
A Syntactic Strati�cationCondition Using ConstraintsKenneth A. RossDepartment of Computer ScienceColumbia UniversityNew York, NY 10027kar@cs.columbia.eduAbstractStrati�cation conditions for logic programs aim to ensure a two-valued semanticsby restricting the class of allowable programs. Previous strati�cation conditionssu�er from one of two problems. Some (such as modular strati�cation and weakstrati�cation) are semantic, and cannot be recognized without examining the facts inaddition to the rules of the program. Others (such as strati�cation and local strati�-cation) are syntactic, but do not allow a number of useful examples. A nonsemanticversion of modular strati�cation, i.e., whether a program is modularly strati�ed forall extensional databases, is shown to be undecidable. We propose a condition thatgeneralizes local strati�cation, that ensures a two-valued well-founded model, andthat can be syntactically determined from the rules and some constraints on the factsin the program. We call this condition \Universal Constraint Strati�cation." Whilenot every modularly strati�ed program is universally constraint strati�ed, all ofthe well-known practical examples of modularly strati�ed programs are universallyconstraint strati�ed under appropriate natural constraints. In addition, there existuniversally constraint strati�ed programs that are not modularly strati�ed.Keywords: Negation, strati�cation, semantics, logic programming, constraints,deductive databases.1 IntroductionMuch recent work has concerned de�ning the semantics of negation in deductivedatabases. The \perfect model semantics" [5] has been generally accepted asnatural, and is the basis for several experimental deductive database systems. Un-fortunately, the perfect model semantics applies only to programs that are strati�ed(or locally strati�ed). A strati�ed program is one in which, e�ectively, there is nopredicate that depends negatively on itself.Recent work has shown that there are interesting logic programs that are notstrati�able but for which a natural, unambiguous semantics exists. The well-founded semantics [9] and the stable model semantics [2] are two (closely related)proposals for de�ning the semantics of logic programs, whether strati�ed or not.For strati�ed programs they both coincide with the perfect model semantics.The well-founded semantics is a three-valued semantics. Literals may be true,false or unde�ned. The stable model semantics is also a three-valued semantics inthe sense that the meaning of the program is, in general, determined by a set of (two-valued) models rather than a single model. However, there are many cases wherea non-strati�ed program has a total semantics, i.e., a semantics in which every

ground literal is either true or false. Allowing programs that have some literalsunde�ned may not be desirable, since handling this extra truth value places anextra burden on the query evaluation procedure. In many cases, two truth valuessu�ce to model the situation under consideration. So we desire a condition onthe program, more general than strati�cation, that ensures that the well-foundedsemantics is two-valued.In [6] the present author proposed such a class, which was termed the class ofmodularly strati�ed programs. For modularly strati�ed programs the well-foundedsemantics is total (i.e., makes every ground literal either true or false). The well-founded semantics and the stable model semantics coincide for modularly strati�edprograms, a consequence of the fact that the well-founded model is total. Mod-ularly strati�ed programs also allow subgoal-at-a-time evaluation [6]. A programis modularly strati�ed if and only if its mutually recursive components are locallystrati�ed once all instantiated rules with a false subgoal that is de�ned in a \lower"component are removed.Unfortunately, the de�nition of modular strati�cation is semantic rather thansyntactic. Whether a program is modularly strati�ed depends, in general, on thesemantics assigned to its predicates. This contrasts with strati�cation, which is asyntactically recognizable condition.One might try to make modular strati�cation nonsemantic by asking whethera set of rules is modularly strati�ed for all possible extensional databases. Weprove that it is undecidable in general to determine whether a set of rules ismodularly strati�ed for all possible extensional databases. Thus this version ofmodular strati�cation cannot be detected in general, and we need to look insteadfor a syntactically recognizable condition.In the context of deductive databases, where the rules and schema-level informa-tion is small compared to the data, it would be undesirable to make the strati�cationcondition depend on the data. We should try to come up with a form of strati�cationthat can be de�ned using only the program itself and some schema-level information.In this paper we attempt to de�ne a condition that is more general than localstrati�cation, but which can be de�ned syntactically, without computing the seman-tics of the program \along the way." In order to do so, we allow the programmer tospecify some schema-level constraints on the extensional database (EDB) predicates.The constraints we allow are monotonicity constraints [1]. Monotonicity constraintsspecify that one argument of a predicate is less than another according to somepartial order.Our approach can be outlined as follows:� Specify a set of monotonicity constraints on the EDB predicates. Such con-straints are often natural, restricting an EDB relation to be acyclic, forexample, when it represents a part/subpart hierarchy.� Infer new monotonicity constraints on the intensional database (IDB) predi-cates using a sound inference mechanism.� Use these constraints to analyze all recursive loops through negation. If everyrecursive loop through negation needs an unsatis�able constraint to hold inorder for the loop to go through, then we can conclude that there is no\real" recursion through negation. Programs with this property are called\universally constraint strati�ed."It is not obvious that this is a syntactic condition, i.e., that it can be e�ectivelytested and that it depends on just the IDB and schema-level information. In the

