Today

- Finish word sense disambiguation
- Midterm Review
- The midterm is Thursday during class time. H students and 20 regular students are assigned to **517 Hamilton**.
- Make-up for those with same time midterm is Thurs 6pm. For those with serious problems, second make-up Mon 6pm, but will be harder. RECOMMENDATION: Thurs 6pm if you can.
- Review questions and answer on NLP website.
- On Thursday, I will not be here. I am at a meeting in Maryland. Tas will proctor

Naïve Bayes Test

 On a corpus of examples of uses of the word line, naïve Bayes achieved about 73% correct

• Good?

Decision Lists: another popular method

• A case statement....

Rule		Sense
fish within window	\Rightarrow	bass ¹
striped bass	\Rightarrow	bass ¹
guitar within window	\Rightarrow	bass ²
bass player	\Rightarrow	bass ²
piano within window	\Rightarrow	bass ²
tenor within window	\Rightarrow	bass ²
sea bass	\Rightarrow	$bass^1$
play/V bass	\Rightarrow	bass ²
river within window	\Rightarrow	$bass^1$
violin within window	\Rightarrow	bass ²
salmon within window	\Rightarrow	$bass^1$
on bass	\Rightarrow	bass ²
bass are	\Rightarrow	\mathbf{bass}^1

Learning Decision Lists

- Restrict the lists to rules that test a single feature (1-decisionlist rules)
- Evaluate each possible test and rank them based on how well they work.
- Glue the top-N tests together and call that your decision list.

Yarowsky

• On a binary (homonymy) distinction used the following metric to rank the tests

 $\frac{P(\text{Sense}_1 | Feature)}{P(\text{Sense}_2 | Feature)}$

• This gives about 95% on this test...

WSD Evaluations and baselines

- In vivo versus in vitro evaluation
- In vitro evaluation is most common now
 - Exact match accuracy
 - % of words tagged identically with manual sense tags
 - Usually evaluate using held-out data from same labeled corpus
 - Problems?
 - Why do we do it anyhow?
- Baselines
 - Most frequent sense
 - The Lesk algorithm

Most Frequent Sense

- Wordnet senses are ordered in frequency order
- So "most frequent sense" in wordnet = "take the first sense"

Freq	Synset	Gloss
338	I I	buildings for carrying on industrial labor
207	plant ² , flora, plant life	a living organism lacking the power of locomotion
2	plant ³	something planted secretly for discovery by another
0	plant ⁴	an actor situated in the audience whose acting is rehearsed but
		seems spontaneous to the audience

Ceiling

- Human inter-annotator agreement
 - Compare annotations of two humans
 - On same data
 - Given same tagging guidelines
- Human agreements on all-words corpora with Wordnet style senses
 - 75%-80%

Problems

- Given these general ML approaches, how many classifiers do I need to perform WSD robustly
 - One for each ambiguous word in the language
- How do you decide what set of tags/ labels/senses to use for a given word?
 - Depends on the application

WordNet Bass

 Tagging with this set of senses is an impossibly hard task that's probably overkill for any realistic application

- 1. bass (the lowest part of the musical range)
- 2. bass, bass part (the lowest part in polyphonic music)
- 3. bass, basso (an adult male singer with the lowest voice)
- 4. sea bass, bass (flesh of lean-fleshed saltwater fish of the family Serranidae)
- 5. freshwater bass, bass (any of various North American lean-fleshed freshwater fishes especially of the genus Micropterus)
- 6. bass, bass voice, basso (the lowest adult male singing voice)
- 7. bass (the member with the lowest range of a family of musical instruments)
- 8. bass -(nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Senseval History

- ACL-SIGLEX workshop (1997)
 - Yarowsky and Resnik paper
- SENSEVAL-I (1998)
 - Lexical Sample for English, French, and Italian
- SENSEVAL-II (Toulouse, 2001)
 - Lexical Sample and All Words
 - Organization: Kilkgarriff (Brighton)
- SENSEVAL-III (2004)
- SENSEVAL-IV -> SEMEVAL (2007)
- SEMEVAL (2010)
- SEMEVAL 2017: <u>http://alt.qcri.org/semeval2017/index.php?id=tasks</u>

