A Syntactic Stratification
Condition Using Constraints

Kenneth A. Ross
Department of Computer Science
Columbia University

New York, NY 10027

kar@cs.columbia.edu

Abstract

Stratification conditions for logic programs aim to ensure a two-valued semantics
by restricting the class of allowable programs. Previous stratification conditions
suffer from one of two problems. Some (such as modular stratification and weak
stratification) are semantic, and cannot be recognized without examining the facts in
addition to the rules of the program. Others (such as stratification and local stratifi-
cation) are syntactic, but do not allow a number of useful examples. A nonsemantic
version of modular stratification, 1.e., whether a program is modularly stratified for
all extensional databases, 1s shown to be undecidable. We propose a condition that
generalizes local stratification, that ensures a two-valued well-founded model, and
that can be syntactically determined from the rules and some constraints on the facts
in the program. We call this condition “Universal Constraint Stratification.” While
not every modularly stratified program is universally constraint stratified, all of
the well-known practical examples of modularly stratified programs are universally
constraint stratified under appropriate natural constraints. In addition, there exist
universally constraint stratified programs that are not modularly stratified.

Keywords: Negation, stratification, semantics, logic programming, constraints,
deductive databases.

1 Introduction

Much recent work has concerned defining the semantics of negation in deductive
databases. The “perfect model semantics” [5] has been generally accepted as
natural, and is the basis for several experimental deductive database systems. Un-
fortunately, the perfect model semantics applies only to programs that are stratified
(or locally stratified). A stratified program is one in which, effectively, there is no
predicate that depends negatively on itself.

Recent work has shown that there are interesting logic programs that are not
stratifiable but for which a natural, unambiguous semantics exists. The well-
founded semantics [9] and the stable model semantics [2] are two (closely related)
proposals for defining the semantics of logic programs, whether stratified or not.
For stratified programs they both coincide with the perfect model semantics.

The well-founded semantics is a three-valued semantics. Literals may be frue,
false or undefined. The stable model semantics i1s also a three-valued semantics in
the sense that the meaning of the program is, in general, determined by a set of (two-
valued) models rather than a single model. However, there are many cases where
a non-stratified program has a total semantics, i.e., a semantics in which every

ground literal is either true or false. Allowing programs that have some literals
undefined may not be desirable, since handling this extra truth value places an
extra burden on the query evaluation procedure. In many cases, two truth values
suffice to model the situation under consideration. So we desire a condition on
the program, more general than stratification, that ensures that the well-founded
semantics is two-valued.

In [6] the present author proposed such a class, which was termed the class of
modularly stratified programs. For modularly stratified programs the well-founded
semantics is total (i.e., makes every ground literal either true or false). The well-
founded semantics and the stable model semantics coincide for modularly stratified
programs, a consequence of the fact that the well-founded model is total. Mod-
ularly stratified programs also allow subgoal-at-a-time evaluation [6]. A program
1s modularly stratified if and only if its mutually recursive components are locally
stratified once all instantiated rules with a false subgoal that is defined in a “lower”
component are removed.

Unfortunately, the definition of modular stratification is semantic rather than
syntactic. Whether a program is modularly stratified depends, in general, on the
semantics assigned to its predicates. This contrasts with stratification, which is a
syntactically recognizable condition.

One might try to make modular stratification nonsemantic by asking whether
a set of rules is modularly stratified for all possible extensional databases. We
prove that it is undecidable in general to determine whether a set of rules is
modularly stratified for all possible extensional databases. Thus this version of
modular stratification cannot be detected in general, and we need to look instead
for a syntactically recognizable condition.

In the context of deductive databases, where the rules and schema-level informa-
tion 1s small compared to the data, it would be undesirable to make the stratification
condition depend on the data. We should try to come up with a form of stratification
that can be defined using only the program itself and some schema-level information.

In this paper we attempt to define a condition that is more general than local
stratification, but which can be defined syntactically, without computing the seman-
tics of the program “along the way.” In order to do so, we allow the programmer to
specify some schema-level constraints on the extensional database (EDB) predicates.
The constraints we allow are monotonicity constraints [1]. Monotonicity constraints
specify that one argument of a predicate is less than another according to some
partial order.

Our approach can be outlined as follows:

e Specify a set of monotonicity constraints on the EDB predicates. Such con-
straints are often natural, restricting an EDB relation to be acyclic, for
example, when it represents a part/subpart hierarchy.

e Infer new monotonicity constraints on the intensional database (IDB) predi-
cates using a sound inference mechanism.

e Use these constraints to analyze all recursive loops through negation. If every
recursive loop through negation needs an unsatisfiable constraint to hold in
order for the loop to go through, then we can conclude that there is no
“real” recursion through negation. Programs with this property are called
“universally constraint stratified.”

