
Querying Faceted Databases

Kenneth A. Ross? and Angel Janevski

Columbia University
kar@cs.columbia.edu,aj311@cs.columbia.edu

Abstract. Faceted classification allows one to model applications with
complex classification hierarchies using orthogonal dimensions. Recent
work has examined the use of faceted classification for browsing and
search. In this paper, we go further by developing a general query lan-
guage, called the entity algebra, for hierarchically classified data. The
entity algebra is compositional, with query inputs and outputs being sets
of entities. Our language has linear data complexity in terms of space
and quadratic data complexity in terms of time. We compare the expres-
sive power of the entity algebra with relational algebra. We also describe
an end-to-end query system based on the language in the context of an
archeological database.

1 Introduction

A number of application domains require the modeling of complex entities within
classification hierarchies. For many of these domains, the hierarchy is where
the main complexity of the domain is concentrated, with other features of the
domain, such as relationships between entities, being relatively simple. We aim
to develop a data model and a query language appropriate for such domains.

A monolithic concept hierarchy is one in which a single large classification tree
is used to represent the application domain. Monolithic hierarchies have been
criticized for “rigid hierarchical and excessively enumerative subdivision that
resulted in the assignment of fixed ‘pigeonholes’ for subjects that happened to
be known or were foreseen when a system was designed but often left no room
for future developments and made no provision for the expression of complex
relationships and their subsequent retrieval.” [21]

A faceted classification, on the other hand, “does not assign fixed slots to
subjects in sequence, but uses clearly defined, mutually exclusive, and collectively
exhaustive aspects, properties, or characteristics of a class or specific subject.
Such aspects, properties, or characteristics are called facets of a class or subject,
a term introduced into classification theory and given this new meaning by the
Indian librarian and classificationist S.R. Ranganathan and first used in his
Colon Classification in the early 1930s.” [21]

Computers can make faceted classifications work for search [7, 8]. Once a
domain has been classified into a number of orthogonal facets, users can select

? This research was supported by NSF grant IIS-0121239.

values for one of more facets independently. As the search progresses, the can-
didate set of answers shrinks. The computer can give feedback to the user on
the current size of the candidate answer set, and can update the search so that
categories with no answer candidates in them are not displayed. The user is re-
lieved of knowing the exact classification system used, and can find an object by
describing its properties. Systems implementing document search for such data
models include Flamenco [4] and FacetMap [3]. A user study of Flamenco is
presented in [23]. The use of faceted hierarchies is common among e-commerce
sites on the World Wide Web [6]. Faceted classification is a good match for the
Semantic Web because it allows access to data using multiple orthogonal dimen-
sions, and because it allows the incremental construction of new facets after the
initial schema design, something much more difficult to achieve with monolithic
hierarchies.

Our aim is to go beyond a simple search facility for faceted hierarchies, and
to provide a query language for the formulation of more sophisticated queries.

Relational query languages do not provide built-in facilities for manipulating
hierarchies. Hierarchies must be simulated, in ways that are often cumbersome.
In a sense, the relational model uses one construct, i.e., the relation, to represent
both relationships of entities to one another, as well as the structure of the
entities themselves. In domains where the entity structure is the dominant source
of complexity, it is natural to make a different design choice, namely to make
the “set of entities” the basic data structure. Related formalisms that also focus
on sets of entities are described in Section 2.10.

Our Approach

We start with faceted classification as our basis. A domain expert provides the
schema, i.e., a collection of orthogonal classifications of the application domain
into moderately-sized hierarchies. Our fundamental notion is the “entity set,” a
collection of (possibly heterogeneous) entities from various classes in the hierar-
chy.

A query in our “entity algebra” takes entity-sets as input, and produces an
entity-set as output. We thus achieve compositionality, meaning that the inputs
to a query and the output from a query are of the same type, so that complex
queries can be build by composing simpler pieces. Since entities of different
classes may coexist in such an entity set, the system must determine, from a
query expression and from the schema (but not from the data; see Section 2.10),
which attributes are available in all entities in the result of a query expression.

We are aiming for a language that, while allowing most queries typical of
our target domain, possesses low data complexity. A benefit of our approach is
that we guarantee linear space complexity and quadratic time complexity for
all expressible queries. In contrast, the relational model admits queries that can
take polynomial time and space, where the exponent of the polynomial can be
proportional to the number of operators in the query.

The capacity of our system to write queries whose answers represent general
relationships is limited. This is a deliberate choice. Our primary goal is to make

the data model and query language conceptually simple and understandable to
users. Being able to represent complex relationships as well as complex entity
hierarchies would create a much higher conceptual burden on users, as well as a
higher data complexity.

The system informs the user of all attributes that are available for querying.
This can require some calculation in a faceted hierarchy, because (a) attributes
are inherited from multiple sources, and (b) constraints may imply membership
in a more specific class whose attributes then become available. From the user’s
point of view, this process is transparent: the user is presented with the set of
available attributes for each query or subquery.

We compare the expressive power of the entity algebra with the relational
algebra. In general, the expressiveness of the two algebras is incomparable. If
we focus on “flat” schemas and relational queries that return just entity-IDs, we
can quantify exactly what kinds of relational queries we are forgoing in order
to get our complexity results. The answer (projections, and joins with cyclic
hypergraphs) is reassuring, since such constructs are typically not crucial for
queries on complex hierarchies.