SLIDE ADAPTED FROM CHRIS MANNING

WSD Performance

- Varies widely depending on how difficult the disambiguation task is
- Accuracies of over 90% are commonly reported on some of the classic, often fairly easy, WSD tasks (pike, star, interest)
- Senseval brought careful evaluation of difficult WSD (many senses, different POS)
- Senseval 1: more fine grained senses, wider range of types:
 - Overall: about 75% accuracy
 - Nouns: about 80% accuracy
 - Verbs: about 70% accuracy

Summary

- Lexical Semantics
 - Homonymy, Polysemy, Synonymy
 - Thematic roles
- Computational resource for lexical semantics
 - WordNet
- Task
 - Word sense disambiguation
- After midterm: semantic parsing, distributional semantics, neural nets

Requested topics

- POS tagging
- HMM
- Early parsing algorithm

POS tagging

POS tagging as a sequence classification task

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Choose the tag sequence which is most probable given the observation sequence of n words w1...wn.

Getting to HMM

Out of all sequences of n tags t₁...t_n want the single tag sequence such that P(t₁...t_n | w₁...w_n) is highest.

$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$

- Hat ^ means "our estimate of the best one"
- Argmax_x f(x) means "the x such that f(x) is maximized"

Using Bayes Rule $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$ $\hat{t}_{1}^{n} = \operatorname*{argmax}_{t_{1}^{n}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$ $\hat{t}_1^n = \operatorname{argmax} P(w_1^n | t_1^n) P(t_1^n)$ t_1^n

0/16/17

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \begin{array}{l} P(t_1^n | w_1^n) \\ x & y \end{array}$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n)P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

(19)

Two kinds of probabilities (1)

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be low
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$
$$P(NN|DT) = \frac{C(DT, NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two kinds of probabilities (2)

- Word likelihood probabilities p(w_i|t_i)
 - VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is | VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

An Example: the verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

• P(NN|TO) = .00047

- P(VB|TO) = .83
- P(race | NN) = .00057
- P(race | VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.0000000032
- So we (correctly) choose the verb reading,

Problem

Observation likelihood: "Promise"

Count (#promise, VB)/#all verbs

I promise to back the bill (N).
 I promise to back the bill (V)

HMMS

Hidden Markov Models

- We don't observe POS tags
 - We infer them from the words we see
- Observed events
- Hidden events

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - The hidden states are **part-of-speech tags**
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

- States $Q = q_1, q_2...q_{N;}$
- Observations $O = o_1, o_2...o_{N;}$
 - Each observation is a symbol from a vocabulary V = {v₁,v₂,...v_V}
- Transition probabilities
 - Transition probability matrix $A = \{a_{ij}\}\ a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$
- Observation likelihoods
 - Output probability matrix $B = \{b_i(k)\}$ $b_i(k) = P(X_t = o_k | q_t = i)$
- Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Hidden Markov Models

• Some constraints

$$\sum_{j=1}^{N} a_{ij} = 1; \quad 1 \le i \le N$$

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

$$\sum_{k=1}^{N} b_i(k) = 1 \qquad \sum_{k=1}^{N} \pi$$

k=1

$$p_i(k) = 1 \qquad \qquad \sum_{j=1}^N \pi_j = 1$$

Assumptions

Markov assumption:

• Output-independence assumption $P(q_i | q_1 ... q_{i-1}) = P(q_i | q_{i-1})$

$$P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$$

Three fundamental Problems for HMMs

- *Likelihood*: Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood P(O, λ).
- **Decoding**: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the best hidden state sequence Q.
- Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

What kind of data would we need to learn the HMM parameters?

