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Abstract

User-defined preferences allow personalized ranking of
query results. A user provides a declarative specification
of his/her preferences, and the system is expected to use
that specification to give more prominence to preferred an-
swers. We study constraint formalisms for expressing user
preferences as base facts in a partial order. We consider
a language that allows comparison and a limited form of
arithmetic, and show that the transitive closure computa-
tion required to complete the partial order terminates. We
consider various ways of composing partial orders from
smaller pieces, and provide results on the size of the result-
ing transitive closures. Finally, we show how preference
queries within our language can be supported by suitable
index structures for efficient evaluation over large data sets.
Our results provide guidance about when complex prefer-
ences can be efficiently evaluated, and when they cannot.

1. Introduction

A variety of applications demand functionality that al-
lows users to specify which among a large set of potential
answers to a query is most relevant to them. Based on
this specification, the most relevant answers are given more
prominence; for example, they may be displayed first.

Current search engines such as Google provide a scal-
able implementation of ranking functionality. However, the
ranking is done according to a single ranking function (e.g.,
“pagerank” [10]) that is not adjustable by users. Ideally,
different users should be able to specify different relevance
measures for the same data.

Past work on preferences has followed one of two
approaches, termed the quantitative and qualitative ap-
proaches [3]. According to the quantitative approach [1],
one starts by defining a measure on the underlying data
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set. For example, a simple measure for an automobile
sales application might be price, with lower prices having a
higher rank. It is then possible to write queries that order the
results according to this measure. A common approach is to
define a scoring measure that assigns weights based on the
importance to the user of each attribute in the data set [6].
In some cases, one can limit the number of answers using
a “top-k” query primitive on the underlying data values
or ranks, and achieve savings in query processing cost [5,
4]. Most work on top-k query use a quantitative approach
by aggregating individual measures using a monotonic pre-
defined scoring function. Quantitative approaches based on
scoring functions provide an easy mechanism to produce
a complete ordering of the underlying data set. However,
quantitative preferences lack expressive power [3].

More general approaches allow a vector of measures,
such as the pair (price, safety-rating) for automobiles.
Queries then solicit the “skyline” of the resulting combined
measure, returning the Pareto-optimal records (i.e., those
not dominated by another record) among those satisfying
the query [2]. A complete ordering of the underlying
data set may not be possible as some records may not
be comparable. For instance, it is not possible to order
a very safe but expensive car and a cheap but less safe
car. While more expressive than quantitative preference
approaches, approaches based on (vectors of) measures are
not sufficiently expressive for some applications [3]:

Example 1.1: Suppose that for sports cars, a red car is
preferred to a blue car, while for economy cars, a blue
car is preferred to a red car. This function cannot be
expressed as a monotonic composition of rankings on car-
type and color, because red is sometimes preferred to blue,
and sometimes blue is preferred to red. A single measure
on (car-type,color) pairs cannot capture the requirement that
sports cars and economy cars are incomparable.

Example 1.2: Suppose that the user cares about price, but
does not care about small differences in price. For example,
the user might wish to state “For any given class of car, car
A is preferred to car B if the price of A is less than 80% of



the price of B.” Cars that differ by 20% or less in price are
incomparable.1 Again, this is not specifiable using a single
measure on price. Among other things, this kind of rule
prevents a car with a price of $1999 “obscuring from view”
another car with a price of $2000, when only Pareto-optimal
records are displayed.

According to the qualitative approach, one defines a
binary preference relation between entities [8]. We take
the qualitative approach in this paper, following Kießling
and Chomicki in using strict partial orders to represent
the preference relation. One writes x � y to describe
a preference for x over y. In order to return the Pareto-
optimal set of answers, one can use the definition of the
partial order to test whether a dominating record appears in
the database [8, 9, 3].

Since partial orders are transitive, a user-specified set of
preference facts needs an application of transitive closure to
generate the complete partial order. In general, the transitive
closure cannot be avoided, because a preference for r1 over
r2 may be a consequence of a chain r1 � s1 � s2 � . . . �
sn � r2, with none of the si actually being present in the
database. (In special cases, such as when the preference
is specified by a numeric total order, an explicit transitive
closure step is not required.)