Our design has been implemented in two prototype systems. One system
supports an archeological database of finds that are organized into a variety
of categories. A second system supports a database of human anatomy, that is
classified into hierarchies in various ways. Both systems share a common infras-
tructure corresponding to the model described here. They differ in the definition
of the hierarchies (i.e., the schema) and in the actual data stored. Additional
domains could easily be incorporated given a schema and the corresponding
data.

In Section 2, we describe our framework, introduce the entity algebra, and
assess its complexity and expressiveness. In Section 3 we describe an implemen-
tation of our framework. We conclude in Section 4.

2 Framework

2.1 Domain Model

The units of operation for our query language are sets of entities. Each query
operates on one or more sets of entities and always returns a set of entities.
In the archaeology domain, for example, all excavation finds are entities in the
database. Each find has many attributes and one of the attributes is the entity
type, which can be object, i.e., an artifact, or context, i.e., a characteristic region
of the excavation site.

Entity sets that have explicitly stored entities in them are called classes.
A schema defines a finite set of classes. Classes have attributes associated with
them. An attribute has a name and a data type. Each entity in a class must
have a value of the appropriate type for each attribute. An entity may belong
to multiple classes. For example, an object can belong to the class “Pots” and
the class “My-Favorite-Objects” simultaneously. Such an object provides values

for all attributes of all classes it belongs to. Note that we do not require the
creation of a subclass “My-Favorite-Pots” to store favorite objects that happen
to be pots. This modeling style is what makes faceted classification different from
traditional object-oriented models of hierarchies. If we did require such classes,
there would be too many of them, as each class could be intersected with an
arbitrary set of other classes. Figure 1 shows a class hierarchy based on our
archeology application. Attributes are shown in square brackets.

entity
[ID]

Context(type=context)

has-type
[type]

Pot (category=pot)
[capacity] Kiln (category=kiln)

[temperature]

Object (type=object)
[category, location]

has-culture

...

...

...

Roman
[emperor-style]

Greek ...

S (capacity=small)

M (capacity=medium)

L (capacity=large)

Fig. 1. A Partial Archeology Schema

Classes may also have constraints attached to them. For example, the class
“Big-Pots” might have a constraint on the capacity attribute of the pots which
can belong to that class. Note that these are integrity constraints in the tradi-
tional sense, and not view definitions. There may be large pots in the database
that, for some reason, do not belong to the “Big-Pots” class. Additional examples
of constraints appear in round brackets in Figure 1. The constraints imply that
Pots and Kilns are disjoint, while an entity may have both Greek and Roman
culture.

Classes are organized into a hierarchy. We write C1 < C2 to mean that C1 is
a subclass of C2. This is graphically represented by drawing a line with C2 above
C1. The transitive closure � of the subclass relationship is a partial order with
a single maximal element E, which denotes the class of all entities. If C1 � C2

then all attributes of C2 are also attributes of C1. Similarly, all constraints on
entities in C2 also apply to entities in C1. The maximal class E has a single
attribute called “ID”. All values of the ID attribute are unique. If an entity in

class “Pots” has ID 123, and an entity in class “Roman objects” has ID 123,
then they refer to the same real-world artifact, namely a Roman pot.

Since different classes may use the same name for semantically different at-
tributes, we disambiguate attributes by providing as a prefix the name of the
class in the hierarchy from which a class inherited the attribute. So, if both C1

and C2 have an attribute style, and C3 � C1 and C3 � C2, then C3 has two
attributes C1::style and C2::style. In principle, C3 could also define its own dis-
tinct attribute C3::style. There is no over-riding of attributes. Also, an attribute
that is inherited from a single class on multiple paths is not replicated.

While we have not explicitly represented relationships, we note that general
relationships can be simulated by thinking of tuples as entities. This is the dual
of the relational model, in which entities are modeled as relations.

2.2 Constraints

We assume that a constraint language CL is given. A typical constraint language
may allow equalities and inequalities over integers, reals, and strings. Formulas
in CL may use as free variables expressions of the form S.A where S is an entity
set, and A is an attribute of S. The domain of S.A corresponds to the type of A

in S. We assume that CL includes logical conjunction “∧” and disjunction “∨”.
Integrity constraints from CL may be placed on classes. We use the same

constraint language to define operators such as selection; see Section 2.3.
We will say that a constraint language CL is decidable if the satisfiability of

sentences in CL is decidable. Constraint language implementations may benefit
from the use of a constraint solving system [15].

2.3 Operators and Queries

A query is formed by applying operators to entity sets to form new entity sets.
The user starts with a collection of entity sets defined by the classes in the
schema. During a query session, the user can refer to a previously defined entity
set as a subexpression. The language defined by the operators below is called
the entity algebra.

If C is a class, then the query expression C denotes all entities that are
members of a class C ′ where C ′ � C. We allow the following operators where E

and E′ are entity sets, θ is a constraint with free variables ranging over attributes
of E, and θ′ is a constraint from CL with free variables ranging over attributes
of E and E′.

– σθ(E) returns all entities from E that satisfy the condition θ.
– EB<θ′E′ returns all entities e from E for which there is some entity e′ in E′

such that (e, e′) satisfies θ′.
– E ∪E′ returns all entities that are in either E or E ′; duplicates are omitted.
– E ∩ E′ returns all entities that are in both E and E ′.
– E − E′ returns all entities that are in E but not in E ′.