outline above, it is conceivable that we may need to check in�nitely many recursiveloops through negation. We demonstrate that universal constraint strati�cation canbe checked algorithmically.Not every modularly strati�ed program is universally constraint strati�ed. How-ever, we �nd, perhaps surprisingly, that all of the common examples of modularlystrati�ed programs, including all of the examples from [6], are constraint strati�ed.Further, there are some constraint strati�ed programs that are not modularlystrati�ed.We prove that constraint strati�ed programs have a two-valued well-foundedsemantics, and that constraint strati�cation generalizes local strati�cation.2 TerminologyWe consider normal logic programs without function symbols [4], also known as\Datalog" programs with negation, and follow standard logic-programming con-ventions.If a predicate is de�ned only by facts, then we say that the predicate is anextensional database (EDB) predicate; otherwise the predicate is an intensionaldatabase (IDB) predicate. we shall make the assumption that programs are rangerestricted, i.e., every variable occurring in the head of a rule or in a negative literalin the body also occurs in a positive literal in the body. Such programs have alsobeen called allowed or safe.We assume that an in�nite universe U is given. U should contain all constantsymbols that can appear in all possible programs and EDB relations. In particular,U will include the Herbrand universe of any program/EDB pair. U will function asthe domain under consideration, with terms interpreted freely. Even though U isin�nite, only �nitely many elements of U can be mentioned in any program. Whenwe talk about \instantiated" atoms and rules, we mean that values from U aresubstituted for all variables in the atom or rule.A program is strati�ed if there is an assignment of ordinal levels to predicatessuch that whenever a predicate appears negatively in the body of a rule, thepredicate in the head of that rule is of strictly higher level, and whenever a predicateappears positively in the body of a rule, the predicate in the head has at least thatlevel. A program is locally strati�ed if there is an assignment of ordinal levels toground atoms such that whenever a ground atom appears negatively in the body ofan instantiated rule, the head of that rule is of strictly higher level, and whenevera ground atom appears positively in the body of an instantiated rule, the atom inthe head has at least that level.The mutually recursive components (also called strongly connected components)of a program have a natural relation associated with them: F1 < F2 if somepredicate belonging to F1 is called by a predicate in F2. < must be an acyclicrelation, since if F1 < F2 < � � � < Fn < F1 for some n, then none of F1; : : : ; Fn wouldbe complete. We refer to �, the transitive closure of <, as the dependency relationbetween components. � is a partial order, with the property that a predicatebelonging to a component F is de�ned in terms of predicates that either belong toF , or belong to a component F 0 where F 0 � F .De�nition 2.1: The envelope of a program P is P with all negative subgoalsremoved. 2

3 Modular Strati�cationWe now present the concept of modular strati�cation, originally de�ned in [6].De�nition 3.1: (Reduction of a component) Let F be a program component, andlet S be the set of predicates used by F . Let M be a two-valued interpretation overthe universe U for the predicates in S.Form IU (F), the instantiation of F with respect to U , by substituting termsfrom U for all variables in the rules of F in every possible way. Delete from IU (F)all rules having a subgoal Q whose predicate in S, but for which Q is false in M .From the remaining rules, delete all (both positive and negative) subgoals havingpredicates in S (these subgoals must be true in M) to leave a set of instantiatedrules RM(F). We call RM(F) the reduction of F modulo M . 2De�nition 3.2: (Modular Strati�cation) Let � be the dependency relation be-tween components. We say that the program P is modularly strati�ed if, for everycomponent F of P , (a) There is a total well-founded model M for the union of allcomponents F 0 � F , and (b) The reduction of F modulo M is locally strati�ed. 2Theorem 3.1: ([6]) Every modularly strati�ed program has a total well-foundedmodel that is its unique stable model.3.1 ExamplesWe present a number of examples from [6] of modularly strati�ed programs. Notethat none of these examples is locally strati�ed.Example 3.1: Consider the program P consisting of the rulew(X) m(X;Y);:w(Y)together with some facts about m. P is a game-playing program in which a positionX is \winning" [w(X)] if there is a move from X to a position Y [m(X;Y)] and Yis a losing position [:w(Y)]. P is modularly strati�ed when m is acyclic, i.e., whenthe game cannot have repeated positions. 2Example 3.2: This example concerns the operation of a complex mechanism thatis constructed from a number of components, each of which may itself have smallercomponents. We adopt the convention that a mechanism is not a component ofitself | we are only interested in smaller, simpler components. The mechanism isknown to be working either if it has been (successfully) tested, or if all its components(assuming it has at least one component) are known to be working. We may expressthis in the following component F :working(X) tested(X)working(X) part(X;Y);:has suspect part(X)has suspect part(X) part(X;Y);:working(Y)LetM be the least model of the rules for part and tested. RM(F) is locally strati�edif and only if part is acyclic. Acyclicity is a natural constraint, since a mechanismthat was a sub-part of itself would presumably indicate a design error. 2Modular strati�cation can be extended to aggregation and set-grouping.