It is not obvious that this is a syntactic condition, i.e., that it can be effectively
tested and that it depends on just the IDB and schema-level information. In the

outline above, 1t is conceivable that we may need to check infinitely many recursive
loops through negation. We demonstrate that universal constraint stratification can
be checked algorithmically.

Not every modularly stratified program is universally constraint stratified. How-
ever, we find, perhaps surprisingly, that all of the common examples of modularly
stratified programs, including all of the examples from [6], are constraint stratified.
Further, there are some constraint stratified programs that are not modularly
stratified.

We prove that constraint stratified programs have a two-valued well-founded
semantics, and that constraint stratification generalizes local stratification.

2 Terminology

We consider normal logic programs without function symbols [4], also known as
“Datalog” programs with negation, and follow standard logic-programming con-
ventions.

If a predicate is defined only by facts, then we say that the predicate is an
extensional database (EDB) predicate; otherwise the predicate is an intensional
database (IDB) predicate. we shall make the assumption that programs are range
restricted, 1.e., every variable occurring in the head of a rule or in a negative literal
in the body also occurs in a positive literal in the body. Such programs have also
been called allowed or safe.

We assume that an infinite universe U is given. U should contain all constant
symbols that can appear in all possible programs and EDB relations. In particular,
U will include the Herbrand universe of any program/EDB pair. ¢ will function as
the domain under consideration, with terms interpreted freely. Even though I/ is
infinite, only finitely many elements of ¢/ can be mentioned in any program. When
we talk about “instantiated” atoms and rules, we mean that values from I are
substituted for all variables in the atom or rule.

A program is stratified if there is an assignment of ordinal levels to predicates
such that whenever a predicate appears negatively in the body of a rule, the
predicate in the head of that rule is of strictly higher level, and whenever a predicate
appears positively in the body of a rule, the predicate in the head has at least that
level. A program is locally stratified if there 1s an assignment of ordinal levels to
ground atoms such that whenever a ground atom appears negatively in the body of
an instantiated rule, the head of that rule is of strictly higher level, and whenever
a ground atom appears positively in the body of an instantiated rule, the atom in
the head has at least that level.

The mutually recursive components (also called strongly connected components)
of a program have a natural relation associated with them: Fy} T Fb if some
predicate belonging to F} is called by a predicate in F». [must be an acyclic
relation, since if F1 C Fs C --- C F,, C Fy for some n, then none of Fy, ..., F, would
be complete. We refer to <, the transitive closure of C, as the dependency relation
between components. < is a partial order, with the property that a predicate
belonging to a component F' is defined in terms of predicates that either belong to
F', or belong to a component F’ where F' < F.

Definition 2.1: The enwvelope of a program P is P with all negative subgoals
removed. O

3 Modular Stratification

We now present the concept of modular stratification, originally defined in [6].

Definition 3.1: (Reduction of a component) Let F' be a program component, and
let S' be the set of predicates used by F'. Let M be a two-valued interpretation over
the universe U for the predicates in S.

Form I;4(F'), the instantiation of F' with respect to U, by substituting terms
from U for all variables in the rules of F' in every possible way. Delete from Ip;(F)
all rules having a subgoal ¢ whose predicate in S, but for which @ is false in M.
From the remaining rules, delete all (both positive and negative) subgoals having
predicates in S (these subgoals must be true in M) to leave a set of instantiated
rules Ry (F). We call Ry(F) the reduction of F modulo M. D

Definition 3.2: (Modular Stratification) Let < be the dependency relation be-
tween components. We say that the program P is modularly stratified if, for every
component F' of P, (a) There is a total well-founded model M for the union of all
components F' < F', and (b) The reduction of F' modulo M is locally stratified. O

Theorem 3.1: ([6]) Every modularly stratified program has a total well-founded
model that is its unique stable model. 1

3.1 Examples

We present a number of examples from [6] of modularly stratified programs. Note
that none of these examples is locally stratified.

Example 3.1: Consider the program P consisting of the rule
w(X) —m(X,Y), ~w(Y)

together with some facts about m. P is a game-playing program in which a position
X is “winning” [w(X)] if there is a move from X to a position ¥ [m(X,Y)] and YV
is a losing position [-w(Y)]. P is modularly stratified when m is acyclic, i.e., when
the game cannot have repeated positions. O

Example 3.2: This example concerns the operation of a complex mechanism that
1s constructed from a number of components, each of which may itself have smaller
components. We adopt the convention that a mechanism is not a component of
itself — we are only interested in smaller, simpler components. The mechanism 1s
known to be working either if it has been (successfully) tested, or if all its components
(assuming it has at least one component) are known to be working. We may express
this in the following component F':

working(X) — tested(X)
working(X) — part(X,Y), ~has_suspect_part(X)
has_suspect_part(X) — part(X,Y), ~working(Y")

Let M be the least model of the rules for part and tested. Rar(F') is locally stratified
if and only if part is acyclic. Acyclicity is a natural constraint, since a mechanism
that was a sub-part of itself would presumably indicate a design error. O

Modular stratification can be extended to aggregation and set-grouping.