This definition of our operators is not quite complete. If E is a class, then it is
clear which attributes are available for the conditions θ and θ′ above. However,
if E is itself an expression, we have not yet explained how to determine the
attributes available from E. For example, we need to know how to determine
which attributes are available from the expression C1 ∪C2 which admits entities
belonging to two different classes. This issue is addressed in Section 2.4.

We remark that having entities from different classes poses no structural
problem in our model. A set of entities can contain entities from many classes,
and each entity can have its own set of defined attributes. When one wants to
display the entities in the result of a query, each entity can be displayed in a
way that is appropriate to its attributes and their type(s). For our application
domains, this kind of result structure is much more convenient than a relation.
In order to show all attributes of all result entities, a relation would need to have
an attribute for each possible attribute of any entity in the result set, with most
attribute values being null.

2.4 Attributes of Expressions

The determination of which attributes are available from query expressions is
not trivial. We can state a semantic correctness criterion informally as follows:
An attribute A is correct for a query expression E if and only if, for every
possible database instance, every entity in the result of E possesses attribute
A. This criterion needs to be slightly refined to allow for the possibility that a
query expression is not well-formed. As a result, we formulate a recursive formal
definition.

Definition 1. If an entity set E is a class, then the correct set of attributes for
E is the set of attributes defined for that class in the schema.

Let F be an operator on entity-sets E1, . . . , En, and suppose that the cor-
rect set of attributes for E1, . . . , En has been determined. Suppose that F is
well-formed, i.e., that conditions in F refer only to attributes that are cor-
rect for E1, . . . , En. Then an attribute A is correct for the query expression
F (E1, . . . , En) if and only if, for every possible database instance, every entity
in the result of the query possesses attribute A.

Given this semantic correctness criterion, we wish to determine syntactic
methods for obtaining the correct set of attributes. We emphasize that it is up
to the system, and not the user, to determine the correct set of attributes. As the
user incrementally formulates each subquery, the system gives the user feedback
about which attributes are available. We illustrate some of the subtleties of
determining the correct set of attributes in the examples below.

Example 1. If E is an expression such as C −C or σfalse(C) that is guaranteed
to be empty, then all attributes are correct for E. Thus, in order to determine the
correct attributes for σθ(C) we need to know whether θ is satisfiable. Similarly,
to determine the correct attributes for C − σθ(C) we need to know whether θ is
a tautology. If class C has an integrity constraint φ, then the above statements
apply to θ ∧ φ rather than just θ.

Example 2. If C1 and C2 are classes, then C1 ∩ C2 should include all attributes
from both C1 and C2. On the other hand, C1∪C2 should include only attributes
that are common to both C1 and C2, i.e., attributes that are inherited from a
common ancestor in the hierarchy. Note that there may be more than one “least”
ancestor, because the hierarchy is not necessarily a tree. A common ancestor is
guaranteed by the presence of the class E.

Example 3. In this example we show that correct attribute sets cannot be com-
puted for each subexpression separately, and unioned or intersected incremen-
tally.

Consider three classes S, M , and L representing “small,” “medium” and
“large” pots, respectively. Suppose that each such class is a subclass of the
class Pot, which has an attribute “capacity”. Each subclass has a constraint on
capacity. For example, class S would have the constraint capacity=small. For
the sake of argument, suppose that each of S, M , and L has its own additional
attributes.

Consider the expression (S∪M)∩(M ∪L). The correct attributes of (S∪M)
would be the attributes of class Pot. The same reasoning applies to (M ∪L). So
it would seem that the attributes of Pot are precisely the correct attributes of
the whole expression. This reasoning is fallacious. To see why, let us rewrite the
original expression as the equivalent expression (S ∩ M)∪ (S ∩L) ∪ (M ∩M) ∪
(M ∩ L). The constraints on each subclass mean that the only nonempty term
in the union is (M ∩ M) = M . Thus, the correct set of attributes are those of
M , which is a strict superset of those belonging to class Pot.

Example 3 shows that we cannot compute the complete attribute sets via a
function g with g(X ∩ Y) = g(X) ∪ g(Y).

We now describe our initial typing algorithm for queries involving selections,
unions and intersections.

Algorithm 1. We are given an entity algebra query Q, using just selections,
intersections and unions. Compute an equivalent query T by (a) pushing the
selection conditions down to classes, using the fact that selections distribute over
unions and intersections, and then (b) rewriting the result in disjunctive normal
form so that T is a union of conjunctive queries. Replace instances of σθ(σφ(E))
by σθ∧φ(E). Suppose that T = T1∪ . . .∪Tn, where each Ti is a conjunctive query.

For each Ti, do the following. Suppose that Ti = σθ1
C1 ∧ . . .∧ σθm

Cm, where
each Cj is a class and each θj is a (possibly trivial) condition. If the constraints
on the respective classes are φ1, . . . , φm, then determine whether φ1 ∧ . . .∧φm ∧

θ1 ∧ . . .∧ θm is satisfiable. If so, compute the attribute set Ai as the union of all
attributes in C1, . . . , Cm.

Return the intersection of all computed attribute sets Ai. If there were no
such sets computed, return the universal set of all attributes.

Lemma 1. Suppose that the constraint language is decidable. Then Algorithm 1
terminates, and computes exactly the correct set of attributes for query Q.