Example 3.3: Suppose we have a relation part(X;Y;N) that is true when X hasN copies of Y as an immediate subpart. (Again, we adopt the convention that weare only interested in smaller, simpler subparts.) The \parts-explosion" problemis to determine, for an arbitrary pair of parts x and y, how many y's appear in x.We can solve the parts-explosion problem using the following program.in(X;Y; null; N) part(X;Y;N)in(X;Y; Z;N) part(X;Z; P); contains(Z; Y;M); N = P �Mcontains(X;Y;N) N =PP : in(X;Y; Z; P)(The sum in the third rule is grouped by X and Y ; for each X and Y we sum allcorresponding P .) Assuming part is acyclic in its �rst two arguments, the programis modularly strati�ed with respect to aggregation. 23.2 Modular Strati�cation is UndecidableWhile modular strati�cation is a semantic condition, one may hope to achieve anonsemantic condition by asking \Is program P modularly strati�ed for all EDBs?"The main result of this section is that this version of modular strati�cation isan undecidable property of programs. As a result, one cannot, in general, recognizewhen a datalog program is modularly strati�ed for all EDBs. To establish thisresult we need a preliminary lemma, which uses a construction of Shmueli [8].Lemma 3.2: It is recursively unsolvable to determine, for an arbitrary Datalogprogram whether a given relation is transitively closed for all possible assignmentsof relations to EDB predicates.Proof : (Sketch) The �rst step is to show that testing whether a context free lan-guage L (not including the empty string1) has the property that LL � L, isundecidable. This proof uses standard techniques from [3].The next step is to perform a translation from context-free grammars to datalogprograms using Shmueli's construction. Containment of the corresponding context-free languages can then be expressed as the containment of a certain binary predicateg in the transformed program. Suppose that g is the predicate corresponding to thegrammar for L, and that g0 is the predicate corresponding to a derived grammarfor LL. Then the structure of the transformation is such that g0 is the compositionof g with itself, and that LL � L if and only if g is transitively closed.Theorem 3.3: It is recursively unsolvable to determine whether a datalog programis modularly strati�ed for all EDBs.Proof : Consider a program P containing the rulep(X) t(X;Y); t(Y; Z);:t(X;Z);:p(X)together with some Datalog rules de�ning the IDB predicate t, but not mentioningp. Then P is modularly strati�ed if and only if t is transitively closed. Hence deter-mining whether a program is modularly strati�ed for all values of EDB predicatesis undecidable, by Lemma 3.2.Given that modular strati�cation for all EDBs is an undecidable property ofprograms, we need to �nd a syntactically recognizable condition that includes mostof the useful modularly strati�ed programs discussed in the literature.1We make the technical restriction that our context-free languages do not contain the emptystring for compatibility with Shmueli's construction.

4 Monotonicity ConstraintsLooking at the examples of Section 3.1, it seems that in each of the examples thereis a predicate that should be restricted to an acyclic relation for semantic reasons.Thus, asking whether the program of Example 3.2 has a two-valued model for allpossible values of EDB predicates is clearly the wrong question. The part relationrepresents a part hierarchy, and therefore can only be an acyclic relation. We wouldlike to phrase the question as whether a program has a two-valued well-foundedmodel for all EDB relations that satisfy some acyclicity constraints. In this sectionwe present the notion of monotonicity constraints from [1] in order to be able tophrase such constraints. We shall also look at the problem of inferring constraintson IDB predicates given constraints on the EDB predicates.De�nition 4.1: (Monotonicity Constraint) Let F be a logical formula and let Sbe the set of variables occurring in F . A monotonicity constraint is a statementof the form F : X �mc Y; where X and Y are either members of S, or constantsin the language. An equality constraint is a statement of the form F : X =ec Y: Adisjunctive constraint is a disjunction of conjunctions of monotonicity and equalityconstraints on a single formula F . If F : C is a disjunctive constraint, then werefer to C as the condition of the constraint, and refer to F as the formula of theconstraint. The empty disjunction is a constraint that is never satis�ed. 2The intuition behind a monotonicity constraint F : X �mc Y is that for some partialorder, argument X (or the constant X) is less than argument Y (or the constantY) in each tuple of variables satisfying F . If X and Y are both constants, andX �mc Y is violated, then there are no tuples satisfying F . Equality constraintsrepresent identity in U ; a=ec a for every a 2 U but a 6=ec b for every distinct pair ofconstants a and b in U . We shall write F : (C1^C2) rather than (F : C1)^(F : C2),and similarly for disjunction (_).Note that �mc does not represent a �xed partial order; the partial order maydepend on the database instance. If < is a �xed partial order, and C is a disjunctiveconstraint, then we let C< represent a version of C in which �mc is replaced by<, and =ec is replaced by =. (\=" represents syntactic equality.)We shall assume in this paper that all partial orders are �nite and antireexive,so that c 6� c for any constant c. In the context of function-free programs, the�niteness of the partial order is reasonable given the �niteness of the database. Weshall use the term \constraint" to mean a disjunctive constraint, unless otherwisenoted.We have chosen a slightly more general notation for monotonicity constraintsthan that used in [1]. In [1], the authors e�ectively restrict the formula F in thede�nition above to be a single atom with distinct variables as arguments. We shallneed the more general notation later in the paper.Lemma 4.1: ([1]) It can be algorithmically determined for two disjunctive con-straints C and D, whether C j= D.De�nition 4.2: Let C be a constraint with formula F , and let S be the set ofvariables appearing in F . Let S0 � S. The projection C 0 of C onto S0 is a constraintwith formula F and with the following properties:� C j= C0, and� If D is another constraint on the variables in S0, and if C j= D, then C0 j= D.