We focus on what Chomicki calls “intrinsic” prefer-
ences, i.e., preference relations that can be specified based
solely on values in the database records being compared [3].
Some seemingly non-intrinsic preference relations can be
represented intrinsically by creating a view in the database
that adds new columns to the records being compared [3].
For efficiency, these views could be materialized and in-
dexed. Sometimes the views can be computed efficiently
on the fly, so that additional columns are available to the
user to specify preferences.

Example 1.3: Consider a travel agency website that allows
users to list which of the airlines’ frequent flier programs
they belong to. On any flight query, the system could add
an extra column to the output of each flight leg, indicating
whether or not the airline belongs to the user’s frequent-flier
list. This is easily performed using a join (or outer join) on
the fly, since the list of airlines is likely to be small.

The choice of intrinsic preferences decouples the com-
plexity of preprocessing the partial order from the size of
the database, and makes the order insensitive to database
updates.

We formalize the specification of the partial order using
a Datalog-like syntax. A user supplies a set of base rules
defining a (strict) partial order �, and an additional recur-
sive rule is used to transitively close the � relation. In some

1Because we are building a strict partial order, one cannot say some-
thing like “cars that differ by 20% or less in price are equivalent.”

cases, user specified rules may involve constraints, such as

r(C1, P1) � r(C2, P2) :- C1 = C2, P1 < 0.8 ∗ P2

which states that a record r1 is preferred to a record r2 if the
first column of the two records is the same, and r1’s second
column is less than 0.8 times the corresponding value in r2.
This rule expresses Example 1.2.

We preprocess the set of rules by generating a least
fixpoint in the sense of [7], working within an appropriate
domain of constraints. A minimal requirement is that the
constraint domain together with the class of allowed rules
guarantee that a least fixpoint is reached after a finite num-
ber of iterations. Chomicki showed that such a fixpoint
exists for preferences defined in terms of equality and <

(but without arithmetic) on rational numbers [3], using a
result of [7].

Our first contribution is to show that a fixpoint exists
for a more general class of constraints that is useful for
applications employing preferences, including arithmetic
constraints like those in Example 1.2.

It would also be desirable to guarantee that preprocessing
the rules has low complexity. The complexity of deriving all
consequences of a set of rules on a relation with c columns
can be exponential in c, even without arithmetic.

Example 1.4: Consider the following set of c rules on re-
lations with c columns:

r(X1, . . . , Xc−1, 1) � r(X1, . . . , Xc−1, 0)
r(X1, . . . , Xc−2, 1, Xc) � r(X1, . . . , Xc−2, 0, Xc)

· · ·
r(1, X2, . . . , Xc) � r(0, X2, . . . , Xc)

The transitive closure of these rules contains terms of the
form

r(Y1, . . . , Yc) � r(Z1, . . . , Zc)

where for each i = 1, . . . , c, either Yi = 1 and Zi = 0, or
Yi = Zi represent a common variable. Each combination
of these possibilities is generated, except for the case where
Yi = Zi for all i. There are 2c−1 such terms in the transitive
closure, none of which is subsumed by another.

In typical applications, c may be large because each
record may have many descriptive attributes that are per-
tinent to the definition of preference.

Our second contribution is to describe how to define and
compose preferences in a way that limits the size of the
transitive closure.

Finally, we consider the relationship between prefer-
ences and indexing. Once a preference set has been pre-
processed, one can predict the kinds of database lookups
necessary to find records preferable to a given record. By
using appropriate index structures, one can achieve good
data complexity bounds.

Proofs are omitted from the main text, and can be found
in [14].



2. Preference Classes

Motivated by preferences like those of Example 1.2, we
define a class of preferences that allows a particular form
of arithmetic comparisons in the constraints. We define two
languages within which constraints may be expressed. All
constraint languages allow the Boolean values true, denoted
> (corresponding to the empty constraint) and false, de-
noted ⊥ (corresponding to an inconsistent constraint).

Definition 2.1: The constraint language LS is defined over
a finite set of distinct constants S, and contains

• constants from S and variables as basic expressions,

• the standard equality predicate = on expressions,

• conjunctions of predicates.