Example 3.3: Suppose we have a relation part(X,Y, N) that is true when X has
N copies of Y as an immediate subpart. (Again, we adopt the convention that we
are only interested in smaller, simpler subparts.) The “parts-explosion” problem
is to determine, for an arbitrary pair of parts x and y, how many y’s appear in .
We can solve the parts-explosion problem using the following program.

in(X, Y, null, N) — part(X,Y, N)
in(X,Y, Z,N) — part(X, 7, P), contains(Z, Y, M), N = P+ M
contains(X,Y,N) — N=>"P:m(X,Y, 7, P)

(The sum in the third rule is grouped by X and Y; for each X and ¥ we sum all
corresponding P.) Assuming part is acyclic in its first two arguments, the program
is modularly stratified with respect to aggregation. O

3.2 Modular Stratification is Undecidable

While modular stratification is a semantic condition, one may hope to achieve a
nonsemantic condition by asking “Is program P modularly stratified for all EDBs?”
The main result of this section is that this version of modular stratification is
an undecidable property of programs. As a result, one cannot, in general, recognize
when a datalog program is modularly stratified for all EDBs. To establish this
result we need a preliminary lemma, which uses a construction of Shmueli [8].

Lemma 3.2: It is recursively unsolvable to determine, for an arbitrary Datalog
program whether a given relation is transitively closed for all possible assignments
of relations to EDB predicates.

Proof: (Sketch) The first step is to show that testing whether a context free lan-
guage L (not including the empty string!) has the property that LL C L, is
undecidable. This proof uses standard techniques from [3].

The next step is to perform a translation from context-free grammars to datalog
programs using Shmueli’s construction. Containment of the corresponding context-
free languages can then be expressed as the containment of a certain binary predicate
¢ 1n the transformed program. Suppose that ¢ i1s the predicate corresponding to the
grammar for L, and that ¢’ is the predicate corresponding to a derived grammar
for LL. Then the structure of the transformation is such that ¢’ is the composition
of ¢ with itself, and that LL C L if and only if ¢ is transitively closed. [

Theorem 3.3: It is recursively unsolvable to determine whether a datalog program
1s modularly stratified for all EDBs.
Proof: Consider a program P containing the rule

p(X) — (X, V), (Y, 7), (X, Z), ~p(X)

together with some Datalog rules defining the IDB predicate ¢, but not mentioning
p. Then P is modularly stratified if and only if £ 1s transitively closed. Hence deter-
mining whether a program is modularly stratified for all values of EDB predicates
is undecidable, by Lemma 3.2. [

Given that modular stratification for all EDBs is an undecidable property of
programs, we need to find a syntactically recognizable condition that includes most
of the useful modularly stratified programs discussed in the literature.

1We make the technical restriction that our context-free languages do not contain the empty
string for compatibility with Shmueli’s construction.

4 Monotonicity Constraints

Looking at the examples of Section 3.1, it seems that in each of the examples there
is a predicate that should be restricted to an acyclic relation for semantic reasons.
Thus, asking whether the program of Example 3.2 has a two-valued model for all
possible values of EDB predicates is clearly the wrong question. The part relation
represents a part hierarchy, and therefore can only be an acyclic relation. We would
like to phrase the question as whether a program has a two-valued well-founded
model for all EDB relations that satisfy some acyclicity constraints. In this section
we present the notion of monotonicily consiraints from [1] in order to be able to
phrase such constraints. We shall also look at the problem of inferring constraints
on IDB predicates given constraints on the EDB predicates.

Definition 4.1: (Monotonicity Constraint) Let F' be a logical formula and let S
be the set of variables occurring in F'. A monotonicity constraint is a statement
of the form F : X <,,. Y, where X and Y are either members of S, or constants
in the language. An equality constraint is a statement of the form F: X =,. V. A
disjunctive constraint is a digjunction of conjunctions of monotonicity and equality
constraints on a single formula F. If F' : C is a disjunctive constraint, then we
refer to C' as the condition of the constraint, and refer to F' as the formula of the
constraint. The empty disjunction i1s a constraint that is never satisfied. O

The intuition behind a monotonicity constraint ' : X <,,. Y is that for some partial
order, argument X (or the constant X) is less than argument ¥ (or the constant
Y) in each tuple of variables satisfying F'. If X and Y are both constants, and
X < Y is violated, then there are no tuples satisfying F'. Equality constraints
represent identity in U; a =, a for every a € U but a #.. b for every distinct pair of
constants @ and b in Y. We shall write F' : (C1AC?2) rather than (F : CL)A(F : C2),
and similarly for disjunction (V).