In other words, the projection of a constraint is the strongest possible constraint onthe smaller set of variables that follows from the original constraint. 2Lemma 4.2: ([1]) The projection of a constraint always exists, is unique up toequivalence, and can be e�ectively computed.Example 4.1: Let F be the predicate p(X;Y; Z;W), and let C be the constraintF : (a�mc Z) ^ (X �mc Z) ^ (Z �mc Y) ^ (Y �mc b) ^ (W =ec c) ^ (W �mc b)where a, b and c are constants. Then the projection C0 onto fX;Y g is given byF : (a�mc Y) ^ (X �mc Y) ^ (Y �mc b) ^ (c�mc b) 2De�nition 4.3: A substitution � from a set of variables S to a range V is a mapfrom elements of S to values in V. A constraint C is satis�able if there exists asubstitution � and a partial order < such that C<� is true; otherwise C is said tobe unsatis�able. 2Lemma 4.3: ([1]) A constraint C is unsatis�able i� it is inconsistent.Our context is more general than that of [1] since we allow negative subgoals.2While Brodsky and Sagiv's method is sound and complete for datalog programs, itmay fail to detect monotonicity constraints for programs likep(X;Y) e(X;Y);:e(X;Y):Even though there are no restrictions on relation e, the constraint p(X;Y) : X �mc Yis trivially satis�ed because p must be empty. While one might imagine thatinference rules could be added to detect rules of the form above, one can showthat the inference problem for monotonicity constraints in programs with negationis undecidable using a construction similar to that used in Theorem 3.3.Nevertheless, Brodsky and Sagiv's algorithm is still sound if we apply it to theenvelope of a program P . By removing all negative subgoals we can only enlarge thewell-founded model (making atoms that were previously false or unde�ned true).Lemma 4.4: ([7]) Let P be a program and let P 0 be its envelope. Then the leastmodel of P 0 contains all atoms that are either true or unde�ned in the well-foundedmodel of P .Thus, any constraints that hold for the envelope of P certainly hold for P .Example 4.2: Let P be the programp(X;Y) e(X;Y)p(X;Y) p(X;Z); f(Z; Y);:p(Z; Y)and let E be the constraint set fe(X;Y) : Y �mc X; f(X;Y) : Y �mc Xg on theEDB predicates. The envelope of P isp(X;Y) e(X;Y)p(X;Y) p(X;Z); f(Z; Y)from which p(X;Y) : Y �mc X is derivable using the techniques of [1]. Thus,p(X;Y) : Y �mc X is true in P given E. 2De�nition 4.4: Let P be a program, E a constraint set on the EDB predicates ofP , and C a constraint set on the IDB predicates of P . We say that C [E is soundfor P if all constraints in C are consequences of E given P . 22Negative subgoals alone do not imply any monotonicity or equality constraints, since thecomplement of an antireexive partial order is not necessarily an antireexive partial order.