Definition 2.2: Let C(X1, . . . , Xn, Y1, . . . , Yn) be a con-
straint in LS over the variables X1, . . . , Xn, Y1, . . . , Yn.
We say C is =-allowed, if (a) Every equation c in C has
the form Xi = Yj for some i and j, or Xi = a for some
i and some constant a in S, or Yj = a for some j and
some constant a in S; and (b) No two equations of the form
Xi = Yj in C share the same Yj variable. Note that the
empty constraint, i.e., the Boolean value >, is =-allowed
(vacuously). The false constraint ⊥ is also =-allowed.

Definition 2.3: The constraint language LR is defined over
the nonnegative real numbers (denoted here by R), and
contains

• variables and constants from R as basic expressions,

• composition of subexpressions using multiplication
and addition,

• the standard ordering predicate < on expressions,

• the standard equality predicate = on expressions,

• conjunctions of predicates.

Definition 2.4: Let C(X1, . . . , Xn, Y1, . . . , Yn) be a con-
straint in LR over the variables X1, . . . , Xn, Y1, . . . , Yn.
We say C is <-allowed, if it has the following syntactic
form: (a) Every inequality c in C has the form

Xi + b < aYj

for some i and j, where b is a nonnegative constant, and a is
a constant in (0, 1]. (b) Every equality e in C has the form
Xi = Yj for some i and j, and no two equalities in C share
the same Yj . (c) Each Xi may appear in at most one equality
or inequality in C. Note that the empty constraint, i.e., the
Boolean value >, is <-allowed, as is the false constraint ⊥.

For notational convenience, we may sometimes write an
<-allowed inequality as

Xi < aYj − b

even though subtraction is not strictly part of LR.
One can define an analogous class of >-allowed con-

straints of the form

Xi > a1Y1 + a2Y2 + . . . + anYn + b

by requiring b ≥ 0 and each aj to be either zero or at
least 1. This class is slightly more general than <-allowed
constraints in that addition of multiple Yi terms is permitted
in constraints. Nevertheless, the main ideas are analogous to
those described below for <-allowed rules, and are omitted
due to space limitations.

The syntax for =-allowed and <-allowed constraints is
not symmetric, in that it treats the variables X1, . . . , Xn

differently from the variables Y1, . . . , Yn. The reasons for
this choice will become apparent when we discuss indexing
in Section 4.2.

Definition 2.5: An =-allowed rule is said to be rigid if for
every occurrence of an equation Xi = Yj , i = j. An <-
allowed rule is said to be rigid if for every occurrence of an
equation Xi = Yj , i = j, and for every occurrence of an
inequality Xi < aYj − b, i = j.

Rigid rules require that column variables in one record
are compared (via = or <) only with the same column
variables in another record. Rigid rules have certain nice
composition properties, described in Section 3.

When we have two preference facts of the form r1 � r2

and r2 � r3, we will apply transitivity to infer r1 � r3.
The following two lemmas show that this transitivity step
can be done within the corresponding constraint language
while eliminating variables from r2.

Lemma 2.1: Let C1(X1, . . . , Xn, Y1, . . . , Yn) and
C2(Y1, . . . , Yn, Z1, . . . , Zn) be =-allowed constraints in
LS . Then ∃Y1, . . . , Yn : C1 ∧ C2 can be expressed as an
=-allowed constraint C3(X1, . . . , Xn, Z1, . . . , Zn) in LS .

Lemma 2.2: Let C1(X1, . . . , Xn, Y1, . . . , Yn) and
C2(Y1, . . . , Yn, Z1, . . . , Zn) be <-allowed constraints in
LR. Then ∃Y1, . . . , Yn : C1 ∧ C2 can be expressed as an
<-allowed constraint C3(X1, . . . , Xn, Z1, . . . , Zn) in LR.

We will consider collections of rules in which prefer-
ences are specified using <-allowed constraints from LR,
and =-allowed constraints from LS for an appropriate set
S. We will partition the variables into two groups: those



that are of “LS type” and those that are of “LR type.”
By convention, we shall write the LS variables first, and
assume that 0 ≤ q ≤ n of the n variable pairs are of LS

type. Because the variables of each type are disjoint, we
can apply Lemmas 2.2 and 2.1 together when applying a
transitivity rule to two preferences.