Proof. Given the decidability of the constraint language, all steps of the al-
gorithm terminate. To show that the algorithm is sound, suppose that attribute
A is output by the algorithm. Then attribute A is possessed by some class in
each term Ti that is satisfiable. Thus, every entity satisfying Q has attribute A.
To show completeness, suppose that some correct attribute A was not output by
the algorithm. Then for some satisfiable term Ti, no class in Ti has attribute A.
Since Ti is satisfiable, there exists a database instance in which there is an entity
belonging to all classes in Ti and satisfying the selection conditions of Ti, thus
satisfying Q. However, this entity does not possess attribute A, contradicting the
assumption that A was correct for Q.

We can extend the algorithm to queries with semijoins.

Definition 2. Consider a query E1B<θE2 where E1 and E2 contain just selec-
tions, unions and intersections. Using the construction of Algorithm 1, we can
obtain a query Q2 equivalent to E2 in disjunctive normal form. We abstract Q2

into a logical formula by forming a logical disjunction of terms, one per conjunc-
tive term in Q2. Each term consists of the conjunction of the θ and φ expressions
described in the construction. Let us call the complete formula F2. We can then
“abstract” the semijoin, treating it as if it were a selection σθ′(E1), where θ′

is defined as θ ∧ F2. In this formula, free variables from E2 are assumed to be
existentially quantified.

The abstracted semijoin removes the requirement that matching tuples actu-
ally exist in E2, and replaces it with the broader criterion of whether matching
tuples could possibly exist in E2. The transformation may introduce extra con-
junctions, disjunctions, and free variables, but the decidability of satisfiability
in the constraint language is not compromised.

Example 4. Let class C1 have an attribute X , and suppose classes C2 and C3

both have attributes Y and Z. Suppose that C2 has an integrity constraint
stating that Y = Z. Then

C1B<X=Y (C2 ∩ σZ<3(C3))

can be abstracted as σθ(C1), where θ is

∃Y, Z : (X = Y) ∧ (Y = Z) ∧ (Z < 3)

which can be simplified to X < 3.

Lemma 2. A semijoin query is satisfiable only if its abstracted semijoin query
is satisfiable.

Proof. Suppose the semijoin query E1B<θE2 is satisfied by tuples e1 and e2 in
E1 and E2 respectively in some database instance. Then e1 satisfies the abstracted
query, with e2 providing the satisfying values for the existentially quantified vari-
ables.

The converse of Lemma 2 does not hold. To see this, consider the query
(S ∪ M)B<ID=IDM , where S and M represent classes of small and medium-
sized pots respectively. The query is equivalent to M , since S and M are disjoint.
All attributes of M are correct. However, the abstracted query does not “notice”
that the existence of a tuple in M excludes that tuple from S.

Algorithm 1 is extended by first applying the transformation of Definition 2
to each semijoin in the query in a bottom-up order. The transformed query
contains only unions, intersections and selections, and can be processed through
Algorithm 1 as before. The soundness argument is a simple extension of Lemma 1
using Lemma 2. Because of examples like those mentioned above, the extended
algorithm is no longer complete.

Subtraction seems intrinsically harder than the other operations, due to its
nonmonotonicity. A corresponding abstraction process requires a constraint lan-
guage CL that is closed under negation and universal quantification. Further, we
cannot analyze subexpressions of a query independently, because one subexpres-
sion might require the absence of a certain tuple for satisfiability, while another
might require its presence.

For subtraction we use a sound, but not necessarily complete method for
determining the attribute set. For a query Q that includes subtraction, we form
a query Q′ by eliminating all subtractions from Q. Every subexpression of the
form E1−E2 in Q is replaced simply by E1 in Q′. We then compute the attributes
of Q′ as above.

The worst-case query complexity of Algorithm 1 is at least exponential in
the size of the query, since it has to perform a transformation into disjunctive
normal form. The complexity of satisfiability checking in CL also has obvious
implications for the complexity of Algorithm 1.1 Nevertheless, we expect queries
to be short, and Algorithm 1 to be useful in practice. In Section 2.5 we show
that the language has low data complexity.

Example 5. Consider the schema of Figure 1 and suppose we wish to find all
kilns located within a certain distance t of any medium-sized Roman pot. This
kind of query cannot be answered by using a conventional search facility; a query
language is required. In the entity algebra, we could express this query as

Kiln B<θ

(

σcapacity=medium(Pot ∩ Roman)
)

where θ is “d(Kiln.location,Pot.location) < t.” All attributes of both Pot and
Roman are available for use in the selection and semijoin conditions.

The use of a sound but not necessarily complete algorithm for determining
the correct set of attributes (for queries with semijoins and/or difference) is de-
liberate. Our choice allows us to reason solely in the constraint language, without
having to perform more elaborate reasoning about the entity algebra itself. This

1 In the event that CL is not decidable, then we are forced to settle for sound but
incomplete satisfiability testing in Algorithm 1.

is a more practical short-term goal, given our intention to implement this rea-
soning mechanism in a functional query interpreter, described later. When the
algorithm is not complete, entities in a query result Q may share an attribute A

that the system does not perceive is shared. There is a simple way for users to
make this attribute available for other queries, namely to intersect Q with the
class defining A. Thus, in practice, users are not prevented from writing certain
queries.