4.1 Constraints on RulesSo far the formulas F in constraints have been atoms with distinct variables asarguments. We shall also be interested in allowing rules as values for F . Speci�cally,suppose r is a rule and S is the set of variables in r. Then we shall be interested inconstraints of the form r : Y �mc Z and r : Y =ec Zwhere Y and Z are either constants or members of S.We can infer a constraint on rule r from a constraint set D on the predicatesappearing positively in the body of r. For example, given the constraints p(X;Y) :Y �mc X, q(X;Y) : Y �mc b, t(X) : X =ec a, s(X;Y; Z) : Y =ec Z and the rule rwith body p(W;X); q(X;Y); t(Y); s(Y; a; V) we can infer the constraintr : (X �mcW) ^ (Y �mc b) ^ (Y =ec a) ^ (V =ec a):There is a sound, complete, and e�ective way to perform this inference usingtechniques from [1]. We shall assume that we have performed this inference forevery rule r.We may also want to \go the other way" by projecting a constraint on a ruleonto the arguments of some of its atoms.De�nition 4.5: Let r be a rule, and let D be a set of constraints on the predicatesin r. We choose two occurrences of predicates in r: the head predicate and a bodypredicate. Let ph be the head predicate occurrence, and qb be the body predicateoccurrence. (If there is more than one occurrence of q in the body then we needto specify which one.) If q takes m arguments, then we invent m new variablesqb : 1; : : : ; qb : m. Similarly, if p takes j arguments, then we invent j new variablesph : 1; : : : ; ph : j.Let F be the formula foo(qb : 1; : : : ; qb : m; ph : 1; : : : ; ph : j) where foo is somenew, arbitrary predicate symbol. Let C be the constraint of r given D. Append(i.e., conjoin) to the condition of C the conjunction(qb : 1 = q1) ^ � � � ^ (qb : m = qm) ^ (ph : 1 = p1) ^ � � � ^ (ph : j = pj)where qi is the ith argument of qb in r and pi is the ith argument of ph in r.After transforming the above constraint to disjunctive normal form, we projectit onto the variables fqb : 1; : : : ; qb : m; ph : 1; : : : ; ph : jg to get a new constraintC0. Finally, the formula in C 0 is replaced by F . We call C0 the projection of C onto(ph; qb), denoted �D(r; ph; qb). 2Example 4.3: Let r be the rulet(W;Y) p(W;X); q(X;Y); s(Y)and suppose we have the constraint C on rule r given byr : (X �mc W) ^ (Y �mc b) ^ (Y =ec a)as above. We project r onto (th; sb). After appending the conjunction to C we haver : (X �mc W)^(Y �mc b)^(Y =ec a)^(th : 1 =ecW)^(th : 2 =ec Y)^(sb : 1 =ec Y)which is in disjunctive normal form. After the projection and after replacing theformula we getfoo(th : 1; th : 2; sb : 1) : (th : 2�mc b) ^ (th : 2 =ec a) ^ (th : 2 =ec sb : 1) 2

5 Universal Constraint Strati�cationIn this section we de�ne a strati�cation condition that is general enough to includeall of the examples from Section 3.1 originally from [6], while also including someprograms that are not modularly strati�ed. In a later section, we shall demonstratethat the condition is syntactic.The intuition behind our strati�cation condition is that we shall start with a setof constraint formulas describing the EDB of a program. Given e(X;Y) : Y �mc Xas a constraint, we know that e represents an acyclic relation. As discussed inSection 3.1, acyclicity is often a very natural restriction to place on a relation.In general, we may also infer some predicate constraints for the IDB relations.For example, the constraint p(X;Y) : Y �mc X is a consequence of the programp(X;Y) e(X;Y)p(X;Y) e(X;Z); p(Z; Y)and the constraint on e. Thus we shall have a set C of constraints describing theEDB and IDB predicates of the program.From this point we shall try to demonstrate that a recursive loop throughnegation is impossible. This is done by showing that when a predicate p recursesthrough negation, it is impossible according to the constraints that the argumentsof p in the head are the same as the arguments of p in the body. We must considerboth direct recursion through negation, and recursion through negation via othermutually recursive predicates.De�nition 5.1: Let D be a set of constraints on the predicates of program P .We construct a graph, called the predicate constraint graph of P with respect to D,whose nodes are predicates from P . Arcs in the predicate constraint graph havetwo properties: a polarity, either positive or negative, and a constraint. There is anarc from q to p with positive polarity if(r) : p(� � �) � � � ; q(� � �); � � �is a rule in P and p and q are mutually recursive. There is an arc from q to p withnegative polarity if (r) : p(� � �) � � � ;:q(� � �); � � �is a rule in P and p and q are mutually recursive. An arc corresponding to rule r islabeled with �D(r; ph; qb). 2Graphically, we shall illustrate a positive arc as a solid arrow, and a negative arc asa dashed arrow. The constraint of an arc will be shown as a label on the arc. Weshall omit the conjunction symbol and the constraint's formula in the graphs whenthe meaning is clear.Example 5.1: Consider the program P1 given by(r1) p(a) :p(b)(r2) p(b) p(a)with no additional constraints. The predicate constraint graph of this program is
p

ech

ecb

ec

ec

b

h

p :1 = a

p :1 = b

p :1 = a

p :1 = b

Consider the program P2 given by(r1) p(a) e(a; b);:p(b)(r2) p(b) e(b; a); p(a)with the monotonicity constraint fe(X;Y) : (X �mc Y) _ (X =ec Y)g. Then thepredicate constraint graph is
p

