
Selection Conditions in Main Memory

KENNETH A. ROSS
Columbia University, New York, New York

We consider the fundamental operation of applying a compound filtering condition to a set of records.
With large main memories available cheaply, systems may choose to keep the data entirely in main
memory, in order to improve query and/or update performance.

The design of a data-intensive algorithm in main memory needs to take into account the ar-
chitectural characteristics of modern processors, just as a disk-based method needs to consider
the physical characteristics of disk devices. An important architectural feature that influences the
performance of main memory algorithms is the branch misprediction penalty. We demonstrate that
branch misprediction has a substantial impact on the performance of an algorithm for applying
selection conditions.

We describe a space of “query plans” that are logically equivalent, but differ in terms of perfor-
mance due to variations in their branch prediction behavior. We propose a cost model that takes
branch prediction into account, and develop a query optimization algorithm that chooses a plan with
optimal estimated cost for conjunctive conditions. We also develop an efficient heuristic optimiza-
tion algorithm. We also show how records can be ordered to further reduce branch misprediction
effects.

We provide experimental results for a case study based on an event notification system. Our
results show the effectiveness of the proposed optimization techniques. Our results also demon-
strate that significant improvements in performance can be obtained by applying a methodology
that takes branch misprediction latency into account.

Categories and Subject Descriptors: C.1 [Processor Architectures]; H.2.2 [Database Manage-
ment]: Physical Design—access methods; H.2.4 [Database Management]: Systems—query pro-
cessing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Performance

Additional Key Words and Phrases: Branch misprediction

This research was supported by National Science Foundation grants IIS-98-12014, IIS-01-20939,
EIA-98-76739, and EIA-00-91533.
Part of this work was performed while the author was visiting the INRIA Rocquencourt research
institute.
A preliminary version of this article appeared as Ross, K. A. 2002. Conjunctive selection conditions
in main memory. In Proceedings of the ACM Symposium on Principles of Database Systems. ACM,
New York, 109–120.
Author’s address: Department of Computer Science, Columbia University, 1214 Amsterdam
Avenue MC 0401, New York, NY 10027; email: kar@cs.columbia.edu, Web: http://www.cs.columbia.
edu/∼kar.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0362-5915/04/0300-0132 $5.00

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004, Pages 132–161.

Selection Conditions in Main Memory • 133

1. INTRODUCTION

Main memories are getting bigger and cheaper. It is now feasible for many ap-
plications to store the application data completely in a main memory database,
in order to improve query and/or update performance.

Many traditional database algorithms need to be reconsidered for main mem-
ory databases. In this article, we focus on one commonly-used database oper-
ation, namely applying a compound selection condition to a set of database
records. One wishes to obtain those records satisfying the condition in as effi-
cient a way as possible.

Our discussion will take the perspective that the application’s data is stored
in a main memory database. However, the problem we shall address is also rel-
evant for information processing systems that are not considered “traditional”
database systems. Examples include search engines, event notification systems,
stream processing systems, and network management systems. In each of these
types of systems, one commonly poses queries involving the selection of records
satisfying certain conditions.

In a disk-based database it is usual to consider the performance parameters
of the disk devices when designing database algorithms. For example, the high
cost of random I/O compared with sequential I/O leads to algorithms that pro-
cess the data in physical order. The relatively large size of a disk block leads to
algorithms that try to cluster related data into disk-block sized units.

In a main-memory database, we face similar design criteria, although the
device characteristics are different. A feature with a significant impact on algo-
rithm design is the delay induced when the CPU executes a conditional branch
instruction and predicts the outcome incorrectly (i.e., the branch misprediction
penalty). All else being equal, algorithms that have fewer branch mispredic-
tions are likely to perform better than alternatives.

In this article, we consider how to design efficient algorithms for applying a
compound selection condition given the characteristics of the CPU and memory
hierarchy. We show that the branch misprediction penalty can have a significant
impact on the performance of an algorithm.

Our development first considers filters expressed as conjunctions of basic se-
lection conditions. We propose a class of algorithms that we consider as potential
“plans” for combining selection conditions. To address the branch prediction is-
sue, we develop a cost model that takes branch prediction into account. We then
develop an exhaustive query optimization algorithm for choosing among such
plans in a cost-based fashion, using dynamic programming. We also derive re-
sults that allow us to safely prune the search space of potential plans. We then
develop a heuristic optimization method with lower complexity that performs
well in practice.

We extend the approach to conditions allowing negation and disjunction.
We partition a compound filter into nested conjunctions and disjunctions. The
duality of disjunction and conjunction allows us to use a dual algorithm for
disjunctions.

We present a case study of the proposed methods in the context of an
event-based notification system [Pereira et al. 2000; Fabret et al. 2001]. Our

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

134 • Kenneth A. Ross

experimental results show that significant performance improvements can be
obtained. Our optimization algorithm and its cost model are validated against
actual performance. Finally, we show how one can reorder records to further
reduce branch misprediction effects.

Past work has identified that branch misprediction has a significant impact
on modern database systems [Ailamaki et al. 1999]. To our knowledge, this ar-
ticle provides the first discussion of methods for avoiding branch misprediction
penalties in database systems.

2. BACKGROUND

Modern CPUs have a pipelined architecture in which many instructions are
active at the same time, in different phases of execution. Conditional branch
instructions present a significant problem in this context, because the CPU
does not know in advance which of the two possible outcomes will happen.
Depending on the outcome, different instruction streams should be read into
the pipeline.

CPUs try to predict the outcome of branches, and have special hardware for
maintaining the branching history of many branch instructions. Such hardware
allows for improvements of branch prediction accuracy, but branch mispredic-
tion rates may still be significant. Branches that are rarely taken, and branches
that are almost always taken are generally well predicted by the hardware. The
“worst-case” branch behavior is one in which the branch is taken roughly half
of the time, in a random (i.e., unpredictable) manner. In that kind of workload,
branches will be mispredicted half of the time.

A mispredicted branch incurs a substantial delay. Ailamaki et al. [1999]
report that the branch misprediction penalty for a Pentium II processor is 17
cycles. As a result, one might aim to design algorithms for “kernel” database
operations that exhibit good branch-prediction accuracy on modern processors
[Gray and Shenoy 2000]. In fact, this is precisely our approach.

Architectures such as Intel’s IA-64, support a technique called “predication”
that converts control dependencies (i.e., conditional branches) into data depen-
dencies. This technique allows the elimination of some branch instructions.
However, it is not always beneficial to use it [Intel Corp. 2000]; sometimes, the
original branching code is more efficient. Thus, we expect branch mispredic-
tion penalties to continue to be a significant issue for the next generation of
architectures.

There has been some past work on main memory database performance.
Since pointer following is inexpensive in a main memory database, it can pay to
store attribute values as pointers to some external piece of allocated memory,
often called a domain [Pucheral et al. 1990; Whang and Krishnamurthy 1990].
Specialized algorithms for query processing in main-memory databases have
been proposed in [Pucheral et al. 1990]. Shatdal et al. [1994] suggest several
ways to improve the cache reference locality of query processing operations
such as joins and aggregations. Boncz et al. [1999] propose improving cache
behavior by storing tables vertically and by using a cache conscious join

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 135

method. Cache-sensitive indexes for main memory databases are described in
Rao and Ross [1999, 2000].

It has been observed that specialized memory-resident techniques allow sub-
stantial performance gains over buffer-resident data in a disk-based system
[Garcia-Molina and Salem 1992; Lehman et al. 1992; Manegold et al. 2000].
More recently, Ailamaki et al. [2001] describe ways to organize pages in a disk-
based database system so that database operations give good CPU performance
when the pages are memory resident in the database buffer.

Single-Instruction Multiple-Datastream (SIMD) operations are available
on modern processors. Zhou and Ross [2002] propose techniques for utiliz-
ing SIMD instructions for speeding up database operations. Like this article,
some of the SIMD techniques benefit from a reduction in the number of branch
mispredictions.

3. COMBINING SELECTIONS

We define the selectivity of a condition applied to a table to be the proportion
of records in the table satisfying the condition. This definition applies whether
we’re testing a single condition or a compound condition. Since one typically
does not know the exact selectivities in advance, one performs query optimiza-
tion using estimates of the selectivities. For simplicity of presentation, we as-
sume that the selectivities are independent, so that one can multiply estimates
of the single-condition selectivities to get joint selectivity estimates for conjunc-
tions of those conditions. Nonindependent selectivities can also be handled by
our techniques; see Appendix B.

Suppose we have a large table stored as a collection of arrays, one array
per column, as advocated in Boncz et al. [1999].1 The column datatypes are
assumed to have fixed length. (Variable length attribute types can use the array
representation by introducing an extra level of indirection, storing pointers
in the array.) Let’s number the arrays r1 through rn. We wish to evaluate a
compound selection condition on this table, and return pointers (or offsets) to
the matching rows.