Decoding

- The best hidden sequence
 - Weather sequence in the ice cream task
 - POS sequence given an input sentence
- We could use argmax over the probability of each possible hidden state sequence
 - Why not?
- Viterbi algorithm
 - Dynamic programming algorithm
 - Uses a dynamic programming trellis
 - Each trellis cell represents, v_t(j), represents the probability that the HMM is in state j after seeing the first t observations and passing through the most likely state sequence

Viterbi intuition: we are looking for the best 'path'

38

Slide from Dekang Lin

Intuition

• The value in each cell is computed by taking the MAX over all paths that lead to this cell.

$$v_t(j) = \max_{1 \le i \le N-1} v_{t-1}(i) a_{ij} b_j(o_t)$$

 An extension of a path from state i at time t-1 is computed by multiplying:

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

39

The Viterbi Algorithm

function VITERBI(*observations* of len T, *state-graph*) **returns** *best-path*

```
num-states \leftarrow NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[num-states+2,T+2]
viterbi[0,0] \leftarrow 1.0
for each time step t from 1 to T do
   for each state s from 1 to num-states do
       \begin{aligned} & viterbi[s,t] \leftarrow \max_{1 \le s' \le num-states} viterbi[s',t-1] * a_{s',s} * b_s(o_t) \\ & backpointer[s,t] \leftarrow \arg \max \quad viterbi[s',t-1] * a_{s',s} \end{aligned}
                                      1 < s' < num-states
```

Backtrace from highest probability state in final column of viterbi[] and return path

The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

What is P(VB|TO)? What is P(NN|TO)? Why does this make sense?

What is P(TO|VB)? What is P(TO|NN)? Why does this make sense?

The B matrix for the POS HMM

	Ι	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the difference in the probabilities.

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

	I	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	7 0	0	0
Figure 4.16 Observation likelihoods (the <i>b</i> array) computed from the 87-tag				

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Problem

 I want to race (possible states: PPS VB TO NN)

The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
ТО	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

Figure 4.15 Tag transition probabilities (the *a* array, $p(t_i|t_{i-1})$ computed from the 87-tag Brown corpus without smoothing. The rows are labeled with the conditioning event; thus P(PPSS|VB) is .0070. The symbol $\langle s \rangle$ is the start-of-sentence symbol.

The B matrix for the POS HMM

	Ι	want	to	race
VB	0	.0093	0	.00012
ТО	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

Figure 4.16 Observation likelihoods (the *b* array) computed from the 87-tag Brown corpus without smoothing.

Look at P(want|VB) and P(want|NN). Give an explanation for the difference in the probabilities.

Early Algorithm

Earley Algorithm

- March through chart left-to-right.
- At each step, apply 1 of 3 operators
 - Predictor
 - Create new states representing top-down expectations
 - Scanner
 - Match word predictions (rule with word after dot) to words
 - Completer
 - When a state is complete, see what rules were looking for that completed constituent

Predictor

- Given a state
 - With a non-terminal to right of dot (not a part-of-speech category)
 - Create a new state for each expansion of the non-terminal
 - Place these new states into same chart entry as generated state, beginning and ending where generating state ends.
 - So predictor looking at
 - S -> . VP [0,0]
 - results in
 - VP -> . Verb [0,0]
 - VP -> . Verb NP [0,0]

Scanner

- Given a state
 - With a non-terminal to right of dot that is a part-of-speech category
 - If the next word in the input matches this POS
 - Create a new state with dot moved over the non-terminal
 - So scanner looking at VP -> . Verb NP [0,0]
 - If the next word, "book", can be a verb, add new state:
 - VP -> Verb . NP [0,1]
 - Add this state to chart entry following current one
 - Note: Earley algorithm uses top-down input to disambiguate POS!
 Only POS predicted by some state can get added to chart!