ec

ec

b

h

mc

p :1 = a

p :1 = b

b < a

OR OR

ech

ecb

p :1 = a

p :1 = b

a < bmc

ech

ecb

p :1 = a

p :1 = b

a = bec

ec

ec

b

h

ec

p :1 = a

p :1 = b

a = b 25.1 Composing ConstraintsIn this section we show how to compose constraints on arcs of the predicate con-straint graph. The notion of constraint composition will be used to de�ne ourstrati�cation condition.De�nition 5.2: Let D be a set of constraints on predicates of a program P . LetS1 = �D(r1; ph; qb) and S2 = �D(r2; qh; tb) be constraints. Let j;m; k be therespective arities of p; q; t. Let C1 and C2 be the respective conditions of S1and S2. The sequential composition of S1 and S2, denoted �D(r1 � r2; ph; tb), isde�ned as follows.3First, if there is any name conict between ph and qh, or between qb and tb, thenwe replace the symbol q with a new symbol q0, of the same arity as q, consistentlyin S1 and S2. The condition of the sequential composition is the projection ontofph : 1; � � � ; ph : j; tb : 1; � � � ; tb : kg of the disjunctive normal form ofC1 ^ C2 ^ (qh : 1 =ec qb : 1) ^ � � � ^ (qh : m=ec qb : m):The sequential composition's formula is foo(ph : 1; � � � ; ph : j; tb : 1; � � � ; tb : k): Thesequential composition of a sequence of constraints is de�ned as the successive pair-wise sequential composition of its elements. Sequential composition is associative(up to equivalence): thus the order of pairwise composition is unimportant. 2De�nition 5.3: Let D be a set of constraints. Let �D(r1; p1h; p2b); �D(r2; p2h; p3b);: : : ; �D(rn; pnh; p1b) be a sequence of constraints, where each pi is a (not necessarilydistinct) predicate symbol, and each ri is a (not necessarily distinct) rule. Thecyclic composition of this sequence is denoted by �D(r1; � � � ; rn) and is de�ned asfollows. Let C be the condition of the sequential composition�D(r1 � � � � � rn; p1h; p1b):The condition of the cyclic composition is given by the projection onto the emptyset of variables of the disjunctive normal form of the formulaC ^ (p1h : 1 =ec p1b : 1) ^ � � � ^ (p1h : k =ec p1b : k):where the arity of p1 is k. The formula of the cyclic composition is the variable-freeformula foo. 23Strictly speaking, our notation should specify the particular occurrence of qb in r1. We omitthis information in order to make the notation simpler.

Example 5.2: Consider the programs P1 and P2 from Example 5.1. For P1, thesequential composition �;(r1 � r2; ph; pb) is the projection of(ph : 1 =ec b) ^ (p0b : 1 =ec a) ^ (p0h : 1 =ec a) ^ (pb : 1 =ec b) ^ (p0b : 1 =ec p0h : 1)onto (ph; pb). Note the renaming of the intermediate p to p0. The result is(ph : 1 =ec b) ^ (pb : 1 =ec b):The cyclic composition is then the projection onto the empty set of variables of(ph : 1 =ec b) ^ (pb : 1 =ec b) ^ (ph : 1 = pb : 1)which can be represented as the trivially satis�able constraint b=ec b.For P2, let D be the constraint set fe(X;Y) : (X �mc Y) _ (X =ec Y)g. Onemay verify that the cyclic composition �D(r1; r2) has condition(b�mc a ^ a�mc b)_(b�mc a ^ a=ec b)_(a=ec b ^ a�mc b)_(a=ec b ^ a=ec b)which is unsatis�able since �mc represents a strict partial order, and since di�erentconstants cannot be equal under =ec . 25.2 Universal Constraint Strati�cationDe�nition 5.4: Let D be a sound set of constraints on the predicates in P , andlet G be the predicate constraint graph of P with respect to D. We say thatP is universally constraint strati�ed with respect to D if for every cycle in thepredicate constraint graph that contains a negative arc, the cyclic composition ofthe constraints on the arcs in the cycle is unsatis�able. 2Example 5.3: Consider once more the programs P1 and P2 from Example 5.1. Aswe saw in Example 5.2, P1 has a cycle with a negative arc whose cyclic compositionyields a satis�able constraint. This cycle corresponds to the intuition that p(a)depends negatively on itself.On the other hand, no cycle containing a negative edge in P2 is satis�able. Weleave it as an exercise for the reader to verify this claim. As a consequence, P2 isuniversally constraint strati�ed with respect to the given constraints. The intuitionhere is that even though p(a) apparently depends negatively on itself (through p(b)),in order to achieve this recursion through negation one would need both e(a; b) ande(b; a) to simultaneously be true. These two atoms cannot be simultaneously truegiven e(X;Y) : (X �mc Y) _ (X =ec Y). 2We now consider the examples from Section 3.1Example 5.4: Given C = fm(X;Y) : (Y �mc X)g the program of Example 3.1has predicate constraint graph
wm