Suppose the conditions we want to evaluate are f1 through fk. For sim-
plicity of presentation, we’ll assume that each fi operates on a single col-
umn which we’ll assume is ri. (The methods developed in this article are
not dependent on the assumption that the functions test just a single argu-
ment, or that a column is used in a single function.) So, for example, if f1
tests whether the first attribute is equal to 3, then both the equality test
and the constant 3 are encapsulated within the definition of f1. We also as-
sume that functions are well-defined in a self-contained way, in the sense that
they always execute without error for any possible parameter value. For ex-
ample, if f2 dereferences a pointer that is not guaranteed to be non-null,

1If we have a single array of rows, as opposed to an array per column, the formulation of the problem
is the same. The disadvantage of row-wise storage is that it has poor data reference locality for
scans that consult just a few columns.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

136 • Kenneth A. Ross

then f2 must also encapsulate a precondition testing whether the pointer
is null. f2 cannot rely on f1 testing that pointer, say, because we intend to
reorder the execution of the functions. Functions are discussed at more length in
Section 6.2.

We initially assume that the condition we wish to test is a conjunction of
basic conditions. We consider disjunction and negation in Section 5.

3.1 Context

Our discussion assumes that the cost of processing the selections is a significant
cost within the overall query, and therefore worth optimizing. This assumption
is certainly true when the selections constitute the entire query. When the se-
lections form the initial step of a more complex query, processing the selections
may still be a significant (or even dominant) cost since a selective selection op-
eration will need to consult many more records than operations applied after
the selection.

We describe three typical contexts in which a set of selection conditions is
applied. In the first context, we simply apply the conditions to each record in
the underlying table. This approach would be used if indexes are not helpful,
either because we lack the required index, or because the condition selects such
a large proportion of the records that it is not worth the overhead of using the
index.

In the second context, we identify one (or more) of the selection conditions as
corresponding to an indexed attribute; using the index can speed up processing.
In the third context, a selection condition is applied to a “dimension” table
referenced by a foreign key in the main “fact” table. Preprocessing the dimension
table can improve efficiency.

As we shall see, each of the contexts has a common structure: There is a loop
that iterates over all (partially matching) records, and inside the loop is code to
(a) test the records for the remaining conditions, (b) AND the results together,
and (c) add qualifying record-IDs to the answer list.

The straightforward way to code the selection operation applied to all records
(context 1) would be the following. The result is returned in an array called
answer. In each algorithm below, we assume that the variable j has been ini-
tialized to zero.

/* Basic Algorithm Structure */
for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) AND ... AND fk(rk[i]))
{answer[j++] = i;}

}

Alternatively, suppose that f1 was a condition that could be evaluated effi-
ciently using an index on r1 (context 2). For example, f1 might be an equality
test, and using an index on r1 we may be able to obtain an array matches of
offsets i of records satisfying f1(r1[i]). Then, the remaining conditions can

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 137

be tested using the following code:

/* Index Algorithm Structure */
for(m=0;m<number_of_matches;m++) {

i=matches[m];
if(f2(r2[i]) AND ... AND fk(rk[i]))

{answer[j++] = i;}
}

Indexes may be combined by intersecting match arrays.
It is common for queries over a fact table in a data warehouse to place selec-

tions on dimension tables (context 3). Suppose r1 was a foreign key (i.e., offset)
to a dimension table, and that f1 was a selection condition on some column c of
the dimension table. Then f1(r1[i]) could be written as g1(c[r1[i]]). Since
dimension tables are generally small, it may pay to evaluate g1 on all rows of c
in advance, and store the result in a temporary array t. (This saves repetitive
execution of g1 on duplicate values.) Thus, we could modify the basic algorithm
structure to perform the selection as

/* Preprocess Dimension Table */
for(i=0;i<records_in_c;i++){t[i]=g1(c[i]);}
for(i=0;i<number_of_records;i++) {

if(t[r1[i]] AND ... AND fk(rk[i]))
{answer[j++] = i;}

}

3.2 Implementing the Loop

In the following discussion, we’ll use the code from the first context, that is,
applying the selection conditions to all records one by one. However, similar
principles apply to the other contexts. Translated into C, the code for the inner
loop might be:

/* Algorithm Branching-And */
for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) && ... && fk(rk[i]))
{answer[j++] = i;}

}

The important point is the use of the C idiom “&&” in place of the generic “AND”.
(See Appendix A for a discussion of how && is typically compiled into assem-
bly language containing conditional branch instructions.) This implementation
saves work when f1 is very selective. When f1(r1[i]) is zero, no further work
(using f2 through fk) is done for record i. However, the potential problem with
this implementation is that its assembly language equivalent has k conditional
branches. If the initial functions fj are not very selective, then the system may
execute many branches. The closer each selectivity is to 0.5, the higher the
probability that the corresponding branch will be mispredicted, yielding a sig-
nificant branch misprediction penalty. (Recall the discussion of branch predic-
tion effectiveness in Section 2.) An alternative implementation uses logical-and

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

138 • Kenneth A. Ross

(&) in place of &&:

/* Algorithm Logical-And */
for(i=0;i<number_of_records;i++) {

if(f1(r1[i]) & ... & fk(rk[i]))
{answer[j++] = i;}

}

Because the code fragment above uses logical “&” rather than a branching “&&”,
there is only one conditional branch in the corresponding assembly code instead
of k. (Again, see Appendix A for a discussion of how & is compiled into assembly
language.) We may perform relatively poorly when f1 is selective, because we
always do the work of f1 through fk. On the other hand, there is only one
branch, and so we expect the branch misprediction penalty to be smaller.

The branch misprediction penalty for that one branch may still be significant
when the combined selectivity is close to 0.5. The following loop implementation
has no branches within the loop.

/* Algorithm No-Branch */
for(i=0;i<number_of_records;i++) {

answer[j] = i;
j += (f1(r1[i]) & ... & fk(rk[i]));
}

Note that we would not expect an optimizing compiler to be able to transform
one of these plans into another. Most importantly, such transformations are
not valid in the general case. For example, in the condition (A && B), A may
check that a pointer is not null, while B dereferences that pointer. Executing
(A && B) makes sense, while executing (A & B) would cause an error if the
pointer was null. While our assumption about functions does make (A & B)
valid in the case where A and B represent functions fi and fj, it is not possible to
communicate such information to modern compilers. Further, even if one was to
extend the compiler with such a mechanism, the decision on whether to rewrite
the code depends on database-level metadata, such as condition selectivities,
that are not generally available to the compiler.

To see the difference between these three methods, we implemented them
in C and ran them on a 750-Mhz Pentium III under Linux, and a 300-Mhz
UltraSparc IIi under Solaris. In the following experiment, we used k = 4 and
let all of the rj arrays be offsets into an array t of chars of size 5000. Elements
of t are either 1 or 0, simulating the preprocessing of conditions on dimension
tables. The fj functions are then lookups in t. We ran several thousand scans
over four arrays of size 3000, using the same t array. That way, both t and the
arrays are in the L1 cache and the experiments will not reflect delays due to
cache misses. (We address caching issues in Section 6.1.) The code was compiled
with gcc under maximum optimization, with several register hints present in
the code.

Figure 1 shows the Pentium results. (See Section 6.3 for the Sun results.)
While both architectures show some dependence on the selectivity, the Pentium
results are more sensitive to the selectivity because the branch misprediction

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 139

Fig. 1. Three implementations: Pentium.

penalty is higher on that architecture [Yung 1996]. The time per record is shown
in microseconds on the vertical axis, measured against the probability that a
test succeeds. The probability is controlled by setting an appropriate threshold
for an element of the t array to be randomly set to 1. All functions in this graph
have the same probability.

Our preliminary analysis of the three implementations is borne out by this
graph. For low selectivities, the branching-and implementation does best by
avoiding work, and the one branch that is frequently taken can be well predicted
by the machine. For intermediate selectivities, the logical-and method does
best. However, when the combined selectivity gets close to 0.5, the performance
worsens. The no-branch algorithm is best for nonselective conditions; it does
more “work” but does not suffer from branch misprediction.

Each of the three implementations is best in some range, and the performance
differences are significant. On other ranges, each implementation is about twice
as bad as optimal. Thus, we will need to consider in more depth how to choose
the “right” implementation for a given set of query parameters.

Looking at the performance numbers, one might wonder why we care about
per-record processing times that are fractions of a microsecond. The reason we
care is that this cost is multiplied by the number of records, which may be in the
tens or hundreds of millions. When we don’t have an index, we have no choice
but to perform a full scan of the whole table. Even when we’re scanning fewer
records per query, the overall performance in queries-per-second is directly
impacted by these performance numbers. In a dynamic query environment, for
example, we might be aiming for video-rate screen refresh, and thus require
the completion of 30 queries per second for each user. See Section 7 for another
example.

From now on, when we show an implementation, we will omit the for loop,
just showing the code inside the loop.

4. OPTIMIZING INNER LOOP BRANCHES FOR CONJUNCTIONS

Using standard database terminology, we will refer to a particular implemen-
tation of a query as a plan. We now formulate our optimization question:

Given a number k, functions f1 through fk, and a selectivity estimate pm (m =
1, . . . , k) for each fm, find the plan that minimizes the expected computation
time.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

140 • Kenneth A. Ross

So far we have seen three ways to write the inner loop. Each such plan
has different performance characteristics. There are, in fact, many additional
plans that can be formed by combining the three approaches. An example that
combines all three is the following:

/* A Mixed Algorithm (loop code omitted) */
if((f1(r1[i]) & f2(r2[i])) && f3(r3[i]))

{ answer[j] = i;
j += (f4(r4[i]) & ... & fk(rk[i]));

}

Significantly, several of these combination plans turn out to be superior to the
three basic methods shown in Figure 1 over some selectivity ranges.