Note that <. does not represent a fixed partial order; the partial order may
depend on the database instance. If < is a fixed partial order, and C'1s a disjunctive
constraint, then we let C'c represent a version of C' in which <,,. is replaced by
<,and =, is replaced by =. (“=" represents syntactic equality.)

We shall assume in this paper that all partial orders are finite and antireflezive,
so that ¢ £ ¢ for any constant ¢. In the context of function-free programs, the
finiteness of the partial order is reasonable given the finiteness of the database. We
shall use the term “constraint” to mean a disjunctive constraint, unless otherwise
noted.

We have chosen a slightly more general notation for monotonicity constraints
than that used in [1]. In [1], the authors effectively restrict the formula F' in the
definition above to be a single atom with distinct variables as arguments. We shall
need the more general notation later in the paper.

Lemma 4.1: ([1]) Tt can be algorithmically determined for two disjunctive con-

straints C' and D, whether C' = D. |

Definition 4.2: Let C be a constraint with formula F', and let S be the set of
variables appearing in F'. Let 5" C S. The projection C’ of C onto S is a constraint
with formula F' and with the following properties:

e C=C" and
e If D is another constraint on the variables in S’ and if C' |= D, then C’ | D.

In other words, the projection of a constraint is the strongest possible constraint on
the smaller set of variables that follows from the original constraint. O

Lemma 4.2: ([1]) The projection of a constraint always exists, is unique up to
equivalence, and can be effectively computed. 1

Example 4.1: Let F' be the predicate p(X,Y, 7, W), and let C' be the constraint
Fi(a<me D)NX <me Z2)NZ <me Y)IA (Y <me YA (W =cc) A(W <ime b)
where a, b and ¢ are constants. Then the projection C” onto {X,Y} is given by
Fi(a<me Y)AX <me YI)A Y <pme) A (e <me b) D

Definition 4.3: A substitution o from a set of variables S to a range V is a map
from elements of S to values in V. A constraint C' is satisfiable if there exists a
substitution ¢ and a partial order < such that C'co is true; otherwise C' is said to
be unsatisfiable. O

Lemma 4.3: ([1]) A constraint C' is unsatisfiable iff it is inconsistent. [

Our context is more general than that of [1] since we allow negative subgoals.?
While Brodsky and Sagiv’s method is sound and complete for datalog programs, it
may fail to detect monotonicity constraints for programs like

p(X,Y) —e(X,Y),me(X,Y).

Even though there are no restrictions on relation e, the constraint p(X,Y) : X <. Y
is trivially satisfied because p must be empty. While one might imagine that
inference rules could be added to detect rules of the form above, one can show
that the inference problem for monotonicity constraints in programs with negation
is undecidable using a construction similar to that used in Theorem 3.3.
Nevertheless, Brodsky and Sagiv’s algorithm is still sound if we apply it to the
envelope of a program P. By removing all negative subgoals we can only enlarge the
well-founded model (making atoms that were previously false or undefined true).

Lemma 4.4: ([7]) Let P be a program and let P’ be its envelope. Then the least
model of P’ contains all atoms that are either true or undefined in the well-founded

model of P. |
Thus, any constraints that hold for the envelope of P certainly hold for P.

Example 4.2: Let P be the program
p(X,Y) —e(X,Y)
p(X,)Y) —p(X,2), f(Z,Y),-p(Z,Y)
and let E' be the constraint set {e(X,Y) : Y <pme X, f(X,Y) 1Y <ne X} on the
EDB predicates. The envelope of P is
p(X,Y) —e(X,Y)
p(X,Y) —p(X, 2), f(2,Y)
from which p(X,Y) : Y <. X is derivable using the techniques of [1]. Thus,
p(X,Y) Y < X is true in P given F. O

Definition 4.4: Let P be a program, F a constraint set on the EDB predicates of
P, and C a constraint set on the IDB predicates of P. We say that C' U E is sound
for P if all constraints in C' are consequences of F given P. O

?Negative subgoals alone do not imply any monotonicity or equality constraints, since the
complement of an antireflexive partial order is not necessarily an antireflexive partial order.

4.1 Constraints on Rules

So far the formulas F' in constraints have been atoms with distinct variables as
arguments. We shall also be interested in allowing rules as values for F'. Specifically,
suppose 7 is a rule and S is the set of variables in 7. Then we shall be interested in
constraints of the form

r:Y <m. Z and r:Y=..7

where Y and Z are either constants or members of S.