 mc w :1w :1 <b h

The program is universally constraint strati�ed with respect to C because allconstraints of the form(w0b : 1�mc wh : 1) ^ (w0b : 1 =ec w0h : 1) ^ (w00b : 1�mc w0h : 1)^(w00b : 1 =ec w00h : 1) ^ � � � ^ (wb : 1�mc w0h���0 : 1) ^ (wb : 1 =ec wh : 1)(corresponding to traversing the negative arc as many times as there are primedversions of the w predicate) are unsatis�able.Given the constraint set C = fpart(X;Y) : (Y �mc X)g, the program ofExample 3.2 has predicate constraint graph
working has_suspect_part

tested

part

bworking :1 < mc

bhas_suspect_part :1 = ec hworking :1

hhas_suspect_part :1and is universally constraint strati�ed with respect to C since (as the reader mayverify) the cyclic composition of the constraints on the cycles is unsatis�able.One can easily generalize the notions above to aggregation if one labels an edgeas negative if it corresponds to recursion through either aggregation or negation.In that case, the predicate constraint graph for the program of Example 3.3 withrespect to the constraint set C = fpart(X;Y) : (Y �mc X)g is
in contains part

ecbin :1 = contains :1

bcontains :1 < in :1

h

hmc(In the graph above we have left out some constraints on the arcs for simplicity ofpresentation. For example, in both constraints there should be a conjunct equatingthe second arguments of contains and in.) Again, the program is universallyconstraint strati�ed with respect to C. 2So far, every universally constraint strati�ed program we have seen has beenmodularly strati�ed. The following example is a program that is universally con-straint strati�ed but not modularly strati�ed.Example 5.5: Let P be the programp(X;Y) e(X;Y)p(X;Y) p(X;Z); f(Z; Y);:p(Z; Y)and let the constraint set fe(X;Y) : (Y �mc X); f(X;Y) : (Y �mc X); p(X;Y) :(Y �mc X)g be denoted by C. Note that p(X;Y) : (Y �mc X) is derivable for Pfrom fe(X;Y) : (Y �mc X); f(X;Y) : (Y �mc X)g as discussed in Example 4.2.Then the predicate constraint graph for P is (omitting some irrelevant parts of theconstraints)

pec e fmch hp :1 = p :1b p :1 < p :1bwhose negative cycles have unsatis�able cyclic compositions. The program is notmodularly strati�ed, since it may be possible to have the following rule instance inits reduction: p(a; b) p(a; a);:p(a; b)The rule instance above prevents the reduction from being locally strati�ed. Sincethe reduction looks only at lower-component predicates, there is no way to noticethat p(a; a) will never be satis�ed. 2An example of a program that is modularly strati�ed but not constraint strati�edis the single-rule program p q;:p.Theorem 5.1: Let C be a sound set of constraints on a program P , and let E bethe constraints from C on EDB predicates. If P is constraint strati�ed with respectto C, and if there exists a partial order < for which the EDB satis�es E<, then Phas a two valued well-founded model.While the converse of Theorem 5.1 is not necessarily true, we can show thefollowing result.Theorem 5.2: Let C be a sound set of constraints on a program P , and let E bethe constraints from C on EDB predicates. If P is not constraint strati�ed withrespect to C, then there exists a partial order < and an EDB satisfying E< suchthat� There is some set P 0 of instantiated rules from P whose positive body atomssatisfy C<, and� P 0 is not locally strati�ed.Theorem 5.2 implies that if a program is not constraint strati�ed then thereis a potential loop through negation that cannot be ruled out on the basis of theconstraints.Theorem 5.3: Every (range-restricted, function-free) locally strati�ed program isuniversally constraint strati�ed with respect to the empty set of constraints.6 Universal Constraint Strati�cation is SyntacticIn this section we demonstrate that universal constraint strati�cation is syntactic.We say that a condition on logic programs is syntactic if (a) The condition can bedetermined algorithmically, i.e., it is a decidable property, and (b) The conditiondepends only upon the IDB and schema-level information about the EDB. Byschema-level information we mean a �xed collection of information about the EDBthat does not change as the EDB gets larger. In particular, the constraints we usein this paper �t this description.Since the IDB and schema-level information is likely to be small compared tothe size of the EDB, checking that a syntactic condition is satis�ed is likely to beeasier than a condition that needs to examine the EDB. Further, while the EDB