We will focus on finding a plan, consisting of some combination of the three
methods presented above, giving the best expected time. We remark that there
are other methods besides the three we have chosen for evaluating the inner
loop. For example, one could add the function values rather than ANDing them,
and compare with k at the end. (This alternative method might be useful in a
hypothetical architecture in which an addition operation was faster than a
logical AND.) Nevertheless, we expect that on realistic architectures, the three
basic methods are among the most efficient.

4.1 A Normal Form for Combined Plans

For now, let us just consider plans involving a combination of the “branching-
and” and the “logical-and” algorithms. We formulate how these two algorithms
can be mixed, and consider when certain combinations are never optimal ac-
cording to a simple cost model. Based on this notion, we derive a normal form
for potentially optimal plans, and enumerate them.

A first glance at the two algorithms might suggest that all we need to do
is consider all expressions within the if condition that can be formed out of
the two kinds of “and” operation. However, this is clearly too many because &
is commutative2 and associative. We now show that if we are only interested
in finding at least one optimal plan, we need only consider expressions in a
particular “normal form.”

Definition 4.1. A single-function condition is called a basic term. A conjunc-
tion via & of basic terms is called an &-term. A plan is said to be in normal form
if it has the form E1 && E2 && · · · && En where the conjuncts Ei are &-terms.3

We now define the notion of a cost model. We allow the cost of an && operation
to depend on the selectivity of its first argument to model branch misprediction
effects.

Definition 4.2. Each basic term is assigned a fixed cost. The actual cost of
a plan P on a record is the sum of (a) the cost of each basic term in P that is

2We mean commutative in terms of performance rather than in terms of logic. Both arguments of &
are evaluated and ANDed together; the order of evaluation does not affect the overall performance.
Similarly, when we talk about associativity, we mean in terms of performance.
3The implicit parenthesization is (E1) && [(E2) && [· · · [(En-1) && (En)] · · ·]].

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 141

actually evaluated, (b) the cost of each & operation that is actually evaluated,
and (c) the cost of each && operation that is actually evaluated. The cost of
an & operation is independent of its arguments. The cost of an && operation
is independent of its second argument, but may depend on the selectivity of
its first argument. The estimated cost is the expected actual cost, derived by
considering records distributed in accordance with the independent selectivity
estimates for each column. The estimated cost function defines a cost model for
plans. A plan is optimal within a space of plans if it has the lowest estimated
cost among all plans.

LEMMA 4.3. Every expression has an optimal plan that is in normal form.

PROOF. See Appendix C.

Lemma 4.3 relies on the fact that the cost function is additive. Lemma 4.3
does not necessarily hold in nonadditive cost models, such as response time on a
machine with multiple processors that can process subexpressions in parallel.

The order of the inner conjunctions (via &) does not matter, due to commuta-
tivity. We thus consider the inner conjuncts as sets of basic terms.

Let tm,n denote the number of normal-form plans over n basic terms, with
exactly m occurrences of &&. Then, t0,n = 1 for all n ≥ 1. For the inductive case,
consider prepending (via &&) an additional &-term to a normal form expression
with m occurrences of &&. Then

tm+1,n =
n−m−1∑

i=1

(
n
i

)
tm,n−i.

We are actually interested in an, the number of plans with n basic terms, given
by an = 6n−1

k=0tk,n. Then a1 = 1 and for n > 1 one can rearrange the above
recurrence to get:

an = 1+
n−1∑
j=1

(
n
j

)
an− j

which, with a0 conventionally assigned the value 1, can be expressed for n ≥ 1
as

an =
n∑

j=1

(
n
j

)
an− j .

This recurrence has been well studied, as early as 1859 [Cayley 1859]; see
Sloane [2000] for further references. One representation of the solution [Wilf
1990] is that an is the closest integer to n!/(2 lnn+1(2)).

Algorithm No-Branch can be thought of as a potential optimization to remove
the final if test of a combined method. There is thus just one way to apply the
optimization:E to replace

if (E1 && · · · && Ek) {answer[j++] = i;}
ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

142 • Kenneth A. Ross

with

if (E1 && · · · && Ek-1) {answer[j] = i; += EK;}
where the Ei terms are &-terms. Thus, we should consider plans both with and
without this optimization; the total number of potentially optimal plans is now
2an.

4.2 A Detailed Cost Model

To compare the cost of the various plans, we need to choose a specific cost model.
The basic parameters of the model are: r, the cost of accessing an array element
rj[i] in order to perform operations on it; t, the cost of performing an if test; l ,
the cost of performing a logical “and”; m, the cost of a branch misprediction; pi,
the selectivity of basic term i equal to the probability that basic term number i
is 1; a, the cost of writing an answer to the answer array and incrementing the
answer array counter; fi, the cost of applying function fi to its argument.

In our model, we will assume that the processor is perfect in its branch
prediction, that is, that it predicts the branch to the next iteration will be taken
when the selectivity p ≤ 0.5, and will not be taken when p > 0.5.

Given a plan, we add up the expected cost given the selectivities and the
structure of the algorithm. We count just the cost of the code inside the loop, and
not the loop iteration cost itself (since that’s the same across all methods). We
emphasize that in practice, one must model the costs for the assembly-language
instructions generated by the compiler, rather than directly modeling the cost
of the C code (see Appendix A).

Example 4.4. Consider Algorithm No-Branch on k basic terms. The total
cost for each iteration is kr + (k − 1)l + f1 + · · · + fk + a.

Example 4.5. Consider Algorithm Logical-And on k basic terms, with
selectivities p1, . . . , pk . The total cost for each iteration is kr + (k − 1)l+
f1 + · · · + fk + t+mq+ p1 · · · pka, where q = p1 · · · pk if p1 · · · pk ≤ 0.5 and
q = 1 − p1 · · · pk otherwise. The q term describes the branch prediction be-
havior: we assume the system predicts the branch to the next iteration will be
taken exactly when p1 · · · pk ≤ 0.5.

Example 4.6. Consider Algorithm Branching-And on k basic terms, with
selectivities p1, . . . , pk (in the order listed in the if condition). The cost formula
is the solution for c1 of the recurrence

cn = r + t + fn +mqn + pncn+1 (1 ≤ n ≤ k),

where qn = pn if pn ≤ 0.5 and qn = 1 − pn otherwise, and ck+1 = a. Again,
the qn terms describe the branch prediction behavior; in this algorithm, we can
execute as many as k conditional branches.

While this model captures the important aspects of the problem that are
common across most modern architectures, it is not an exact cost calculation.
Several architecture-dependent features make it approximate, including: out-
of-order execution of instructions, overlapping memory access and computation,

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 143

imperfect branch prediction based on just the most recent branches, and the
degree of instruction-level parallelism present.

Definition 4.7. Let E be an &-term. The fixed cost of E, written fcost(E), to
be the part of the cost of E that does not vary with the selectivity of E. In
particular, if E contains k basic terms using f1 through fk, then fcost(E) =
kr + (k − 1)l + f1 + · · · + fk + t.

We can combine the observations of Examples 4.5 and 4.6 to derive a general
recurrence for mixed plans: Consider the plan P1 given by

if (E && E1) {answer[j++] = i;},

where E is an &-term and E1 is a nonempty expression. Then the cost of this
plan is

fcost(E)+mq+ pC, (1)
where p is the overall combined selectivity of E, q = min(p, 1− p), and C is the
cost of the plan P2:

if (E1) {answer[j++] = i;}.

In particular, for P1 to be an optimal plan, P2 must also be an optimal plan (for
fewer terms). We use this observation as the basis for developing a dynamic
programming solution to our problem in Section 4.4. First, though, we investi-
gate ways to limit the plans we consider by eliminating term orders that cannot
be optimal.

4.3 Term Order in Optimal Plans

Hellerstein et al. consider expensive predicates, that is, where the computation
needed for evaluating whether the predicate is true or false dominates the
overall cost [Hellerstein and Stonebraker 1993]. In that context, it is shown
that predicates should be ranked in ascending order according to the metric
selectivity−1
cost-per-tuple . Our context differs in that our predicates are often cheap, meaning
that other costs such as the branch misprediction penalty cannot be ignored.
Further, there could be a higher misprediction penalty for a lower selectivity,
meaning that this ranking would not be correct when the penalty is sufficiently
high. Nevertheless, our derivation of term orders below bears some similarity
to this rank ordering approach. Proofs of the results of this section can be found
in Appendix C.

LEMMA 4.8. Consider plans of the form

if (E1 && E2 && E) {answer[j++] = i;},

where E1 and E2 are nonempty &-terms, and E is an arbitrary (possibly empty)
expression. Let p1 and p2 be the selectivities for E1 and E2 respectively. Such
plans cannot be optimal if p2 ≤ p1 and p2−1

fcost(E2) <
p1−1

fcost(E1) .