Completer

- Applied to a state when its dot has reached right end of role.
- Parser has discovered a category over some span of input.
- Find and advance all previous states that were looking for this category
 - copy state, move dot, insert in current chart entry
- Given:
 - NP -> Det Nominal . [1,3]
 - VP -> Verb. NP [0,1]
- Add
 - VP -> Verb NP . [0,3]

How do we know we are done?

- Find an S state in the final column that spans from 0 to n+1 and is complete.
- If that's the case you're done.
 - S -> α [0,n+1]

Earley

- More specifically...
 - 1. Predict all the states you can upfront
 - 2. Read a word
 - 1. Extend states based on matches
 - 2. Add new predictions
 - 3. Go to 2
 - 3. Look at N+1 to see if you have a winner

- Book that flight
- We should find... an S from 0 to 3 that is a completed state...

CFG for Fragment of English

$S \rightarrow NP VP$	$VP \rightarrow V$
$S \rightarrow Aux NP VP$	PP -> Prep NP
NP → Det Nom	N → old dog footsteps young flight
NP →PropN	V → dog include prefer book
Nom -> Adj Nom	Aux → does
$Nom \rightarrow N$	Prep →from to on of
Nom \rightarrow N Nom	PropN → Bush McCain Obama
Nom \rightarrow Nom PP	Det \rightarrow that this a the
$VP \rightarrow V NP$	Adj -> old green red

$S \rightarrow NP VP, S \rightarrow VP$	$VP \rightarrow V$
$S \rightarrow Aux NP VP$	PP -> Prep NP
NP → Det Nom	N → old dog footsteps young <i>flight</i>
NP →PropN, NP -> Pro	V → dog include prefer book
	Aux → does
$Nom \rightarrow N$	Prep →from to on of
Nom → N Nom	PropN → Bush McCain Obama
Nom \rightarrow Nom PP	Det \rightarrow that this a the
$VP \rightarrow V NP, VP -> V$ NP PP, VP -> V PP, VP -> VP PP	Adj -> old green red

$S \rightarrow NP VP, S \rightarrow VP$	$VP \rightarrow V$
$S \rightarrow Aux NP VP$	PP -> Prep NP
NP → Det Nom	N → old dog footsteps young <i>flight</i>
NP →PropN, NP -> Pro	V → dog include prefer book
	Aux → does
$Nom \rightarrow N$	Prep →from to on of
Nom → N Nom	PropN → Bush McCain Obama
Nom \rightarrow Nom PP	Det \rightarrow that this a the
$VP \rightarrow V NP, VP -> V$ NP PP, VP -> V PP, VP -> VP PP	Adj -> old green red

1020-000 A246-00000000	10.5	10 P. C. P. P. C.	5 A C R C R C R C R C R C R C R C R C R C
Chart[0] S0	$\gamma \rightarrow \bullet S$	[0,0]	Dummy start state
S1	$S \rightarrow \bullet NP VP$	[0,0]	Predictor
S2	$S \rightarrow \bullet Aux NP VP$	[0,0]	Predictor
\$3	$S \rightarrow \bullet VP$	[0,0]	Predictor
S4	$NP \rightarrow \bullet Pronoun$	[0,0]	Predictor
S5	$NP \rightarrow \bullet Proper-Non$	un [0,0]	Predictor
S6	$NP \rightarrow \bullet Det Nomina$	al [0,0]	Predictor
S7	$VP \rightarrow \bullet Verb$	[0,0]	Predictor
S8	$VP \rightarrow \bullet Verb NP$	[0,0]	Predictor
S9	$VP \rightarrow \bullet Verb NP PP$	P [0,0]	Predictor
S10	$VP \rightarrow \bullet Verb PP$	[0,0]	Predictor
S11	$VP \rightarrow \bullet VP PP$	[0,0]	Predictor