Example 2.1: Consider a car database in which cars have
a color and a price. The color column has type LS where S
is a set of colors. The price column has type LR. The rule
“I prefer a red car to a blue car if the price of the red car is
more than $100 below the price of the blue car” is expressed
as

r1 : r(C1, P1) � r(C2, P2) :-
C1 = red, C2 = blue, P1 < P2 − 100.

The rule “Among two cars of the same color, I prefer one if
its price is less than 0.8 times the price of the other” from
Example 1.2 is expressed as

r2 : r(C1, P1) � r(C2, P2) :-
C1 = C2, P1 < 0.8 ∗ P2.

As a shorthand, we may sometimes repeat variables or put
constants in the head of a rule, as in Example 1.4.

Example 2.2: Consider the rules of Example 2.1, for
which we will apply one round of transitivity. There are four
possible rule compositions: r1 with itself, r2 with itself, r1

with r2 and r2 with r1. Using the constructions of Lem-
mas 2.1 and 2.2, the rule bodies of the four compositions
are:

r11: C1 = red, C2 = blue, red = blue, P1 < P2 − 200
r22: C1 = C2, P1 < 0.64 ∗ P2

r12: C1 = red, C2 = blue, P1 < 0.8 ∗ P2 − 100
r21: C1 = red, C2 = blue, P1 < 0.8 ∗ P2 − 80

The body of rule r11 is inconsistent because of the red =
blue predicate, and so r11 can be dropped since it generates
no answers. The body of r22 is consistent. However, it
is subsumed by the body of rule r2, since P1 < 0.64 ∗
P2 is a more restrictive constraint than P1 < 0.8 ∗ P2 on
the nonnegative real numbers. Thus r22 can be dropped.
Similarly, the body of r12 is subsumed by the body of r1,
and can be dropped. The body of r21 is not subsumed by
either r1 or r2.

A second transitivity step can be applied to r21, to get
r211 and r212. r211 is inconsistent for the same reasons as
r11. r212 is subsumed by r21. Thus, the complete transitive
closure of {r1, r2} is {r1, r2, r21}.

2.1. Termination

The process of computing the transitive closure in Ex-
ample 2.2 terminated. Is this a general property of the class

of rules we are considering? That rules over LS terminate
under transitive closure is relatively easy to see, because the
rules can be written as Datalog rules with nonground facts.
The least fixpoint computation on such rules terminates
when duplicate elimination is based on subsumption, since
there are only finitely many possible fact variants that can
be generated.

However, in LR, there is no such finiteness property. In
fact, there are infinite collections of constraints for which
no single constraint is subsumed by the others. (Imagine
a collection of half-planes whose boundaries are tangent to
the unit circle in a single quadrant.)

The main result of this section is that the transitive
closure computation of a finite set of <-allowed rules over
LR always terminates. A simple subsumption check that
is sound but not complete is sufficient for guaranteeing
termination.

Definition 2.6: Let Xi < aYj − b and Xi < a′Yj − b′ be
constraints, denoted by C and C ′ respectively. We say C

dominates C ′ if b′ ≥ b and a′ ≤ a. An equality constraint
is said to dominate itself. A conjunction C1 of constraints
dominates a conjunction C2 of constraints if every conjunct
of C1 dominates some conjunct of C2.

It is straightforward to show that on the nonnegative reals
R, if C dominates C ′ then C is implied by C ′.

Theorem 2.3: Transitive closure of <-allowed rules in LR

terminates under an evaluation that checks whether a newly
generated constraint is dominated by any single previously
generated constraint.

We cannot extend the definition of <-allowed constraints
to include addition, as in the discussion of >-allowedness
above.

Example 2.3: Consider the (non <-allowed) constraint

(X1 < Y1) ∧ (X2 < 0.5 ∗ Y1 + 0.5 ∗ Y2).

Combining this rule transitively with itself n times leads to
the constraint

(X1 < Y1) ∧ (X2 < (1 − 0.5n)Y1 + (0.5)nY2).

Each such constraint is not subsumed by the set of previ-
ously generated constraints.

The termination in each of LS and LR implies termina-
tion in the combined language, since the columns of each
type are disjoint.

There are additional constraint languages that have pre-
viously been considered, and could be used equally well in
the following sections. For example, a language allowing
equalities and inequalities (but no arithmetic) on constants
and variables [3] would be useful for expressing some kinds
of constraint. When the transitive closure can be computed
in finite time, the same general techniques can be used.