On the other hand, reasoning solely within the constraint language does not
allow the attribute-determining algorithm to take into account constraints (such
as foreign key constraints for relationships) that can be expressed only within
the entity algebra. Developing algorithms that allow complete reasoning about
entity algebra expressions is an interesting direction for future work.

2.5 Data Complexity

One of our initial goals was to choose a language with low data complexity. In
this section we demonstrate that all entity algebra queries can be answered in
linear space complexity (with constant of proportionality 1), and quadratic time
complexity.

Lemma 3. Entity algebra queries generate output that is no larger than the total
size of the union of the input classes.

Proof. By induction, the output must be a subset of the union of all inputs.

Lemma 4. Union-free entity-algebra queries generate output that is a subset of
at least one of the input classes.

Proof. By induction; this is a property of all operators other than union.

Lemma 5. All entity algebra queries can be computed in time at most quadratic
in the total size of the input.

Proof. Selection can be computed in linear time. Union, intersection and
difference can be computed in O(n log n) time, where n is the total size of the
inputs. Semijoins can be computed in O(n2) time by simply comparing all pairs
of tuples. Given that the size of the output of a subexpression is bounded by the
size of its inputs (Lemma 3), the whole query takes at most quadratic time.

2.6 Language Extensions

Because one of our initial goals was to obtain low data complexity, we do not con-
sider desirable language extensions that increase the data complexity. Similarly,
our model is centered around the notion of always returning a set of entities in
response to a query. An extension that broadened the types of results, such as to
return pairs of entities, would weaken the model. We believe that the uniformity
and simplicity of input and outputs makes the conceptualization task easier for
the user.

We discuss two language extensions that retain the spirit of the entity algebra.
The first is the capacity to define new attributes as views. For example, suppose

that each member of class object has a recorded (x, y, z) position at which it
was discovered, in a local coordinate system. We could define new global posi-
tion attributes (gx, gy, gz) derived from (x, y, z) and the reference point entity
coordinates. (Formally, this feature would entail a generalization of the semi-
join operator.) These new attributes would be available for all members of class
object, including members of its subclasses. If the view was registered in the
database schema, then the set of available attributes for entities in each class
would be extended appropriately.

The second extension is a form of aggregation. The idea is to allow a limited
form of aggregation that corresponds (in relational terms) to grouping by the
entity-ID. Thus we could define, for each person working on the site, the number
of discoveries made by that person. The result would be represented as a view
attribute on class person. To achieve this functionality, we again extend the
semijoin operation to allow an optional aggregate computation over the records
of the second entity set matching each entity in the first entity set. Neither of
these extensions change the asymptotic space or time complexity of the language.
They also preserve the central theme of inputs and outputs being entity sets.

2.7 Expressive Power

The expressive power of the entity algebra is incomparable with relational al-
gebra. Relational algebra is capable of expressing queries that return tuples of
entities, which the entity algebra cannot. Its space complexity and time complex-
ity are polynomial, as opposed to the linear space and quadratic time complexity
of the entity algebra. On the other hand, relational algebra (without nulls) is not
capable of expressing a query analogous to Example 3 in which the attributes of
class M are available in the result.

Nevertheless, we can compare the expressive power of the two languages in
the context of a flat hierarchy. Imagine each class as a relation, and consider a
query expressed in relational algebra over those flat relations. For comparability,
suppose we limit ourselves to relational queries that return a single column of
entity-IDs. Under what circumstances can such a query be expressed in our
language? The answer to this question will give us a sense of what kinds of
relational queries we are giving up in order to obtain our more limited language.

Lemma 6. Let S be a relational schema in which every relation has a column
named ID that is known to be a key. Let Q be a relational algebra query that
involves only joins, and suppose R.ID is a column of the output of Q, where R

is a relation in S. Then πR.ID(Q) is expressible in the entity algebra if the join
hypergraph [20] for Q is acyclic.

Proof. This result uses a result of Yannakakis [22] (see also [20]). The joins
can be ordered so that “ears” [20] of the join hypergraph are removed one by one,
ending with R. Because of the special form of the projection (one attribute from
relation R), no attributes from an inner subexpression are needed in an outer
subexpression, and joins can be replaced with semijoins.

Lemma 6 suggests that the entity algebra cannot express cyclic joins. The
intuition is given in Example 6. Since queries with cyclic hypergraphs are rare,
this loss of power does not seem like a major sacrifice.

Example 6. Consider the relational query

πR.ID(R ./(R.A=S.B)∧(R.C>T.D) (S ./S.F=T.G T)).

The join hypergraph is cyclic. There is no way to express this query using only
semijoins, because no matter which pair of relations we semijoin first, we need
attributes from both in the remainder of the query. If we include two semijoins,
(e.g., SB<T and TB<S) then we lose the association between the S and T tuples.

Theorem 1. The entity algebra can express any relational query that can be
written as a combination, via the set operations union, intersection, and differ-
ence, and via local selections, of queries satisfying the conditions of Lemma 6.

Proof. Local selections can be pushed down to base relations. Each component
query can then be expressed via semijoins as shown in Lemma 6. The set opera-
tions operate on just IDs, and can be simulated by corresponding set operations
in the entity algebra.

Since set operations distribute over joins, the class of queries that can be
written as described in Theorem 1 is fairly broad. Conspicuously absent from
Theorem 1 is the projection operator. Example 7 shows an example where the
entity algebra cannot express a relational query involving projection.