A corollary of this lemma is that whenever two consecutive &-terms appear
anywhere as conjuncts of && (i.e., not just leftmost) in an optimal plan, then the
one with lower selectivity must appear first if it has the same fcost.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

144 • Kenneth A. Ross

Note that Lemma 4.8 says nothing about the case where there is an interven-
ing expression between the two &-terms. An analogous statement to Lemma 4.8
when there are intervening expressions between E1 and E2 fails for two reasons.
First, when p1 > 1/2 it is always possible to find a sufficiently large branch mis-
prediction penalty and a value for p2 less than p1 such that switching the two
basic terms leads to an inferior plan. Second, even when p1 ≤ 1/2, the condition

p2−1
fcost(E2) <

p1−1
fcost(E1) is not strong enough to guarantee that switching E1 and E2 is a

win. Nevertheless, when there are intervening terms we can state the following
weaker lemma.

LEMMA 4.9. Consider plans of the form

if (E1 && X1 && E2 && X2) {answer[j++] = i;},

where X1 and X2 are arbitrary (possibly empty) expressions, E1 and E2 are
nonempty &-terms with respective selectivities p1 and p2, and p1 ≤ 1/2. Such
plans cannot be optimal if p2 < p1 and fcost(E2) < fcost(E1).

A corollary of Lemma 4.9 is that when all selectivities are at most 1/2, a
relatively common case, we can order &-terms E with selectivity p by the pair
(fcost(E), p). In our case (x, y) < (x ′, y ′) if x < x ′ and y < y ′. This ordering on
&-terms is partial, since it is possible to have incomparable pairs. The partial
order constrains the order of &-terms in optimal plans.

Definition 4.10. We call the pair (p−1
fcost(E) , p) the c-metric of &-term E having

combined selectivity p. We call the pair (fcost(E), p) the d-metric of &-term E
having combined selectivity p.

Note that if E1 is less than E2 according to the d-metric, then E1 is also less
than E2 according to the c-metric, but not vice versa. We use Lemmas 4.8 and 4.9
in the dynamic programming algorithm below.

4.4 Finding Optimal Plans

When the number of basic terms is small, we could simply enumerate all normal
form plans and calculate the cost, choosing the plan with the smallest cost.
However, the number of plans grows factorially in the number of basic terms
(Section 4.1), and so alternative methods are necessary in general.

We propose a dynamic programming solution to the problem that is outlined
below.

Algorithm 4.11 (Optimal-Plan). Let S denote the set of basic terms, and let k
be the cardinality of S. Create an array A[] of size 2k indexed by the subsets of S. The
array elements are records containing: The number n of basic terms in the corresponding
subset; the product p of the selectivities of all terms in the subset; a bit b determining
whether the no-branch optimization was used to get the best cost, initialized to 0; the
current best cost c for the subset; the left child L and right child R of the subplans giving
the best cost. L and R range over indexes for A[], and are initialized to ∅.

In the loops over subsets of S, we iterate in an order consistent with the partial
order of subsets of S. In other words, if s1 ⊂ s2, then s1 comes before s2 in the loop.
We call such an order an “increasing” order below. Note that a standard encoding of

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 145

subsets as bitmaps yields an increasing order if we simply increment the bitmap on each
iteration.

(1) /* Consider all plans with no &&s */
Generate all 2k − 1 plans using only &-terms, one plan for each nonempty subset s
of S. Store the computed cost (Example 4.5) in A[s].c. If the cost for the No-Branch
algorithm is smaller, replace A[s].c by that cost (Example 4.4) and set A[s].b = 1.

(2) For each nonempty s ⊂ S (in increasing order)
/* s is the right child of an && in a plan */
For each nonempty s′ ⊂ S (in increasing order) such that s ∩ s′ = ∅ /* s′ is the left
child */
if (the c-metric of s′ is dominated by the c-metric of the leftmost &-term in s) then
{/* do nothing; suboptimal by Lemma 4.8 */}
else if (A[s′].p ≤ 1/2 and the d -metric of s′ is dominated by the d -metric of some
other &-term in s) then
{/* do nothing; suboptimal by Lemma 4.9 */}
else {
Calculate the cost c for the combined plan (s′ && s) using Eq. (1). If c < A[s′ ∪ s].c
then:
(a) Replace A[s′ ∪ s].c with c.
(b) Replace A[s′ ∪ s].L with s′.
(c) Replace A[s′ ∪ s].R with s. }

At the end of the algorithm, A[S].c contains the optimal cost, and its corresponding plan
can be recursively derived by combining the &-conjunction A[S].L to the plan for A[S].R
via &&.

Because the loops over the subsets of S are performed in increasing order,
any newly-generated partial plan will be considered as part of larger plans later
on, within the same loop. One never has to revisit plans that have already been
considered.

The utility of the metric tests is that we avoid generating a large number of
intermediate-quality plans that improve on the currently computed best cost,
without being optimal. In practice, we need to verify that the reduction of the
search space afforded by these tests outweighs the costs of the tests themselves.

The complexity of this algorithm is O(4k) which, while exponential, is
asymptotically much better than generating and testing all normal-form plans
(Section 4.1). Note that the algorithm simultaneously solves the optimization
problem for all subsets of S too, so that one run of the algorithm can cover many
potential loop structures.

Since we are typically interested in small values of k, the exponential com-
plexity is not a barrier to its use in practice. We implemented the optimization
algorithm in C++ and ran it on both the Pentium III and the UltraSparc. The
optimization time itself was always less than 0.01 seconds when k ≤ 9, for var-
ious probability values. We investigate how well the output of the optimization
algorithm matched actual performance time in Section 7.1.

4.5 A Heuristic Optimization Algorithm

While the optimization algorithm of the previous section is guaranteed to find
the optimal solution, it still has exponential complexity. Thus, if we were to be

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

146 • Kenneth A. Ross

presented with an optimization problem having a sufficiently large number of
conditions, it would not be practical. Additionally, when the number of records
to be processed is only moderate, we would want to spend just a small amount of
time on optimization; the method of the previous section may be too expensive
compared with the expected gains in evaluation time.

To address this problem, we present a heuristic method that takes linear
space and has complexity O(k log k) in the average case, and O(k2) in the worst
case. While the heuristic method is not guaranteed to find the optimal solution,
we will demonstrate experimentally that it finds good solutions.

We begin by ordering the terms of the conjunction in ascending order
according to the metric selectivity−1

cost-per-tuple . Our intuition is that, as for the expen-
sive predicate case, ordering predicates in this way will be generally effec-
tive. However, this is just the start of the process: we still need to decide
how to evaluate the conjunction using the three kinds of plans described
above.

We treat the conjunction of k conditions as if it were to be evaluated using
a Logical-And plan. We then move from left to right within the plan, evalu-
ating the cost of the plan formed by replacing an & by an &&. We keep mov-
ing from left to right as long as the measured cost decreases. As soon as the
measured cost increases, or we reach the end of the list, we terminate the left-
to-right traversal. If we didn’t reach the end of the list, we then spawn two
recursive suboptimization processes, one for the left half of the expression, and
one for the right. As a final tweak (not within the recursion), we replace the
rightmost Logical-And subplan by a No-Branch subplan if the latter has lower
cost.

For example, consider the basic terms ordered according to the metric above
as E1, E2, . . . , Ek . We evaluate the cost of the expression E1&&(E2& · · ·&Ek),
then (E1&E2)&&(E3& · · ·&Ek), and so on, until (E1& · · ·&Ei)&&(Ei+1& · · ·&
Ek) is less costly than (E1& · · ·&Ei+1)&&(Ei+2& · · ·&Ek). We then recursively
apply the heuristic to the subexpressions (E1& · · ·&Ei) and (Ei+1& · · ·&Ek) to
get plans P1 and P2 respectively. The final returned plan is P1&&P2, with a
possible modification of P2 to use a No-Branch plan for its rightmost term.

The analysis of this algorithm is very similar to the analysis of quicksort.
It takes linear space, worst-case quadratic time, and k log k time on average
assuming randomly distributed termination points in the left-to-right traversal.

The intuition behind the method is that once we have decomposed a plan P
into one of the form P1&&P2, then P1 and P2 can be optimized independently;
they do not depend on each other. The placement of the top-level && within
P is done heuristically, assuming that the plan for the right-hand-side is the
Logical-And plan. At the cost of adding complexity, one could consider alterna-
tive plans for the right-hand-side in order to determine a better partitioning
point.

We shall study the quality of plans generated by the heuristic optimization
method experimentally in Section 7.1. In terms of optimization time, our im-
plementation on both the Pentium III and the UltraSparc takes less than 0.01
seconds consistently for k ≤ 60. For k = 4 the optimization time was consis-
tently less than 16 microseconds.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 147

5. NEGATION AND DISJUNCTION

We now generalize our approach to handle negation and disjunction. First, we
can use De Morgan’s laws to push negation down to basic terms, switching
conjunctions to disjunctions and vice-versa as we go. Pushing negation does
not change the total number of conjunction/disjunction operations. Second, we
observe that negation applied to basic conditions poses no difficulties: the com-
piler simply reverses the sense of the corresponding if test. As a result, we can
assume that we are dealing with a compound condition in which the only logi-
cal operators are conjunctions and disjunctions. Conjunctions and disjunctions
may be nested to an arbitrary degree.