2.2. Consistency

It is possible that a user may specify a set of constraints
that violate the requirements of a partial order, even if
they satisfy the syntactic conditions defined above. This
violation can be detected during the transitive closure com-
putation. If (at any stage of the transitive closure com-
putation) the constraint in a rule is consistent with X1 =
Y1 ∧ . . . ∧ Xn = Yn, then we have a cycle that violates the
partial order. Users can be told which rules participated in
the cycle, and therefore need to be modified.

Example 2.4: Consider the rules

r(C1, P1) � r(C2, P2) :- C2 = blue, P1 < 0.8 ∗ P2

r(C1, P1) � r(C2, P2) :- C1 = blue, C2 = red.

then the rules are individually consistent but the transitive
closure contains the rule

r(C1, P1) � r(C2, P2) :- C1 = blue, C2 = blue.

which violates the partial order requirement.

3. Composing Preferences

Suppose we have two preference orders �1 and �2 on
relations r1 and r2 respectively. Composition is defined on a
relation r whose domain is the cross product of the domains
of r1 and r2. We write r(~x1, ~x2) to distinguish the attributes
of r that come from each of r1 and r2 respectively.

The prioritized composition [8], �=�1 & �2, is defined
as: r(~x1, ~x2) � r(~y1, ~y2) iff

r1(~x1) �1 r1(~y1) or (~x1 = ~y1 and r2(~x2) �2 r2(~y2))

Prioritized composition gives priority to the first preference
order, and uses the second order only to break ties in the
first order.

The Pareto composition [8], �=�1 ⊗ �2, is defined as:
r(~x1, ~x2) � r(~y1, ~y2)iff

r1(~x1) �1 r1(~y1) and r2(~x2) �2 r2(~y2), or
r1(~x1) �1 r1(~y1) and ~x2 = ~y2, or
~x1 = ~y1 and r2(~x2) �2 r2(~y2).

Pareto composition treats the component orders symmet-
rically. A record must be strictly better according to at
least one of the component orders than a comparison record,
and either better or equal according to the other component
order.

The strict composition �=�1 × �2, is defined as:
r(~x1, ~x2) � r(~y1, ~y2)iff

r1(~x1) �1 r1(~y1) and r2(~x2) �2 r2(~y2)

Strict composition is also symmetric, and requires that a
record must be strictly better according to all of the com-
ponent partial orders.

Both prioritized composition and Pareto composition
define partial orders [8], as does strict composition. We
discuss additional forms of composition in [14].

3.1. Complexity

We aim to investigate the complexity of prioritized,
Pareto, and strict composition. At this level, we are
interested in the size of the computed transitive closure of
a composed partial order as a function of the sizes of the
transitive closures of the component partial orders. Given
a partial order � specified by a set of rules, we let S(�)
denote the cardinality of the transitive closure.

Definition 3.1: Let R1 and R2 be rules defining the par-
tial orders �1 and �2 on domains ( ~X1, ~Y1) and ( ~X2, ~Y2)
respectively.

Define R1&R2 to be the rule set obtained by extending
the domain of both rule sets to ( ~X1 ∪ ~X2, ~Y1 ∪ ~Y2), and
adding the constraint ~X1 = ~Y1 to the body of rules in R2.

Define R1 ⊗R2 to be the rule set obtained by extending
the domain of both rule sets to ( ~X1 ∪ ~X2, ~Y1 ∪ ~Y2), adding
the constraint ~X1 = ~Y1 to the body of rules in R2, and
adding the constraint ~X2 = ~Y2 to the body of rules in R1.

Define R1 × R2 to be the rule set obtained as follows.
Define a rule r over ( ~X1 ∪ ~X2, ~Y1 ∪ ~Y2) in which the body
of r applies r1 to ( ~X1, ~Y1) and r2 to ( ~X2, ~Y2).

Note that if R1 and R2 are <-allowed then so are R1&R2

and R1⊗R2, and similarly for =-allowed rules. While R1×
R2 is not necessarily allowed, we will identify classes of
rules below for which R1×R2 can be written as an allowed
set of rules.

Lemma 3.1: The &, ⊗, and × operators on rules faithfully
implement the corresponding operations on the underlying
partial orders.