Example 7. Consider the relational query

πR.ID(R ./(R.C>F) (πF S − πF T))

where attribute F (belonging to S and T) is distinct from ID. The entity algebra
does not provide facilities for projection, and difference can only be applied to
entity sets including an ID attribute. Thus we cannot write a subexpression
corresponding to (πF S − πF T). Such an expression would not even be an entity
set. Further, since RB<θ(S − T) is not, in general, equivalent to (RB<θS) −
(RB<θT), we cannot write this expression as the difference of expressions that
include an ID attribute.

The lack of a projection operator means that all operations apply to entities
“as a whole” and not to arbitrary subsets of attributes. This is a reasonable
choice in our context, in which entities are the central concept, and manipulations
of attributes without reference to their corresponding entities is unlikely to be
common.

2.8 Virtual Classes

Consider Example 3, and suppose that we wish to insist that a pot must be clas-
sified as either small, medium, or large. If we could represent such information,
then we should be able to infer that the expression

σcapacity=medium(Pot)

has type M . Without the extra information, there may be a pot with medium
capacity in class Pot (and not in its subclasses), meaning that the type of the
expression above would be Pot rather than M .

The intuitive way to specify this extra information would be to formulate a
sentence in the constraint language CL stating that any member of class Pot
must be in S ∪ M ∪ L. Because such a constraint relates more than one class,
it places additional requirements on CL beyond those we have assumed so far.
Further, an explicit constraint relating Pot with S ∪ M ∪ L is vulnerable to
schema changes. If another category “extra-large pots” was to be added as a
subclass of Pot, then the constraint on Pot would also need to be changed.

Rather than requiring an extended constraint language, we propose a simpler
solution to represent the kind of constraint mentioned above. A non-leaf class
may be declared as virtual, which means that it has no explicit members beyond
those of its subclasses. In order to achieve the correct type for a query expression
Q, we rewrite Q. A virtual class C mentioned in Q is replaced by the expression
C1∪. . .∪Ck , where the Ci are the subclasses of C. Subclasses that are themselves
virtual are recursively rewritten. The resulting query Q′ is equivalent to the
original query Q on instances in which virtual classes contain no members beyond
those of their subclasses. We then type Q′ as described in Section 2.4.

Example 8. Consider the query Q given by

σcapacity=medium(Pot)

on the schema of Example 3, but in which we declare class Pot as virtual. We
rewrite Q as Q′, i.e.,

σcapacity=medium(S ∪ M ∪ L).

According to Algorithm 1, the type of Q′ is M .

2.9 Presentation Layer

While writing queries using the entity algebra allows one to define entity sets in a
compositional way, users may like to display an answer set using a more elaborate
language. Entities should be viewed in ways appropriate to their types. For ex-
ample, entities with image attributes could have those images displayed. Entities
with foreign keys to other entities may have the referenced entity displayed as
a component of the original entity. Entities belonging to multiple classes should
have the individual displays concatenated in some meaningful way. Entities in
an entity set may be heterogeneous; each entity in the set may be displayed
differently.

In principle, the presentation language may be more expressive (and have
higher complexity) than the entity algebra. We are willing to accept this di-
chotomy because (a) the presentation language does not have to be composi-
tional, (b) the purpose of the presentation language is different from the query
language, and (c) the fundamental constructs of the language may be different.

A familiar example of such separation is the “order by” clause in SQL, which
can only be applied at the top-level of a query. A relation is fundamentally an
unordered structure. Yet, for the purposes of presentation, users benefit from
getting their answers in a particular order. Geographical Information Systems
provide another example, where the rendering of the query results is (largely)
independent of the definition of the query.

The presentation layer can be developed separately from the query language.
Custom presentations of entity sets can be applied at each point in a sequence of
intermediate queries, but they will not affect the outcome of subsequent query
operations applied to these intermediate queries.

In Section 3 we describe an implementation that makes particular choices
about how entities are presented. However, alternative presentation language
designs are possible.

2.10 Related Work

Our work is orthogonal to work that looks at how to model domain hierarchies
using XML, RDF [2], OWL [5], or some other standard interchange format.
Entity identifiers could be URIs. In principle, our query system could use any
kind of hierarchy or identifier representation, although it is likely to work best
for a hierarchy representation that has an explicitly faceted organization, such
as XFML [1].

In systems like Flamenco, there is no formal schema. Entities are tagged with
metadata describing their attributes. After a partial search that results in some
entity set S, each attribute mentioned by some entity in S is available for further
querying. (When a user uses such an attribute, he or she is implicitly limiting
the result set to entities having that attribute.) This kind of approach is typical
of Information Retrieval applications in which one does not have control over
the underlying data. It is also typical of semistructured data models and query
languages, although see [17, 18] for ways to infer an approximate schema from
semistructured data.

In contrast, we take an approach more typical of conventional structured
databases, in which there is a formal schema, and the integrity of the data
with respect to the schema can be ensured. For us, an attribute cannot be
accessed unless we know that all entities in the underlying entity set possess the
attribute. Advantages of our approach include: (a) The correctness of a query
statement can be ensured at compile-time, without running intermediate queries.
A single overall plan for the final query can be generated, rather than forcing a
subexpression-by-subexpression evaluation. (b) The structure of the output of a
query does not change in response to data updates. This is particularly important
for the correctness of view definitions. (c) Schema conflicts can be resolved. For
example, a schema-less system would have difficulty disambiguating metadata
tags that happened to share the same attribute name.