- 1 <u>12</u>	L () J	
Chart[1] S12 Verb \rightarrow book \bullet	[0,1]	Scanner
S13 $VP \rightarrow Verb \bullet$	[0,1]	Completer
S14 $VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15 $VP \rightarrow Verb \bullet NP PP$	[0,0]	Completer
S16 $VP \rightarrow Verb \bullet PP$	[0,0]	Predictor
S17 $S \rightarrow VP \bullet$	[0,1]	Completer
S18 $VP \rightarrow VP \bullet PP$	[0,1]	Completer
S19 $NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20 $NP \rightarrow \bullet$ Proper-Noun	[1,1]	Predictor
S21 $NP \rightarrow \bullet Det Nominal$	[1,1]	Predictor
S22 $PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

66

- 12	L (1	5 (d)
Chart[1] S12 Verb \rightarrow book \bullet	[0,1]	Scanner
S13 $VP \rightarrow Verb \bullet$	[0,1]	Completer
S14 $VP \rightarrow Verb \bullet NP$	[0,1]	Completer
S15 $VP \rightarrow Verb \bullet NP PP$	[0,0]	Completer
S16 $VP \rightarrow Verb \bullet PP$	[0,0]	Predictor
S17 $S \rightarrow VP \bullet$	[0,1]	Completer
S18 $VP \rightarrow VP \bullet PP$	[0,1]	Completer
S19 $NP \rightarrow \bullet Pronoun$	[1,1]	Predictor
S20 $NP \rightarrow \bullet$ Proper-Noun	[1,1]	Predictor
S21 $NP \rightarrow \bullet Det Nominal$	[1,1]	Predictor
S22 $PP \rightarrow \bullet Prep NP$	[1,1]	Predictor

. 67

Chart[2]	S24 S25 S26	$Det \rightarrow that \bullet$ $NP \rightarrow Det \bullet Nominal$ $Nominal \rightarrow \bullet Noun$ $Nominal \rightarrow \bullet Nominal Noun$ $Nominal \rightarrow \bullet Nominal PP$	[1,2] [1,2] [2,2] [2,2] [2,2]	Scanner Completer Predictor Predictor Predictor
Chart[3]	\$29 \$30 \$31 \$32 \$33 \$34 \$35	$Noun \rightarrow flight \bullet$ $Nominal \rightarrow Noun \bullet$ $NP \rightarrow Det Nominal \bullet$ $Nominal \rightarrow Nominal \bullet Noun$ $Nominal \rightarrow Nominal \bullet PP$ $VP \rightarrow Verb NP \bullet$ $VP \rightarrow Verb NP \bullet PP$ $PP \rightarrow \bullet Prep NP$ $S \rightarrow VP \bullet$	[2,3] [2,3] [1,3] [2,3] [2,3] [0,3] [0,3] [3,3] [0,3]	Scanner Completer Completer Completer Completer Completer Predictor Completer

68

Details

- What kind of algorithms did we just describe
 - Not parsers recognizers
 - The presence of an S state with the right attributes in the right place indicates a successful recognition.
 - But no parse tree... no parser
 - That's how we solve (not) an exponential problem in polynomial time

Converting Earley from Recognizer to Parser

- With the addition of a few pointers we have a parser
- Augment the "Completer" to point to where we came from.

Augmenting the chart with structural information

Chart[1]							
S 8	$Verb \rightarrow book \bullet$	[0,1]	Scanner				
S9	VP ightarrow Verb ullet	[0,1]	Completer	S 8			
S10	$S \rightarrow VP \bullet$	[0,1]	Completer	S9			
S11	$VP \rightarrow Verb \bullet NP$	[0,1]	Completer	S 8			
S12	$NP \rightarrow \bullet Det NOMINAL$	[1,1]	Predictor				
S13	NP ightarrow ullet Proper-Noun	[1,1]	Predictor				

Chart[2]						
$Det \rightarrow that$	[1,2]	Scanner				
$NP \rightarrow Det \bullet NOMINAL$	[1,2]	Completer				
$NOMINAL ightarrow \bullet Noun$	[2,2]	Predictor				
$NOMINAL ightarrow \bullet Noun NOMINAL$	[2,2]	Predictor				