Example 5.1. Consider the condition

p∧ (¬(q ∧ ¬r) ∨ ¬u ∨ (s ∧ t)).

This condition can be rewritten as

p∧ ((q′ ∨ r) ∨ u′ ∨ (s ∧ t)).

The primed conditions are the complements of the originals, so that if u was
x > 3 then u′ would be x ≤ 3.

In C, there is an operator || that implements disjunction, with the property
that in evaluating (p || q), q is only evaluated if p is false. If p is true, then
the evaluation of q is skipped. Disjunction and conjunction are duals: || is the
dual of && and | is the dual of &.

This duality extends to deriving plans for evaluating disjunctive condi-
tions. For example, implementing a “(p||q||r)” plan requires three conditional
branches, implementing a “(p|q|r)” plan requires one conditional branch, and
the corresponding no-branch plan uses no conditional branches. The difference
between conjunction and disjunction is that for disjunction, work is saved if the
condition succeeds, while for conjunction, work is saved if the condition fails.
As a result, the formulation of the cost for a plan of the form

if (E || E1) {answer[j++] = i;}

is given by

fcost(E)+mq+ (1− p)C, (2)

where p is the overall combined selectivity of E, q = min(p, 1− p), and C is the
cost of the plan P2:

if (E1) {answer[j++] = i;}.

The difference between Eq. (2) and the corresponding equation for conjunctions,
Eq. (1), is that the coefficient of C is (1−p) rather then p. The results of Section 4
all have analogs for disjunction (without conjunctions), where the selectivity p
is replaced by 1− p in the statement of the results.

If we have an expression of the form ∧{p, ∧{q, r}, . . .} we will rewrite it as
∧{p, q, r, . . .}. Similarly, ∨{p, ∨{q, r}, . . .} would be rewritten as ∨{p, q, r, . . .}.
This rewriting gives query optimization algorithms the most flexibility about
the ordering of the arguments of each operator. Thus we can assume that in a

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

148 • Kenneth A. Ross

subexpression of the form ∧{p, . . .}, p is either a basic term or a disjunction of
expressions (and conversely for ∨). We can write the compound expression of
Example 5.1 as

∧{p, ∨{q′, r, u′, ∧{s, t}}}.
At this point, we can extend the dynamic programming method to the general

case with both conjunction and disjunction.

Algorithm 5.2. We optimize an expression inductively from the innermost subex-
pressions outwards.

For a subexpression E of the form ∧{Ei}, where each Ei is a basic term, optimize E
locally using Algorithm Optimal Plan. For a subexpression E of the form ∨{Ei}, where
each Ei is a basic term, optimize E locally using Algorithm Optimal Plan, but using
Eq. (2) in place of Eq. (1).

Now consider a subexpression E of the form ∧{Ei}, where each Ei is an expression that
has already been optimized. We use the computed cost and selectivity of Ei to optimize
∧{Ei} using Algorithm Optimal Plan, substituting the computed cost for fcost(Ei) and the
net selectivity for p in Eq. (1). Disjunctive subexpressions are handled in a dual fashion.

At the end of this process we have an overall plan for the entire expression, and a
cost estimate for this plan.

Similarly, we can extend the heuristic method by first locally optimizing
subexpressions. For example, to optimize p ∧ (q ∨ r), we first use the heuristic
algorithm on the subexpression q ∨ r to get a plan for this subexpression. (For
disjunctions, we order terms by −selectivity

cost-per-tuple .) The overall selectivity and cost of
this plan is then used in deciding how to combine the (q∨r) subexpression with
p in the overall plan.

Unlike the case for conjunctions alone, the plan chosen depends on the syntax
of the expression. For example, the expression of Example 5.1 is equivalent to
both

(p∧ q′) ∨ (p∧ r) ∨ (p∧ u′) ∨ (p∧ s ∧ t)

in disjunctive normal form (DNF), and

p∧ (q′ ∨ r ∨ u′ ∨ s) ∧ (q′ ∨ r ∨ u′ ∨ t)

in conjunctive normal form (CNF). If we use one of these expressions in place
of the one in Example 5.1, we would come up with a different space of plans. As
a result, Algorithm 5.2 is not guaranteed to find a globally optimal plan.

Neither the DNF expression nor the CNF expression are good choices here,
because there is redundant evaluation of subexpressions. In any plan generated
from the CNF expression, p is potentially evaluated four times. Similarly, in
any plan generated from the DNF expression, q′ ∨r∨u′ is potentially evaluated
twice. Thus, there seems to be a premium to be placed on the compactness of
an expression.4 In other words, as a general rule it is better to have as few
operators as possible.

To get compact expressions, one could apply some form of logic minimization
or common subexpression elimination, at the cost of some extra optimization

4For noncompact plans, in which an operand is repeated in different parts of an expression, we
cannot assume that the subexpression success probabilities are independent of one another.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 149

time. Nevertheless, in the context of ad-hoc query processing, we expect that
human-generated conditions are likely to be relatively compact.

6. OTHER PERFORMANCE ISSUES

6.1 Prefetching

A potential performance problem is that we may have significant latency due
to cache misses on the r arrays. After each cache-line’s worth of entries from
each r array is used, we have to wait until the next cache-line is brought into
the cache from RAM. Given the tightness of the inner loop, this delay could be
significant. This penalty can be reduced by employing prefetching [Vanderwiel
and Lilja 2000; Intel Corp. 1999]. One instructs the processor to bring the r
cache lines into the cache ahead of their actual use, using an explicit assembly
language prefetch instruction. On a Pentium 4, the hardware automatically
prefetches data ahead of its use for common access patterns, such as sequential
access.

When only part of the array is accessed, such as using a matches array as in
the index-based loop of Section 3, prefetching is more difficult, for several rea-
sons. Firstly, since there is a level of indirection, it takes more effort to compute
the address of the next cache line to bring in. One needs several instructions
to dereference the matches array for a future iteration, and to then execute the
prefetch. Secondly, the density of the matches array may range from covering
the whole array to covering a very small fraction. A fixed prefetch policy will
not be good for both. If one tries to prefetch for every access to the matches
array, one may be unnecessarily prefetching the same cache line many times.
If one tries to prefetch just a portion of the matches array, then one may end
up not prefetching as much as possible. A prefetch policy that is sensitive to
the data in the matches array would probably use more time making decisions
than the benefit obtained by prefetching. Finally, recall that the main benefit of
prefetching is the opportunity to overlap computation and data transfer. If we
are accessing each cache line to process one record in it (as opposed to say eight
records for a scan) then there is much less computation per cache line, and the
opportunity for overlapping computation and data transfer may be reduced.

Nevertheless, there are a few things we can do to improve data locality when
accessing the array via an index. For example, we can make sure that the
matches array is in increasing order. That way, accesses to the same cache line
will happen consecutively, and cache lines won’t be evicted from the cache before
they are completely processed. Also, despite the difficulties in applying prefetch-
ing here, the index-based code may still perform best when the corresponding
condition is selective because many fewer records need to be processed.

6.2 Code Specialization

If we were to naively implement the code as written, we would need to execute a
function call for each function evaluation. If the functions are known at compile
time, they can be inlined, avoiding this overhead. Thus, if we know that certain
“canned” queries are frequently posed, we can compile a single specialized loop

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

150 • Kenneth A. Ross

Fig. 2. Three implementations: Sun.

for each one if we can derive estimates for the function cost and selectivity
for the optimization algorithm. Since the loop code is small, we can probably
tolerate thousands of such queries with a small expansion in the executable
code size.

However, for ad-hoc queries we need to be able to allow the functions to be
specified at run-time. There are two complementary problems. First, executing
a function call (and potentially dereferencing a function pointer as well) may
be a significant performance overhead in a tight inner loop. Second, we don’t
know the selectivities and function costs until query time, and these statistics
are important for the selection of the appropriate inner-loop plan. There are
several potential solutions to this problem. We outline one below.

When responding to an ad-hoc query, we still may have time to perform the
optimization described above, compile a new version of the loop, with the ap-
propriate combination of &&s and &s, and link it into the running code. Systems
such as Tempo [Consel and Noel 1996; Noel et al. 1998] allow such run-time
compilation. Run-time code specialization of this sort would be beneficial only
if the optimization time plus the compilation time are smaller than the im-
provement in the running-time of the resulting plan. As we saw in Sections 4.4
and 4.5, the optimization time is relatively small. The code to be compiled is
also relatively small. For scans of large tables, such an approach may indeed
pay off.

Run-time code specialization is different from self-modifying code. With self-
modification, a program changes its own byte-code during its execution. While
such a technique might actually present the most efficient solution to our code
specialization problem, code modification is generally considered to be a bad
idea. Such code is not reentrant, sharable, able to reside in ROM; it leads to
cache coherency problems; it isn’t easy to understand and it is architecture
dependent.

6.3 Internal Parallelism

The results for the experiment of Section 3.2 on a Sun UltraSparc are given in
Figure 2. Unlike the Pentium, as the selectivity approaches 1, the performance
of the && plan continues to worsen. The reason for this behavior is that the
Sun can execute multiple instructions at a time. For the & algorithm and the

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 151

nobranch algorithm, there are plenty of opportunities for executing multiple
instructions in parallel. Instructions for the second test can be overlapped with
instructions for the first, for example. However, in the && algorithm there is
much more dependence on the control flow, resulting in less effective paral-
lelism. Note that even the first step of our approach (pulling up all instances of
&& to the top level in Section 4.1) is not necessarily justified if subexpressions
can be evaluated in parallel on a superscalar processor.