Note that we could simulate the Flamenco-style approach by showing all at-
tributes of all entities as part of the presentation language; to process a selection

on an attribute A present in just some members of an entity set S, the system
can first intersect S with the class defining attribute A.

Tzitzikas et al. describe techniques for identifying meaningful compound
terms (i.e., intersections of classes) in a faceted taxonomy [19].

Object-oriented models [16] organize the data hierarchically, and make “ob-
jects” the central concept. Like our proposal, every object has a unique identifier.
However, object-oriented models are usually extensions of object-oriented pro-
gramming languages, in which an object has a single type. The only way to
obtain objects with the characteristics of multiple types is to define new classes
that inherit from multiple parent classes (multiple inheritance). In general, such
an approach requires a combinatorial number of classes, corresponding to all
semantically possible combinations of classes. More sophisticated approaches to
multiple inheritance, such as mixins [11], could be used to simulate the entity
algebra, but at the cost of significant conceptual complexity.

Our work can be viewed as an algebraic formulation of a limited description
logic [9, 10, 12], with roles being representable by the constraint language. The
algebraic formulation allows us to explicitly compare the entity algebra with the
relational algebra, and to directly use database engines that implement relational
operations. Our representation of hierarchies is similar to that of description
logics and conventional semantic data models [14]. An interesting direction for
future work is to clarify the expressive power of the entity algebra relative to
various limited description logics.

3 Implementation

We now give a brief overview of our implementation to demonstrate how it sup-
ports the entity algebra. We have implemented two applications, one based on
human anatomy and one based on an archeological excavation. For brevity, we
describe just the archeology application, which is being used for a real archeo-
logical excavation [13].

Our system stores its underlying information in a special format using a com-
mercial relational database system. A query engine interacts with the underlying
database to implement the entity algebra operations. A lightweight client, im-
plemented using Java Servlets, provides a user interface that interacts with the
query engine over the Internet through a browser. Data cannot be directly up-
dated; it may be periodically refreshed from the external source database(s).

The query engine takes a query formulated in the entity algebra, expands all
subexpressions, and converts the entire query into an SQL query over the stored
data. The results of the query are returned to the user interface. The current
implementation uses a very simple constraint language: a basic constraint is an
equality between an attribute value and a constant. Distinct constants are not
equal. Basic constraints can be combined using conjunction and disjunction.

The user interface uses text to express query operations rather than explic-
itly presenting the algebra, so that users familiar with the application domain

(but not with the algebra) can use the system effectively. The interface is de-
signed so that complex queries can be assembled from simpler pieces, where
each piece corresponds to a subexpression in an entity algebra query. Users have
access to past query results when formulating subsequent queries. The user in-
terface supports shortcuts, so that frequently accessed classes or subexpressions
are pre-loaded into the list of past query results. Commonly used relationships
are directly expressed. For example, if selecting objects based on the distance
between the object’s location and some other location is common, the distance
function on points is made available for use within semijoin operations.

The presentation layer is implemented through code plug-ins. As the client
application is implemented using Java servlets, the details and style of the pre-
sentation can include formatted text, images, audio, and video.

Figure 2 shows a screenshot of the client user interface for the query system.
It is a Web-based interface that can be accessed from any conventional Web
browser. There are three frames, A, B, and C. The query manipulation area
(Frame A) lists the classes as well as the entity sets generated from the user
interaction. The content of this frame depends on the number and type of entity
sets, and on the stage of completion of a formulated query. The Tools bar con-
tains the currently available actions. The entity sets listed in this frame can be:
classes (dark grey background), temporary queries (light grey background), or
saved queries (medium-level grey background). This frame is also used to specify
operators and attributes while building a new query. For each class or individual
entity set, the user interface provides type information in form of a sequence of
visual icons. Each type is associated with a number of possible actions either for
building a new query, or obtaining additional information.

After executing a query, the resulting entity set is displayed in the output
frame (Frame B). This frame also provides tools to select the mode of presen-
tation of the entity set. Any entity set can be viewed in this frame by clicking
on the list action icon () in Frame A or Frame B. Frame C contains a simple
browser with which the user can navigate through the parts of the hierarchy
that were used to arrive at a particular entity set.

3.1 Walk-Through Example

In this section, we will demonstrate the workings of the system by example. We
use domain data based on the class hierarchy in Figure 1. We show how the
user can find all Kilns found near medium-sized Roman Pots, i.e., Example 5.
An operation entity set1 near entity set2 is available for all Objects based on the
location attribute and a distance parameter. Knowing this, we can find Kilns
that are near some object in an entity set with a single query. But we must first
build a query that will give us all medium-sized Roman Pots. Capacity is an
attribute of Pots. We can either first find all medium-sized Pots then select only
those that are also Roman, or first find all Roman Pots then select only those
that are medium sized. For this demonstration, we choose the second option.

The interface would start in a state like that of Figure 2, except that only
the first ten classes would appear in Frame A. We use the Combine tool (with

Frame A:
managing and

selecting queries

Frame B:
display output

Frame C:
additional

information
(e.g. long query

description)

classes

temporary queries

saved query

select presentation

query actions

tools

inferred types

class types

Fig. 2. User interface screenshot

the AND option) to effectively intersect the classes “Pots” and “Roman”. The
Combine tool allows ANDs and ORs of an arbitrary number of entity sets. The
interface at this point is shown Figure 3.