We can infer a constraint on rule r from a constraint set D on the predicates
appearing positively in the body of r. For example, given the constraints p(X,Y) :
Y <me X, (XYY 1Y < b, 8(X) 1 X =cca, s(X,Y,7) : Y =.. Z and the rule r
with body p(W, X), ¢(X,Y),t(Y), s(Y,a,V) we can infer the constraint

T (X <me W) A (Y <me b) A (Y =ec Cl) A (V —ec Cl).

There is a sound, complete, and effective way to perform this inference using
techniques from [1]. We shall assume that we have performed this inference for
every rule r.

We may also want to “go the other way” by projecting a constraint on a rule
onto the arguments of some of its atoms.

Definition 4.5: Let r be a rule, and let D be a set of constraints on the predicates
in 7. We choose two occurrences of predicates in r: the head predicate and a body
predicate. Let pp be the head predicate occurrence, and ¢ be the body predicate
occurrence. (If there is more than one occurrence of ¢ in the body then we need
to specify which one.) If ¢ takes m arguments, then we invent m new variables
gy - 1,...,qp : m. Similarly, if p takes j arguments, then we invent j new variables
pr:l,. . pniy.

Let F' be the formula foo(qs = 1,...,q5 : mypp : 1,... pp : J) where foo is some
new, arbitrary predicate symbol. Let C' be the constraint of r given). Append
(i.e., conjoin) to the condition of C' the conjunction

(@ 1l=¢g)N Al m=¢")A(pr:1=p)YA-Apn:j=p)

where ¢’ is the sth argument of ¢; in r and p’ is the ith argument of py, in r.
After transforming the above constraint to disjunctive normal form, we project

it onto the variables {q; : 1,...,q5 : m,pn : 1,...,pn : j} to get a new constraint

C". Finally, the formula in C” is replaced by F'. We call C’ the projection of C' onto

(ph, qs), denoted mp (v, pp, qp). O
Example 4.3: Let r be the rule
W, Y) = p(W, X), ¢(X,Y), s(Y)
and suppose we have the constraint C' on rule » given by
7 (X <me WIA(Y <me) A (Y =cc a)
as above. We project r onto (tp, sp). After appending the conjunction to C' we have
7 (X <me WHAY < OAY =ce a)A(tp : L =ee WIAIL 1 2= Y)A(sp : 1 =, V)

which 1s in disjunctive normal form. After the projection and after replacing the
formula we get

Joo(tp - Ltn 02,80 1)t (T 1 2<me D)A(n :2=cca) A(th :2=ccsp: 1) O

5 Universal Constraint Stratification

In this section we define a stratification condition that is general enough to include
all of the examples from Section 3.1 originally from [6], while also including some
programs that are not modularly stratified. In a later section, we shall demonstrate
that the condition is syntactic.

The intuition behind our stratification condition is that we shall start with a set
of constraint formulas describing the EDB of a program. Given e(X,Y) : Y < X
as a constraint, we know that e represents an acyclic relation. As discussed in
Section 3.1, acyclicity is often a very natural restriction to place on a relation.

In general, we may also infer some predicate constraints for the IDB relations.
For example, the constraint p(X,Y) : Y <. X is a consequence of the program

p(X,Y) —e(X,Y)
p(X,)Y) —e(X,7),p(Z,Y)

and the constraint on e. Thus we shall have a set C' of constraints describing the
EDB and IDB predicates of the program.

From this point we shall try to demonstrate that a recursive loop through
negation is impossible. This is done by showing that when a predicate p recurses
through negation, « is impossible according to the constraints that the arguments
of p in the head are the same as the arguments of p in the body. We must consider
both direct recursion through negation, and recursion through negation via other
mutually recursive predicates.

Definition 5.1: Let D be a set of constraints on the predicates of program P.
We construct a graph, called the predicate constraint graph of P with respect to D,
whose nodes are predicates from P. Arcs in the predicate constraint graph have
two properties: a polarity, either positive or negative, and a constraint. There is an
arc from ¢ to p with positive polarity if

(r): p(--) = q(-),

is a rule in P and p and ¢ are mutually recursive. There is an arc from ¢ to p with
negative polarity if
(P): ploe) =g),

is a rule in P and p and ¢ are mutually recursive. An arc corresponding to rule r is
labeled with 7p (7, pp, q3). O

Graphically, we shall illustrate a positive arc as a solid arrow, and a negative arc as
a dashed arrow. The constraint of an arc will be shown as a label on the arc. We
shall omit the conjunction symbol and the constraint’s formula in the graphs when
the meaning is clear.