This aspect of chip performance is hard to model in an abstract way. The
precise drop in potential parallelism depends in complex ways on the instruction
set, the quality of the compiler, and the particular set of instructions being
executed in the inner loop. Extending the cost-model to take such behavior into
account is a topic for future research.

7. CASE STUDY

To demonstrate that our solution constitutes a feasible solution to realistic
classes of problems, we describe a case study in which we apply these tech-
niques in the context of a prototype event-based notification system called “Le
Subscribe” [Pereira et al. 2000; Fabret et al. 2001].

Le Subscribe aims to store millions of subscriptions, and to match hundreds
of events per second against these subscriptions. Each subscription specifies a
conjunction of simple conditions to apply to events, such as numeric equalities
and inequalities. Where possible, subscriptions are partitioned into clusters
based on equality conditions in the subscriptions. When an event arrives, it
needs to be matched against clusters that agree with the event on the value of
the partitioning attribute(s), as well as against subscriptions having no equality
conditions.

Subscriptions are grouped based on the number of conditions. So, subscrip-
tions with two conditions are grouped together for example. A group with k con-
ditions is stored as a collection of k one-dimensional arrays r1[i], . . . , rk[i].
The ith entry in each array is a condition from the ith subscription.

Conditions are simply pointers to memory locations containing Boolean val-
ues. Whenever an event arrives, the global set of Boolean values is updated to
reflect the characteristics of the event. That way, repetitive checking of condi-
tions by thousands of subscriptions is avoided. The overall performance of the
matching system is measured by how many events per second can be matched
for a given number of subscriptions.

Matching against a group of subscriptions takes place using a sequential
scan of the corresponding arrays. For a discussion of how Le Subscribe employs
prefetching, see Fabret et al. [2001]. Subscriptions do not change rapidly. Thus,
one can obtain good estimates of selectivity for each ri by either estimating the
distribution of events, or by keeping track of historical selectivities.

It is important to realize that the selectivities in each cluster are unlikely to
be extremely small, since most (if not all) of the equality conditions would have
already been applied in the partitioning step. The remaining inequalities (such
as price<100) may have selectivities distributed (not necessarily uniformly)
across the whole [0, 1] range.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

152 • Kenneth A. Ross

The simplicity of the subscription language means that the functions fj
are both cheap and small in number. Further, the functions that are actually
executed in the inner loop are just pointer lookups: the code will look like if
(*r1[i] && *r2[i] · · · . This implementation is very similar to our dimension-
table preprocessing example (context 3) in Section 3.1, with every function being
treated in the same way.

We can reap two immediate benefits in terms of function specialization here.
The first benefit is that all of the functions can be inlined, yielding very efficient
code. The second, more subtle benefit is that we can get away with fewer pieces
of code to implement all of the various candidate plans, because of the symme-
try of the functions. For example, we can use the same subroutine to execute
both the test if (*r1[i] && *r2[i]) · · · and the “opposite” test if (*r2[i] &&
*r1[i]) · · · by simply switching the positions of r1 and r2 in the parameter list
when calling the subroutine.

The maximum number of subroutines we thus need to precompute is equal
to the number of distinct normal form expressions when we consider all basic
terms to be equivalent. A simple induction shows that for n ≥ 1 basic terms
we have 2n−1 such expressions. If we allow the No-Branch optimization, the
number of expressions doubles, and the total is 2n.

We expect in practice that the bulk of the subscriptions will have at most
6 basic expressions per subscription [Pereira et al. 2000; Fabret et al. 2001].
Since the code for the inner loop is quite small, it is feasible to precompile all
21 + 22 + · · · + 26 = 126 code alternatives into the system, without using any
sophisticated run-time code generation. For the small number of subscriptions
having more than our predefined limit, we can use a generic loop. The generic
loop will be more expensive per subscription than the specialized ones, but with
few subscriptions of that form, the net cost will be small.

Based on the estimated selectivities, the best method for each group within
each cluster can be determined off-line using the algorithm of Section 4.4. A
function pointer can be stored with the sublist to indicate which of the various
plans should be used for this sublist. (A permutation indicating the order of the
arguments is also required.)

7.1 Validation

We validate our approach for an implementation consistent with the event no-
tification scenario above. All functions fi are simple lookups in a correspond-
ing character array ti of size 1000. Values in this array are either 1 or 0, set
randomly according to a probability parameter pi. The selectivities of each con-
dition can thus be separately controlled.

We chose values for the cost model parameters that were consistent with both
published reports [Intel Corp. 1999; Ailamaki et al. 1999] and with the typical
assembly code generated by gcc. The numbers for a Pentium III, measured in
machine cycles, are: r = 1, t = 2, l = 1, m = 17, a = 2, f1 = · · · = fk = 1.

In our first experiment, we show how the optimizer and the heuristic algo-
rithm perform for four conditions when all probabilities are the same. This is
the same scenario described by Figure 1. We ran many scans against a single

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 153

Fig. 3. Prediction and actual performance.

cluster in memory, so that there is no cache miss penalty. Figure 3 shows the
results for a 750 MHz Pentium III machine. The cost prediction of the optimizer
is given as the solid line in the graph; the dotted line is the heuristic prediction.
The actual performance numbers of all plans selected by the optimizer on some
range are plotted as points. The order of the legend indicates the left-to-right
ordering of ranges in which that plan was selected by the optimizer. In partic-
ular, the nobranch variant of the branching-and plan was optimal for p ≤ 0.14;
the nobranch variant of the (1&2) && (3&4) plan was selected from p = 0.15
to p = 0.45; the nobranch version of the (1&2&3) && 4 plan was chosen for
p = 0.46 through p = 0.52; for p ≥ 0.53, the nobranch plan was chosen.

For architecture-dependent reasons that we’ve already mentioned we don’t
expect our cost models to be exact cost estimates. Thus, we don’t expect a perfect
match of predicted cost with actual cost. The optimizer consistently overesti-
mates the performance by about 20%. Nevertheless, the optimizer’s choice is
usually the best method for the given range.

To quantify how well our model measures branch misprediction, we com-
pared the model’s estimate of the number of mispredicted branches per record
with the actual number of mispredictions. The actual number is obtained by
using the hardware counters available on Pentium III processors to count the
exact number of branch mispredictions; we used the “rabbit” tool to perform the
actual counting [Heller 2000]. The results for the branching-and plan, the plan
having the most branches, are given in Figure 4. The closeness of the curves
indicates that we are doing a good job of modeling branch misprediction.

The heuristic performs well except for high probabilities, when the no-branch
algorithm is best. This observation suggests a simple modification to the heuris-
tic algorithm: compare the result of the heuristic algorithm with the no-branch
algorithm as a final step before choosing a plan.

In our second example, we consider a four-way conjunction in which the se-
lectivities are unequal. The selectivity of the first condition is varied between
0 and 1, and is plotted on the x-axis. We let the second condition have a selec-
tivity of 0.25, the third a selectivity of 0.5, and the fourth a selectivity of 0.75.
Figure 5 shows the results. There are three plans chosen by the optimizer in
different ranges; the boundaries of those ranges are clear from the bumps in
the optimizer selection curve. We see that when condition 1 is very selective, it

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

154 • Kenneth A. Ross

Fig. 4. Branch misprediction count.

Fig. 5. Unequal probabilities.

appears on its own at the beginning of the test. When is it moderately selec-
tive, it is combined with the second condition. When it is not very selective, it
appears at the right of the test. The heuristic performs adequately, although it
gives plans about 10% worse than optimal for high probabilities.

7.2 Cache Miss Penalties

Our experiments so far have iterated over a data set that fits in the cache
of the machine. The cost of a cache miss is larger than the cost of a branch
misprediction. Thus, we need to verify that branch misprediction effects are
still significant even in the presence of cache misses. One can optimize the
cache behavior by including explicit assembly language prefetch instructions
as described in Section 6.1. The disadvantage of such an approach is that the
code becomes architecture-dependent.

Fortunately, we can study the cache behavior more carefully (without assem-
bly language coding) by contrasting the performance on a Pentium III with that
of a Pentium 4. Unlike the Pentium III, the Pentium 4 automatically prefetches
data for common reference patterns such as sequential access.

The graph of Figure 6(a) shows the performance for a 4-way logical-and plan
on the 750 MHz Pentium III, and Figure 6(b) shows the same plan on a 1.8-GHz
Pentium 4. The curves labeled “cache-resident data” are generated using a
single small cluster over and over again, as in the previous experiments. That

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 155

Fig. 6. Effect of cache misses.

way, the whole cluster is cache-resident and there are no cache misses. The other
curves are generated by cycling through a cluster that is much larger than the
L2 cache. By the time the cluster is revisited, the required records have been
expelled from the cache. These results show that prefetching can be effective
in reducing the cache miss latency. They also show that branch misprediction
effects are still significant even when cache miss penalties are considered.

