P(unicorn|mythical)

• Markov assumption: the probability of a word
depends only on the probability of a limited
history

• Generalization: the probability of a word
depends only on the probability of the n previous
words
• trigrams, 4-grams, …

• the higher n is, the more data needed to train. Thus
backoff models…

)1
1

|(nn wwP)|(1nn wwP

Using N-Grams
• For N-gram models

•

• P(wn-1,wn) = P(wn | wn-1) P(wn-1)

• By the Chain Rule we can decompose a joint
probability, e.g. P(w1,w2,w3)

P(w1,w2, ...,wn) = P(w1|w2,w3,...,wn) P(w2|w3, ...,wn) … P(wn-

1|wn) P(wn)

For bigrams then, the probability of a sequence is just the
product of the conditional probabilities of its bigrams

P(the,mythical,unicorn) = P(unicorn|mythical)
P(mythical|the) P(the|<start>)

)1
1

|(nn wwP)1
1

|(

n
Nn

n wwP

n

k

kkn wwPwP
1

1
1

)|()(

http://www.dcs.qmul.ac.uk/~norman/BBNs/Chain_rule.htm

Training and Testing
• N-Gram probabilities come from a training corpus

• overly narrow corpus: probabilities don't generalize

• overly general corpus: probabilities don't reflect task
or domain

• A separate test corpus is used to evaluate the
model, typically using standard metrics
• held out test set; development (dev) test set

• cross validation

• results tested for statistical significance – how do they
differ from a baseline? Other results?

A Simple Example

• P(I want to eat Chinese food) = P(I | <start>)
P(want | I) P(to | want) P(eat | to) P(Chinese |
eat) P(food | Chinese) P(<end>|food)

A Bigram Grammar Fragment from
BERP

.001Eat British.03Eat today

.007Eat dessert.04Eat Indian

.01Eat tomorrow.04Eat a

.02Eat Mexican.04Eat at

.02Eat Chinese.05Eat dinner

.02Eat in.06Eat lunch

.03Eat breakfast.06Eat some

.03Eat Thai.16Eat on

.01British lunch.05Want a

.01British cuisine.65Want to

.15British restaurant.04I have

.60British food.08I don’t

.02To be.29I would

.09To spend.32I want

.14To have.02<start> I’m

.26To eat.04<start> Tell

.01Want Thai.06<start> I’d

.04Want some.25<start> I

• P(I want to eat British food) = P(I|<start>)
P(want|I) P(to|want) P(eat|to)
P(British|eat) P(food|British) =
.25*.32*.65*.26*.001*.60 = .000080
• Suppose P(<end>|food) = .2?

• vs. I want to eat Chinese food = .00014 * ?
What is the formula for this sentence? You can
answer in numbers only.

Response

• P(I want to eat British food) = P(I|<start>)
P(want|I) P(to|want) P(eat|to) P(British|eat)
P(food|British) = .25*.32*.65*.26*.001*.60 =
.000080
• Suppose P(<end>|food) = .2?
• vs. I want to eat Chinese food = .00014 * ?

What is the formula for this sentence? You can
answer in numbers only.

• Probabilities roughly capture ``syntactic'' facts,
``world knowledge''
• eat is often followed by an NP
• British food is not too popular

• N-gram models can be trained by counting and
normalization

We can compute bigram probabilities
using corpus counts
BERP Bigram Counts

0100004Lunch

000017019Food

112000002Chinese

522190200Eat

12038601003To

686078603Want

00013010878I

lunchFoodChineseEatToWantI

BERP Bigram Probabilities

• Maximum Likelihood Estimation (MLE):
relative frequency of e.g.

• Normalization: divide each row's counts by
appropriate unigram counts for wn-1

• Computing the bigram probability of I I
• P(I|I) = C(I,I)/C(all I)

• p (I|I) = 8 / 3437 = .0023

4591506213938325612153437

LunchFoodChineseEatToWantI

)(
)(

1

2,1

wfreq
wwfreq

What is the probability of “want to”?

0100004Lunch

000017019Food

112000002Chinese

522190200Eat

12038601003To

686078603Want

00013010878I

lunchFoodChineseEatToWantI

4591506213938325612153437

LunchFoodChineseEatToWantI

Response

What do we learn about the
language?

• What's being captured with ...

• P(to | want) = .65

• P(eat | to) = .26

• P(food | Chinese) = .56

• P(lunch | eat) = .055

• What about...