may change frequently over time, the IDB and schema-level information is likely toremain constant over relatively long periods of time, and hence a syntactic conditiondoes not have to be re-checked often.It is clear that universal constraint strati�cation satis�es the second conditionfor being syntactic, since it depends upon only the IDB and the constraints. Weneed to verify that it is algorithmically decidable.There are two potential issues that need to be resolved in order to demonstratethat universal constraint strati�cation is decidable. First, we need to check thateach of the steps used in transforming constraints can be performed algorithmi-cally. These transformations include inferring constraints, performing projections,performing compositions, and testing for satis�ability. That each of these steps isalgorithmic follows from Lemmas 4.2 and 4.3, and from the soundness, completeness,and decidability of the constraint inference problem as shown in [1].The second issue is that universal constraint strati�cation requires that all cycleswith a negative edge have constraints whose cyclic composition is unsatis�able.Even for simple programs it is possible that there are in�nitely many such cycles.Thus we need to demonstrate that we can determine the unsatis�ability of all cyclesin �nite time.We can resolve the second issue by observing that for a given program P and agiven constraint set D, there are �nitely many nonequivalent constraints that useconstants from P and D and any �xed set of variables. One can algorithmicallydetermine whether two constraints are equivalent, by Lemma 4.1.The cyclic composition � is formed by taking a sequential composition � andadding some constraints. � may be replaced by any equivalent constraint andyield an equivalent cyclic composition �. Thus we can try to �nd all sequentialcompositions, and then use these to form the cyclic compositions and test forunsatis�ability. We need check only �nitely many sequential compositions by usingthe following procedure:1. For each node in the predicate constraint graph, construct all simple cycles,and calculate the sequential composition on those cycles.2. For each node in the predicate constraint graph, construct all cycles withexactly one sub-cycle, and calculate the sequential composition on those cy-cles. If at least one of these cycles yields a new sequential composition thencontinue. Otherwise, stop; all other cycles will have a sequential compositionthat will be equivalent to a previously derived one.3. Repeat the previous step for 2 sub-cycles, 3 sub-cycles, and so on. Since thereare only �nitely many inequivalent constraints, we must eventually terminate.Theorem 6.1: Universal constraint strati�cation is syntactic.7 Related WorkIn [7] the present author de�ned the notion of \constraint strati�cation." Thatnotion is more restricted than universal constraint strati�cation in two ways.First, constraint strati�cation requires that a partial order < be speci�ed inadvance. Thus, for constraint strati�cation, it is not possible to simply state thatthe relation part is an acyclic relation; one must know the partial order with respectto which part is acyclic. This is often an unreasonable restriction since we may wantto assume that part is an acyclic relation representing a part hierarchy that de�nes

the partial order. We do not want to have to commit to a partial order that mayneed to be changed when the EDB changes.In this paper we do not su�er from this problem because we de�ne universalconstraint strati�cation in terms of an arbitrary partial order. This extension leadsto much of the technical complexity of this paper.A second way that this paper improves upon [7] is that, unlike [7], one does notneed to check all instances of a set of rules in order to determine universal constraintstrati�cation. One applies constraint techniques to the uninstantiated rules.As far as the author is aware, there is no other proposed strati�cation conditionon datalog programs that simultaneously (a) Is syntactic, (b) Generalizes localstrati�cation, (c) Ensures a two-valued well-founded model, and (d) Admits theexamples from [6] (Section 3.1) of useful programs that are not locally strati�ed.AcknowledgementsThis research was supported by NSF grants IRI-9209029 and CDA-90-24735, bya grant from the AT&T Foundation, by a David and Lucile Packard FoundationFellowship in Science and Engineering, and by a Sloan Foundation Fellowship.References[1] A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalogprograms. In Proceedings of the Eighth ACM Symposium on Principles ofDatabase Systems, 1989.[2] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.In Proc. Fifth International Conference and Symposium on Logic Programming,1988.[3] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages,and computation. Addison-Wesley, Reading, MA, 1979.[4] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,2nd edition, 1987.[5] T. C. Przymusinski. On the declarative semantics of deductive databases andlogic programs. In J. Minker, editor, Foundations of Deductive Databases andLogic Programming, pages 193{216, Los Altos, CA, 1988. Morgan Kaufmann.[6] K. A. Ross. Modular strati�cation and magic sets for Datalog programswith negation. In Proceedings of the Ninth ACM Symposium on Principles ofDatabase Systems, 1990. Full version to appear in J.ACM.[7] K. A. Ross. Constraint strati�cation. In Proceedings of the ICLP Workshopon Deductive Databases, pages 101{116, June 1994. Available as German GMDSociety Publication Series number 231, ISBN 3-88457-231-8.[8] O. Shmueli. Decidability and expressiveness aspects of logic queries. InProceedings of the Sixth ACM Symposium on Principles of Database Systems,1987.[9] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics forgeneral logic programs. JACM, 38(3):620{650, 1991.