7.3 Impact

We now try to measure the degree to which our techniques would affect the
overall performance of subscription matching for Le Subscribe. Consider an ex-
ample based on Fabret et al. [2001] in which there are six million subscriptions,
and for which a number L of those subscriptions contain just inequality pred-
icates. Because these subscriptions cannot be hash-partitioned, Le Subscribe
would sequentially scan all L subscriptions for each event.

Using the parameter settings of Fabret et al. [2001], a default method would
need between 12 and 45 nanoseconds per event per record. When L exceeds
150,000, i.e., 2.5% of the subscriptions, the cost of processing this subscription
array (which is linear in L) dominates the overall cost. Our optimization tech-
niques allow significant improvements (up to a factor of two) in this component
of the cost. As a result, significant improvements in event throughput can be
realized.

8. DATA PLACEMENT

So far, we have assumed that we have no control over the organization of the
data. In applications such as stream processing, where the data is dynamic,
such an assumption is natural. Even for applications in which the data is static
and under the control of a database system, there may be design criteria more
important than branch misprediction effects that dictate the structure of the
data.

Nevertheless, in some cases we may have flexibility to determine the struc-
ture of the data. In a low-dimensional data set that is intended to support
range queries, for example, it would be natural to store the data in a structure
such as a k-d-tree or a quad-tree. The “curse of dimensionality” precludes such

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

156 • Kenneth A. Ross

Fig. 7. Range predicate runs and branch misprediction.

data structures for high-dimensional data sets, unless one is willing to tolerate
substantial redundancy.

In such a case, or when arbitrary queries need to be supported, a sequential
scan over the data seems like the most robust choice. We still have some freedom
to choose the order in which the data elements are stored. Can we choose an
order that mitigates the branch misprediction penalties?

If our basic predicates are arbitrary and unrelated, there is little hope of
benefiting from a particular order. An order designed for one predicate will not
help for other predicates on the same attribute(s). In practice, though, predi-
cates are often correlated. For concreteness, we shall assume that predicates
on each attribute are range predicates. The important property of range pred-
icates that we will exploit is that randomly chosen nearby values are likely to
branch the same way for a given range predicate.

Imagine a column of 220 Boolean values x that are randomly ordered. Suppose
that the distribution of values is half zeroes and half ones. Then a scan of
the column applying the predicate x = 1 (using any plan other than the no-
branch plan) will cause roughly 219 branch mispredictions. However, if the x
values were sorted so that all zeroes preceded all ones, then there would only
be a handful of branch mispredictions, occurring just at the start and at the
transition point from zeroes to ones.

Sorting the data in this way is not desirable, because it excludes the pos-
sibility of optimizing other columns to reduce their branch mispredictions. If
instead we were to group the x values into a run of zeroes followed by a run of
ones, followed by another run of zeroes, and so on, then the number of branch
mispredictions would be a small multiple of the number of transitions from zero
to one or from one to zero. We could reduce the branch misprediction rate by a
factor of roughly the average run length.

To map range predicates to Booleans, we first identify the range predicate
pi that has the worst-case branch misprediction behavior, that is, a success
probability of about 1/2, for each column i. This predicate is a comparison with
the median. If a row satisfies pi, then we think of it as having a one bit for
column i; otherwise it has a zero bit.

Figure 7 shows the impact of longer run lengths on range predicates on a
Pentium 4 machine. We stored a large array of values chosen uniformly from

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 157

the range 0 to 255, and applied the selection condition x ≥ c for various values
of c between 0 and 256. The selectivity (on the horizontal axis) is 1− c/256. We
explicitly measured the number of branch mispredictions using the Intel VTune
performance monitoring tool, and divided that number by the total number of
loop iterations to get the branch misprediction probability.

The curve labeled “random” shows the impact of branch misprediction if
the values are randomly ordered. The curve labeled “run20” shows the branch
misprediction probabilities when the array is grouped into runs of length 20,
with each group being either all less than 128, or all greater than or equal to 128.
Within each run, the values are randomly distributed within the subrange. One
can see that the branch misprediction probability has dropped from 0.5 to a little
over 0.1 for selectivity 1/2. The worst-case branch misprediction probability is
now about 1/3. For reference, the curve labeled “Partitioned” shows the branch
misprediction penalties that would result if the first half of the array had values
less than 128, and the second half had values greater than or equal to 128.

Now suppose that we have c columns x1 through xc of Booleans, and we
wish to simultaneously reduce branch misprediction on all columns for the
predicate xi = 1. Assume a 50/50 distribution on each column, and suppose
that the column distributions are independent. Assume 220 records as before.
Then it is possible to order the records using a balanced Gray code [Bhat and
Savage 1996] on the c-bit key. A balanced Gray code has the property that each
column has approximately 2c/c transitions. For example, if c = 20, then any
given column would have an average run length of approximately 20.

It would be possible to improve the branch prediction performance of Figure 7
even further by devoting two bits rather than one to the encoding of the given
column, encoding which quartile the data value comes from. Combinatorial
Gray codes [Savage 1997] are then appropriate. However, there is likely to be a
fixed “budget” of bits, and we need to consider the workload to determine which
columns deserve extra bits, potentially at the expense of other columns.

Once we have performed the reordering, we need to inform the optimizer
that the column has an improved branch misprediction behavior. The best way
to do this is to generalize Equation 1 so that the misprediction probability q is
computed as a general function of the selectivity p. Rather than approximating
q as the minimum of p and 1 − p, one should derive a formula that matches
the actual dependence on p, such as that given in Figure 7. While Lemmas 4.8
and 4.9 do not hold when the data placement is nonrandom, algorithm Optimal-
Plan remains optimal if the metric tests are omitted from step 2.

9. CONCLUSIONS

We have considered the problem of applying a compound selection condition to
a large number of records in main memory. We have proposed a framework in
which plans come from a space of plans representing combinations of three basic
techniques. We have developed a cost model for plans that takes branch mis-
prediction into account. We have developed a cost-based optimization technique
using dynamic programming, for choosing among a space of plans, and have
also developed a heuristic method of lower complexity. We have implemented

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

158 • Kenneth A. Ross

an experimental case study based on a real-world event-notification system,
and shown that significant performance gains can be achieved in that context.
We have described data ordering techniques that further improve the branch
misprediction behavior.

The extent to which these kinds of performance gains can also be achieved
in other kinds of query processing systems is highly dependent on the nature of
their “inner loops.” It is conceivable that many systems, including conventional
database systems, have a relatively high overhead even for basic operations. For
example, in order to handle arbitrary data types (possibly allowing null values)
in a general way there may need to be some extra code in the inner loop. The
benefits of our optimizations are significant only when the inner loops are tight,
that is, when the branch prediction overhead is a significant fraction of the cost
of the inner loop.

The magnitude of the performance gains obtained here depend to some de-
gree on the details of the hardware architecture considered. As architectures
evolve, the proposed techniques should be re-evaluated. Significant architec-
tural changes would set the stage for additional research.

APPENDICES

A. COMPILING IF STATEMENTS

In C, there is a distinction between the use of & and && in conditional tests.
This is best understood by considering the translation of a C code fragment
into assembly code. We show two C code fragments, one for each of & and &&,
and show the corresponding pseudo-assembly code next to it. (Code fragments
comparing || and | are similar.) Assume that the integer variables a and b are
in registers ra and rb respectively.

if (a&b) { load rc,ra
<innercode> and rc,rb

} compare rc,0
<body> branch-eq bodylabel

<innercode>
bodylabel:

<body>

if (a&&b) { compare ra,0
<innercode> branch-eq bodylabel

} compare rb,0
<body> branch-eq bodylabel

<innercode>
bodylabel:

<body>

For &&, if the first argument is zero, we branch immediately to the body code,
without checking the second argument. For &, we perform a logical and of the
two arguments, and then check for zero. The & code has one conditional branch,

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 159

while the && code has two. The code for & could potentially be optimized. For
example, if there is no further need for one of a or b after the test, we could use
one of those registers and omit the load into rc. On many machines, the logical
and instruction automatically sets the condition codes, meaning that a separate
compare with zero is not needed.

B. NONINDEPENDENT SELECTIVITIES

There are two common cases where selectivities of conditions are not inde-
pendent. The first is when two attributes are correlated in some way, such as
age and income for an employee database. The second is when two conditions
test the same attribute. An example of the second would be a range constraint
phrased as the pair x > l and x < h. The probability of x < h holding changes
if we know that the record in question has met the condition that x > l . A more
extreme example of this second case is when the same condition appears in
multiple subexpressions of a condition.

For selectivities that are not independent, the dynamic programming method
of Section 4.4 still applies. When optimizing the subplan for a subset S of the
attributes, one assumes that all branches in the complement of S have suc-
ceeded. Thus, for an attribute Ai ∈ S, we use the conditional selectivity pi|S̄,
that is, the selectivity that the test on Ai succeeds given that the tests on all
attributes in the complement of S have succeeded.

Note that for nonindependent selectivities, suboptimization steps no longer
generate optimal subplans for fewer attributes, since the selectivities are con-
ditioned on attributes not appearing in the subplan. Also, it may be difficult to
represent all of the conditional selectivities: there are exponentially many of
them corresponding to different combinations of attributes S.