Example 5.1: Consider the program P; given by

(1) p(a) ——p(b)
(r2) p(b) — p(a)

with no additional constraints. The predicate constraint graph of this program is

ph:l— %\/ pbl_ b

Consider the program P» given by

(1) pla) —e(a,b),~p(b)
(r2) p(b) — e(b, a), p(a)

with the monotonicity constraint {e(X,Y) : (X < Y) V (X =.. Y)}. Then the
predicate constraint graph is

Pyl Zoc @ Pp:1 =oc @ phil Zec @ Ph:l Zoc @

ph:l:ecb OR phl :ecb ‘ \C/\ pb:l:ecb OR pb:l:ecb
a< b

b<,.a azechb a=gcb

5.1 Composing Constraints

In this section we show how to compose constraints on arcs of the predicate con-
straint graph. The notion of constraint composition will be used to define our
stratification condition.

Definition 5.2: Let D be a set of constraints on predicates of a program P. Let
S1 = 7wp(ri,pa,q) and S2 = 7wp(re,qn,ts) be constraints. Let j,om,k be the
respective arities of p,q,t. Let 7 and C5 be the respective conditions of S;
and S;. The sequential composition of Sy and Sa, denoted wp(ry o ra,pp,tp), is
defined as follows.?

First, if there is any name conflict between p;, and g3, or between ¢ and ¢, then
we replace the symbol ¢ with a new symbol ¢’, of the same arity as q, consistently
in 57 and Ss. The condition of the sequential composition is the projection onto
{pn 1, - pn:g,te o 1, 4y k} of the disjunctive normal form of

CyNCaAN(gn:l=coqp:)N Algn i m=ccqp :).

The sequential composition’s formula is foo(pn : 1, -, pp 1 4,1 1 1, -, t5 = k). The
sequential composition of a sequence of constraints is defined as the successive pair-
wise sequential composition of its elements. Sequential composition is associative
(up to equivalence): thus the order of pairwise composition is unimportant. O

Definition 5.3: Let D be a set of constraints. Let wp(r1,ph,p;), mp(rs, p3,p3),

.., ®p(rn, P}, p) be a sequence of constraints, where each p' is a (not necessarily
distinct) predicate symbol, and each r; is a (not necessarily distinct) rule. The
cyclic composition of this sequence is denoted by p(ry,---,r,) and is defined as
follows. Let C' be the condition of the sequential composition

7p(rio---or,, P, DE).

The condition of the cyclic composition i1s given by the projection onto the empty
set of variables of the disjunctive normal form of the formula

C'/\(p%b:1:601),%:1)/\~~~/\(p}b:k:€cp,%:k).

where the arity of p! is k. The formula of the cyclic composition is the variable-free
formula foo. O

3Strictly speaking, our notation should specify the particular occurrence of gy in 7. We omit
this information in order to make the notation simpler.

Example 5.2: Consider the programs P; and P from Example 5.1. For P, the
sequential composition my(ry o 72, pn, ps) is the projection of

(pr1=ce)N (py : 1=cca) AN (Pl i 1=cea) A(pp: L=ce)N (P} i 1 =ce Py 0 1)
onto (pn,ps). Note the renaming of the intermediate p to p’. The result is
(ph i 1=ccb) A(py - 1=cc).
The cyclic composition is then the projection onto the empty set of variables of
(prh i l=ceb)A(pp:1=ccb)A(pn:1=pp: 1)

which can be represented as the trivially satisfiable constraint b =.. b.
For Pa, let D be the constraint set {e(X,Y) : (X <me V) V(X = Y)}. One
may verify that the cyclic composition ép (r1,72) has condition

(b<me @ A a<me D)V <mea A a=ceD)V(a=ceb A a<me)V(a=cc b A a=c. b)

which is unsatisfiable since <,,. represents a strict partial order, and since different
constants cannot be equal under =... O

5.2 Universal Constraint Stratification

Definition 5.4: Let D be a sound set of constraints on the predicates in P, and
let G be the predicate constraint graph of P with respect to). We say that
P 1s universally constraint stratified with respect to D if for every cycle in the
predicate constraint graph that contains a negative arc, the cyclic composition of
the constraints on the arcs in the cycle is unsatisfiable. O

Example 5.3: Consider once more the programs P; and P> from Example 5.1. As
we saw in Example 5.2, P; has a cycle with a negative arc whose cyclic composition
yields a satisfiable constraint. This cycle corresponds to the intuition that p(a)
depends negatively on itself.