• P(I | I) = .0023

• P(I | want) = .0025

• P(I | food) = .013

Response

• P(I | I) = .0023 I I I I want

• P(I | want) = .0025 I want I want

• P(I | food) = .013 the kind of food I want is ...

Approximating Shakespeare

• As we increase the value of N, the accuracy of an
n-gram model increases, since choice of next word
becomes increasingly constrained

• Generating sentences with random unigrams...
• Every enter now severally so, let
• Hill he late speaks; or! a more to leg less first you enter

• With bigrams...
• What means, sir. I confess she? then all sorts, he is

trim, captain.
• Why dost stand forth thy canopy, forsooth; he is this

palpable hit the King Henry.

• Trigrams

• Sweet prince, Falstaff shall die.

• This shall forbid it should be branded, if renown
made it empty.

• Quadrigrams

• What! I will go seek the traitor Gloucester.

• Will you not tell me who I am?

• There are 884,647 tokens, with 29,066
word form types, in an approximately one
million word Shakespeare corpus

• Shakespeare produced 300,000 bigram
types out of 844 million possible bigrams:
so, 99.96% of the possible bigrams were
never seen (have zero entries in the table)

• Quadrigrams: What's coming out looks like
Shakespeare because it is Shakespeare

N-Gram Training Sensitivity

• If we repeated the Shakespeare
experiment but trained our n-grams on a
Wall Street Journal corpus, what would we
get?

• This has major implications for corpus
selection or design

The wall street journal is not
shakespeare

Some Important Concepts

• Smoothing and Backoff : how do you
handle unseen n-grams?

• Perplexity and entropy: how do you
estimate how well your language model
fits a corpus once you’re done?

• Information theoretic metric

• Useful in measuring how well a grammar or
language model (LM) models a natural
language or a corpus

Perplexity

Perplexity: A function of the probability that
a language model assigns to the test corpus.

P(W) = P(w1,w2...wN)-1/N

What perplexity does a LM(1) assign to the
sentences of a test corpus, compared to
another LM(2)?

Some Useful Empirical Observations

• A small number of events occur with high
frequency

• A large number of events occur with low
frequency

• You can quickly collect statistics on the high
frequency events

• You might have to wait an arbitrarily long time to
get valid statistics on low frequency events

• Some of the zeroes in the table are really zeros
But others are simply low frequency events you
haven't seen yet. How to address?

Smoothing

• Words follow a Zipfian distribution
• Small number of words occur very frequently

• A large number are seen only once

• Zipf’s law: a word’s frequency is approximately
inversely proportional to its rank in the word
distribution list

• Zero probabilities on one bigram cause a
zero probability on the entire sentence 45

http://www.nist.gov/dads/HTML/zipfslaw.html

Smoothing is like Robin Hood:
Steal from the rich and give to the poor (in probability mass)

Slide from Dan Klein

Smoothing Techniques
• Every n-gram training matrix is sparse, even for

very large corpora
• Zipf’s law: a word’s frequency is approximately

inversely proportional to its rank in the word
distribution list

• Solution: estimate the likelihood of unseen n-
grams

• Problems: how do you adjust the rest of the
corpus to accommodate these ‘phantom’ n-
grams?

http://www.nist.gov/dads/HTML/zipfslaw.html

Smoothing Methods
• Add-one smoothing (easy, but inaccurate)

• Add 1 to every word count (Note: this is type)
• Increment normalization factor by Vocabulary size: N (tokens) + V (types) :

• Backoff models
• When a count for an n-gram is 0, back off to the count for the (n-1)-gram
• These can be weighted

• Class-based smoothing
• For certain types of n-grams, back off to the count of its syntactic class
• E.g., Count ProperNouns in place of names (e.g., Obama)

• Good-Turing
• Re-estimate amount of probability mass for zero (or low count) ngrams by

looking at ngrams with higher counts
• Estimate

VN
c

i
p i

 1*

Nc

Nccc 11*

Summary

• N-gram probabilities can be used to estimate the
likelihood

• Of a word occurring in a context (N-1)

• Of a sentence occurring at all
• Smoothing techniques deal with problems of unseen

words in corpus

• Entropy and perplexity can be used to evaluate the
information content of a language and the goodness
of fit of a LM or grammar

• Read Ch. 5 on word classes and pos

Questions?

Homework 0