C. PROOFS OF LEMMAS

PROOF OF LEMMA 4.3. Let P be an optimal plan for an expression. We will
perform several optimality-preserving transformations on P that result in a
normal-form plan.

Step 1. Suppose P has a subexpression of the form E1 & (E2 && E3), where
the order of the operands of the outer & is not important, and the Ei are (pos-
sibly compound) expressions. (If there is no such subexpression, we proceed to
Step 3.) We claim that a plan P ′ in which this subexpression is replaced by
E2 && (E1 & E3) is no more costly than P . If the subexpression as a whole is
not evaluated, then P and P ′ are equally costly. Otherwise, in both P and P ′

the expression E2 is evaluated, and both plans execute one && operation for the
subexpression. The && operation is equally costly in P and P ′ since the first
argument is the same in both plans. In both plans, E3 is executed precisely
when E2 succeeds. However, in P , E1 and the & operation are always executed,
while in P ′ they are executed only when E2 is true. Since the selectivity of the
subexpression is not changed by this transformation, the cost of the enclosing
operator is unchanged. Since P ′ does no more work than P , and since P is an
optimal plan, P ′ must also be optimal.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

160 • Kenneth A. Ross

Step 2. We recursively apply Step 1 to P ′. A well-ordering argument, based
on the total number of enclosing & operations of all && operations, shows that
the recursion must terminate, meaning that we do eventually reach Step 3.

Step 3. At this point, the transformed plan (call it P ′′) has no occurrences
of && within the scope of a & operator. However, P ′′ may violate normal form
due to an inappropriate parenthesization of the && operators. If there is an oc-
currence of the subexpression (E1 && E2) && E3 in P ′′, we transform it into
E1 && (E2 && E3). The subexpression E1 && (E2 && E3) does no more work
than (E1 && E2) && E3; the rightmost && operator is not evaluated if E1 is false.
Thus, the optimality of the transformed plan is preserved. We recursively apply
this transformation for every subexpression of the form (E1 && E2) && E3. A
well-ordering argument, based on the total number of left-enclosing && opera-
tions of all && operations, shows that this recursion must terminate.

Once Step 3 is complete, the resulting plan is optimal, and in normal form.

PROOF OF LEMMA 4.8. Suppose p2 ≤ p1 and p2−1
fcost(E2) <

p1−1
fcost(E1) . Let C be the cost

of this plan, and C′ the cost of the plan formed by switching the positions of E1
and E2. Using Eq. (1),

C − C′ = [fcost(E1)(1− p2)− fcost(E2)(1− p1)]+m(q1(1− p2)− q2(1− p1)).

The term inside square brackets is positive since p2−1
fcost(E2) <

p1−1
fcost(E1) . For the

remainder R of the expression we consider three cases. If 1/2 ≥ p1 ≥ p2 then
q1 = p1 and q2 = p2 and R = m(p1− p2) ≥ 0. If p1 ≥ p2 ≥ 1/2, then q1 = 1− p1
and q2 = 1− p2 and R = 0. If p1 ≥ 1/2 ≥ p2, then q1 = 1− p1 and q2 = p2 and
R = m(1− p1)(1− 2p2) ≥ 0. In each case, C′ is less than C, and so our original
plan cannot be optimal.

PROOF OF LEMMA 4.9. Let C be the cost of this plan, and C′ the cost of the
plan formed by switching the positions of E1 and E2. Suppose 1/2 ≥ p1 > p2.
Using Eq. (1),

C − C′ = [fcost(E1)(1− p2 p)− fcost(E2)(1− p1 p)]+ (m+ e)(p1 − p2)

where e is the cost of expression X1 and p is the selectivity of X1. fcost(E2) <
fcost(E1), p2 < p1, and 0 ≤ p ≤ 1 together imply that the term in square
brackets is positive. If p1 > p2, then the remaining term is also positive, C′ is
less than C, and so our original plan cannot be optimal.

ACKNOWLEDGMENTS

Thanks to Françoise Fabret, François Llirbat, João Pereira, Dennis Shasha and
Eric Simon, whose Le Subscribe project motivated this work. Thanks also to
the anonymous referees for several valuable suggestions.

REFERENCES

AILAMAKI, A., DEWITT, D., HILL, M., AND WOOD, D. 1999. DBMSs on a modern processor: Where
does time go. In Proceedings of the VLDB Conference. 266–277.

AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND SKOUNAKIS, M. 2001. Weaving relations for cache
performance. In Proceedings of the VLDB Conference. 169–180.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

Selection Conditions in Main Memory • 161

BHAT, G. S. AND SAVAGE, C. D. 1996. Balanced Gray codes. Elect. J. Combin. 3, 1, R25.
BONCZ, P. A., MANEGOLD, S., AND KERSTEN, M. L. 1999. Database architecture optimized for the

new bottleneck: Memory access. In Proceedings of the 25th VLDB Conference. 54–65.
CAYLEY, A. 1859. On the theory of the analytical forms called trees II. Phil. Mag. 18, 374–378.
CONSEL, C. AND NOEL, F. 1996. A general approach for run-time specialization and its application

to C. In Proceedings of the Symposium on Principles of Programming Languages. 145–156.
FABRET, F., JACOBSEN, H.-A., LLIRBAT, F., PEREIRA, J., ROSS, K. A., AND SHASHA, D. 2001. Filtering

algorithms and implementation for very fast publish/subscribe. In Proceedings of the ACM SIG-
MOD Conference. ACM, New York. 115–126.

GARCIA-MOLINA, H. AND SALEM, K. 1992. Main memory database systems: An overview. IEEE
Trans. Knowl. Data Eng. 4, 6, 509–516.

GRAY, J. AND SHENOY, P. J. 2000. Rules of thumb in data engineering. In Proceedings of the Inter-
national Conference on Data Engineering. 3–12.

HELLER, D. 2000. Rabbit: A performance counters library for intel/amd processors and linux.
http://www.scl.ameslab.gov/Projects/Rabbit/.

HELLERSTEIN, J. M. AND STONEBRAKER, M. 1993. Predicate migration: Optimizing queries with
expensive predicates. In Proceedings of the ACM SIGMOD Conference. ACM, New York. 267–
276.

INTEL CORP. 1999. Intel Architecture Optimization: Reference Manual.
INTEL CORP. 2000. Intel IA-64 Architecture Software Developer’s Manual, Volume 1 Rev. 1.0. Avail-

able at http://developer.intel.com/design/ia-64/manuals/.
LEHMAN, T. J., SHEKITA, E. J., AND CABRERA, L.-F. 1992. An evaluation of starburst’s memory resi-

dent storage component. IEEE Trans. Knowl. Data Eng. 4, 6, 555–566.
MANEGOLD, S., BONCZ, P. A., AND KERSTEN, M. L. 2000. What happens during a join? Dissecting

CPU and memory optimization effects. In Proceedings of the VLDB Conference. 339–350.
NOEL, F., HORNOF, L., CONSEL, C., AND LAWALL, J. L. 1998. Automatic, template-based run-time

specialization: Implementation and experimental study. In Proceedings of the International Con-
ference on Computer Languages. 132–142.

PEREIRA, J., FABRET, F., LLIRBAT, F., PREOTIUC-PIETRO, R., ROSS, K. A., AND SHASHA, D. 2000. Publish/
subscribe on the web at extreme speed. In Proceedings of the VLDB Conference. 627–630.

PUCHERAL, P., THEVENIN, J.-M., AND VALDURIEZ, P. 1990. Efficient main memory data management
using the DBGraph storage model. In Proceedings of the International Conference on Very Large
Databases. 683–695.

RAO, J. AND ROSS, K. A. 1999. Cache conscious indexing for decision-support in main memory. In
Proceedings of the 25th VLDB Conference. 78–89.

RAO, J. AND ROSS, K. A. 2000. Making B+-trees cache conscious in main memory. In Proceedings
ACM SIGMOD Conference. ACM, New York, 475–486.

SAVAGE, C. D. 1997. A survey of combinatorial Gray codes. SIAM Review 39, 4, 605–629.
SHATDAL, A., KANT, C., AND NAUGHTON, J. F. 1994. Cache conscious algorithms for relational query

processing. In Proceedings of the 20th VLDB Conference. 510–521.
SLOANE, N. J. A. 2000. The on-line encyclopedia of integer sequences. published electronically at
http://www.research.att.com/~njas/sequences.

VANDERWIEL, S. P. AND LILJA, D. J. 2000. Data prefetch mechanisms. ACM Comput. Surv. 32, 2,
174–199.

WHANG, K.-Y. AND KRISHNAMURTHY, R. 1990. Query optimization in a memory-resident domain
relational calculus database system. ACM Transactions on Database Systems 15, 1, 67–95.

WILF, H. S. 1990. Generatingfunctionology. Academic Press, New York.
YUNG, R. 1996. Design of the UltraSPARC instruction fetch unit. Tech. Rep. SMLI TR-96-59,

Sun Microsystems Laboratories.
ZHOU, J. AND ROSS, K. A. 2002. Implementing database operations using SIMD instructions. In

Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, New
York. 145–156.

Received December 2002; revised July 2003; accepted September 2003

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.