On the other hand, no cycle containing a negative edge in P is satisfiable. We
leave it as an exercise for the reader to verify this claim. As a consequence, Ps 1s
universally constraint stratified with respect to the given constraints. The intuition
here is that even though p(a) apparently depends negatively on itself (through p(b)),
in order to achieve this recursion through negation one would need both e(a, b) and
e(b, a) to simultaneously be true. These two atoms cannot be simultaneously true
given e(X,Y) 1 (X < V)V (X =, Y). O

We now consider the examples from Section 3.1

Example 5.4: Given C' = {m(X,Y) : (Y < X)} the program of Example 3.1
has predicate constraint graph

(™

/\)Wb.l “mc Wh:1

The program is universally constraint stratified with respect to C' because all
constraints of the form

(w) : 1 <mewp L) A(w) s L=cow) : D)A (W} 1 1 <pme wh t DA
(w :l=cew DA Awp 1 L <pme W' s DA (wp 1 1= wp, 2 1)

(corresponding to traversing the negative arc as many times as there are primed
versions of the w predicate) are unsatisfiable.

Given the constraint set C' = {parf(X,Y) : (Y <me X)}, the program of
Example 3.2 has predicate constraint graph

workingp:1 <mc has_suspect_partp:1
— T T T =

has_suspect_part
~___ 7

has_suspect_partiy1 =,. workingp:1

and is universally constraint stratified with respect to C since (as the reader may
verify) the cyclic composition of the constraints on the cycles is unsatisfiable.

One can easily generalize the notions above to aggregation if one labels an edge
as negative if it corresponds to recursion through either aggregation or negation.
In that case, the predicate constraint graph for the program of Example 3.3 with
respect to the constraint set C' = {part(X,Y) : (Y <me X)} is

inp:1=_. containsy1

’—-——\
//

containsp:1 < . iny:l

(In the graph above we have left out some constraints on the arcs for simplicity of
presentation. For example, in both constraints there should be a conjunct equating
the second arguments of contains and in.) Again, the program is universally
constraint stratified with respect to C'. O

So far, every universally constraint stratified program we have seen has been
modularly stratified. The following example is a program that is universally con-
straint stratified but not modularly stratified.

Example 5.5: Let P be the program

p(X,Y) —e(X)Y)
p(X,Y) %p(X,Z),f(Z,Y),—!p(Z,Y)

and let the constraint set {e(X,Y) : (V <me X), f(X,Y) 1 (V <me X), p(X,Y) :
(Y <me X)} be denoted by C'. Note that p(X,Y) : (Y < X) is derivable for P
from {e(X,Y) : (Y <me X), f(X,Y) 1 (Y <me X)} as discussed in Example 4.2.
Then the predicate constraint graph for P is (omitting some irrelevant parts of the
constraints)

Ph:il=,. Pp:l (>Cﬁ\pb 1< Pyl @ @

whose negative cycles have unsatisfiable cyclic compositions. The program is not
modularly stratified, since it may be possible to have the following rule instance in
its reduction:

pla,b) — p(a,a), pla,b)

The rule instance above prevents the reduction from being locally stratified. Since
the reduction looks only at lower-component predicates, there is no way to notice
that p(a, a) will never be satisfied. O

An example of a program that is modularly stratified but not constraint stratified
is the single-rule program p «— ¢, —p.

Theorem 5.1: Let C' be a sound set of constraints on a program P, and let E be
the constraints from C' on EDB predicates. If P is constraint stratified with respect
to ', and if there exists a partial order < for which the EDB satisfies £, then P
has a two valued well-founded model. ||

While the converse of Theorem 5.1 is not necessarily true, we can show the
following result.

Theorem 5.2: Let C be a sound set of constraints on a program P, and let E be
the constraints from C' on EDB predicates. If P is not constraint stratified with
respect to (', then there exists a partial order < and an EDB satisfying E. such
that

e There is some set P’ of instantiated rules from P whose positive body atoms
satisfy C«, and

e P’ is not locally stratified.

Theorem 5.2 implies that if a program is not constraint stratified then there
is a potential loop through negation that cannot be ruled out on the basis of the
constraints.

Theorem 5.3: Every (range-restricted, function-free) locally stratified program is
universally constraint stratified with respect to the empty set of constraints. |

6 Universal Constraint Stratification is Syntactic

In this section we demonstrate that universal constraint stratification is syntactic.
We say that a condition on logic programs is syntactic if (a) The condition can be
determined algorithmically, i.e., it is a decidable property, and (b) The condition
depends only upon the IDB and schema-level information about the EDB. By
schema-level information we mean a fixed collection of information about the EDB
that does not change as the EDB gets larger. In particular, the constraints we use
in this paper fit this description.

Since the IDB and schema-level information is likely to be small compared to
the size of the EDB, checking that a syntactic condition is satisfied is likely to be
easier than a condition that needs to examine the EDB. Further, while the EDB

may change frequently over time, the IDB and schema-level information is likely to
remain constant over relatively long periods of time, and hence a syntactic condition
does not have to be re-checked often.