As shown in Figure 3, Frame A now contains an additional entity set, and
Frame B describes the set in terms of entity count, and a textual description
of the query that built the set. The newly created entity set also demonstrates
the automatic typing, which is evident from the icons in each entity set entry in
Frame A. Each icon corresponds to one node in the type hierarchy, and the icons
displayed are the union of all icons found on all paths from the entity set to the

Fig. 3. Intermediate Query: Roman Pots

root of the type hierarchy. For example, the Object type is visualized with the

icons , the type Pots has icons , and the Roman entity set contains

icons . The new entity set is of type Pots AND Roman, and therefore is

represented by a collection of all icons for the two classes: .

We can select on the attributes of our intermediate entity set by clicking
on the find action button () for the last row of Frame A in Figure 3. The
attributes displayed are precisely those corresponding to the composite type
of the entity set, and therefore include the capacity attribute. We choose the
condition “capacity=medium”, which appends another entity set to Frame A
corresponding to medium-sized Roman Pots.

To complete the query, we click on the find action button () for the Kiln
class. The options include “Find all Kilns in the same location as . . . ”, which is
chosen. The system then displays all entity sets that could be used correctly to
complete this sentence, i.e., all entity sets having a location attribute. There are
six of these, including the entity set just constructed for medium-sized Roman
Pots, which we select. Figure 4 shows the final result after we have chosen to

Fig. 4. Final Query Result: Kilns near medium-sized Roman Pots

save the query (so that it will appear in the user’s subsequent sessions) using
the name “Kilns near medium-sized Roman Pots”.

Our system resolves types as discussed in Section 2.4. The intersection of
“Pots OR Kilns” and “Pots OR Jewelry” is determined to have the attributes of
Pot, based on a constraint that Pots, Kilns, and Jewelry are mutually exclusive.

4 Conclusions

We have described the entity algebra, a query language designed for posing
queries over complex faceted hierarchies. We have examined its complexity and
expressive power. It achieves linear space and quadratic time data complexity.
Yet it retains most of the expressive power of the relational algebra for queries
returning sets of entities; only projections and joins with cyclic hypergraphs are
“excluded.” An implementation of the language is described, with particular
focus on an application in archeology.

References

1. eXchangeable Faceted Metadata Language. http://www.xfml.org/.
2. Resource description framework (rdf):concepts and abstract syntax.

http://www.w3.org/TR/rdf-concepts/.
3. The FacetMap project. http://facetmap.com.
4. The Flamenco project. http://bailando.sims.berkeley.edu/flamenco.html.
5. Web ontology language. http://www.w3.org/TR/owl-features/.
6. H. P. Adkisson. Use of faceted classification, 2004.

http://www.webdesignpractices.com/navigation/facets.html.
7. M. J. Bates. How to use controlled vocabularies more effectively in online searching.

Online, 12(6):45–56, 1988.
8. M. J. Bates. Indexing and access for digital libraries and the internet: Human,

database, and domain factors. Journal of the American Society for Information
Science, 49(13):1185–1205, 1998.

9. A. Borgida. Description logics in data management. IEEE Transactions on Knowl-
edge and Data Engineering, 7(5):671–682, 1995.

10. A. Borgida, M. Lenzerini, and R. Rosati. Description logics for databases. In The
Description Logic Handbook, pages 472–494. Cambridge University Press, 2002.

11. G. Bracha and W. Cook. Mixin-based inheritance. In Proc. OOPSLA/ECOOP,
ACM SIGPLAN Notices 25(10), pages 303–311, 1990.

12. D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics: Foundations
for class-based knowledge representation. In Proc. of the 17th IEEE Sym. on Logic
in Computer Science, pages 359–370, 2002.

13. L. Giddy. The Survey of Memphis II. Kom Rabi’a: The New Kingdom and Post-
New Kingdom Objects. Egypt Exploration Society, London, 1999.

14. R. Hull and R. King. Semantic database modeling: Survey, applications, and re-
search issues. ACM Computing Surveys, 19(3):201–260, 1987.

15. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems (TOPLAS),
14(3):339–395, 1992.

16. A. Kemper and G. Moerkotte. Object-Oriented Database Management. Prentice
Hall, 1994.

17. S. Nestorov, S. Abiteboul, and R. Motwani. Infering structure in semistructured
data. SIGMOD Record, 26(4):39–43, 1997.

18. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from semistructured
data. In Proceedings of the ACM SIGMOD conference, pages 295–306, 1998.

19. Y. Tzitzikas, A. Analyti, N. Spyratos, and P. Constantopoulos. An algebraic ap-
proach for specifying compound terms in faceted taxonomies. In 13th European-
Japanese Conference on Information Modelling and Knowledge Bases, pages 67–87,
2003.

20. J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer
Science Press, Rockville, MD, 1989. (Two volumes).

21. B. S. Wynar. Introduction to Cataloging and Classification. Libraries Unlimited,
Inc., 8th edition, 1992.

22. M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the
VLDB conference, pages 82–94, 1984.

23. K. P. Yee et al. Faceted metadata for image search and browsing. In ACM CHI,
2003.