It is clear that universal constraint stratification satisfies the second condition
for being syntactic, since it depends upon only the IDB and the constraints. We
need to verify that it is algorithmically decidable.

There are two potential issues that need to be resolved in order to demonstrate
that universal constraint stratification is decidable. First, we need to check that
each of the steps used in transforming constraints can be performed algorithmi-
cally. These transformations include inferring constraints, performing projections,
performing compositions, and testing for satisfiability. That each of these steps is
algorithmic follows from Lemmas 4.2 and 4.3, and from the soundness, completeness,
and decidability of the constraint inference problem as shown in [1].

The second 1ssue is that universal constraint stratification requires that all cycles
with a negative edge have constraints whose cyclic composition is unsatisfiable.
Even for simple programs it is possible that there are infinitely many such cycles.
Thus we need to demonstrate that we can determine the unsatisfiability of all cycles
in finite time.

We can resolve the second issue by observing that for a given program P and a
given constraint set D, there are finitely many nonequivalent constraints that use
constants from P and D and any fixed set of variables. One can algorithmically
determine whether two constraints are equivalent, by Lemma 4.1.

The cyclic composition # is formed by taking a sequential composition 7 and
adding some constraints. 7 may be replaced by any equivalent constraint and
yield an equivalent cyclic composition . Thus we can try to find all sequential
compositions, and then use these to form the cyclic compositions and test for
unsatisfiability. We need check only finitely many sequential compositions by using
the following procedure:

1. For each node in the predicate constraint graph, construct all simple cycles,
and calculate the sequential composition on those cycles.

2. For each node in the predicate constraint graph, construct all cycles with
exactly one sub-cycle, and calculate the sequential composition on those cy-
cles. If at least one of these cycles yields a new sequential composition then
continue. Otherwise, stop; all other cycles will have a sequential composition
that will be equivalent to a previously derived one.

3. Repeat the previous step for 2 sub-cycles, 3 sub-cycles, and so on. Since there
are only finitely many inequivalent constraints, we must eventually terminate.

Theorem 6.1: Universal constraint stratification is syntactic. ||

7 Related Work

In [7] the present author defined the notion of “constraint stratification.” That
notion is more restricted than universal constraint stratification in two ways.
First, constraint stratification requires that a partial order < be specified n
advance. Thus, for constraint stratification, it is not possible to simply state that
the relation partis an acyclic relation; one must know the partial order with respect
to which partis acyclic. This is often an unreasonable restriction since we may want
to assume that partis an acyclic relation representing a part hierarchy that defines

the partial order. We do not want to have to commit to a partial order that may
need to be changed when the EDB changes.

In this paper we do not suffer from this problem because we define universal
constraint stratification in terms of an arbitrary partial order. This extension leads
to much of the technical complexity of this paper.

A second way that this paper improves upon [7] is that, unlike [7], one does not
need to check all instances of a set of rules in order to determine universal constraint
stratification. One applies constraint techniques to the uninstantiated rules.

As far as the author is aware, there is no other proposed stratification condition
on datalog programs that simultaneously (a) Is syntactic, (b) Generalizes local
stratification, (¢) Ensures a two-valued well-founded model, and (d) Admits the
examples from [6] (Section 3.1) of useful programs that are not locally stratified.

Acknowledgements

This research was supported by NSF grants IRI-9209029 and CDA-90-24735, by
a grant from the AT&T Foundation, by a David and Lucile Packard Foundation
Fellowship in Science and Engineering, and by a Sloan Foundation Fellowship.

References

1] A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalo
g g
programs. In Proceedings of the Eighth ACM Symposium on Principles of
Database Systems, 1989.

[2] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. Fifth International Conference and Symposium on Logic Programming,

1988.

[3] J. E. Hoperoft and J. D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley, Reading, MA, 1979.

[4] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,
2nd edition, 1987.

[5] T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193-216, Los Altos, CA, 1988. Morgan Kaufmann.

[6] K. A. Ross. Modular stratification and magic sets for Datalog programs
with negation. In Proceedings of the Ninth ACM Symposium on Principles of
Database Systems, 1990. Full version to appear in J.ACM.

[7] K. A. Ross. Constraint stratification. In Proceedings of the ICLP Workshop
on Deductive Databases, pages 101-116, June 1994. Available as German GMD
Society Publication Series number 231, ISBN 3-88457-231-8.

[8] O. Shmueli. Decidability and expressiveness aspects of logic queries. In
Proceedings of the Sizth ACM Symposium on Principles of Database Systems,
1987.

[9] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. JACM, 38(3):620-650, 1991.