Lemma 3.2: S(�1 & �2) = S(�1) + S(�2).

Example 3.1: We illustrate Lemma 3.2 by considering �1

on (X1, Y1) defined by X1 < Y1, and �2 on (X2, Y2)
defined by X2 = 1, Y2 = 0. The rules in the composition
are

c1 r(X1, X2, Y1, Y2) :- X1 < Y1

c2 r(X1, X2, Y1, Y2) :- X1 = Y1, X2 = 1, Y2 = 0

c1 composed with c2 yields

c12 r(X1, X2, Y1, Y2) :- X1 < Y1, Y2 = 0
c21 r(X1, X2, Y1, Y2) :- X1 < Y1, X2 = 1

both of which are subsumed by c1.



Lemma 3.3: S(�1 ⊗ �2) = (S(�1)+1)(S(�2)+1)−1.

Example 3.2: We illustrate the construction in Lemma 3.3
by considering�1 on (X1, Y1) defined by X1 < Y1, and �2

on (X2, Y2) defined by X2 < Y2. The rules in the Pareto
composition are

c1 r(X1, X2, Y1, Y2) :- X1 < Y1, X2 = Y2

c2 r(X1, X2, Y1, Y2) :- X1 = Y1, X2 < Y2

c1 and c2 are closed under self-composition. c1 composed
with c2 (in either order) yields

c3 r(X1, X2, Y1, Y2) :- X1 < Y1, X2 < Y2

The transitive closure contains three rules.

When considering strict composition, we would like to
identify circumstances when �1 × �2 can be expressed
as an =-allowed or <-allowed set of rules. Under such
circumstances, we will be able to show that strict compo-
sition has good scaling properties, and we will not suffer
the exponential blowup inherent in Lemma 3.3.

Lemma 3.4: A rule set containing a single rigid =-allowed
rule is transitively closed in LS . A rule set containing a
single rigid <-allowed rule is transitively closed in LR.

Since single rigid rules are transitively closed, we can
rewrite �1 × �2 if one of the partial orders (say �2) is
defined by a single rigid rule. The rules for r1 and r2 can
be unfolded into the combining rule in �1 × �2, resulting
in one rule for �1 × �2 for each rule in �1. Further, the
resulting unfolded rules are allowed if the rules for �1 are
allowed.

Lemma 3.5: If �2 is defined by a single rigid allowed rule,
then S(�1 × �2) = S(�1).

Lemmas 3.2, 3.3, and 3.5 have important implications
for how one might build complex preferences out of simpler
components while keeping the overall complexity under
control. Lemma 3.2 indicates that a prioritized composition
scales additively, meaning that the number of probes to the
database required to determine preference is likely to be
manageable.

On the other hand, Lemma 3.3 indicates that a Pareto-
composition scales multiplicatively, and so the number of
probes may be exponential in the number of component par-
tial orders. This exponential behavior holds even when the
transitive closure of a component partial order has just one
rule, since the multiplicative term is S(�)+1. Example 1.4
is an instance of this observation.

In contrast with Example 1.4, the following similar set
of rules is better behaved, because it is generated using
prioritized composition rather than Pareto composition.

Example 3.3: Consider the following set of c rules on re-
lations with c columns:

r(X1, . . . , Xc−1, 1) � r(X1, . . . , Xc−1, 0)
r(X1, . . . , Xc−2, 1, ) � r(X1, . . . , Xc−2, 0, )

· · ·
r(1, , . . . , ) � r(0, , . . . , )

In these rules, an underscore denotes an unconstrained vari-
able; different instances of “ ” represent different variables.
These rules are transitively closed: composing two rules
gives an instance of an existing rule.

Lemma 3.5 shows that this exponential behavior can
be broken if we use strict composition, and if one of the
component orders is defined by a single strict allowed rule.

Suppose that we wish to limit the size of the transitive
closure to be polynomial in c where c is the number of
columns. We can achieve this effect as follows:

• Each basic partial order is allowed to mention at most
K columns, for some constant K. This decouples
the complexity of basic orders from the number of
columns.

• Prioritized composition can be used as needed.

• Strict composition with an order defined by a single
strict allowed rule can be used as needed.

• Pareto composition can be used a bounded number of
times.

Example 3.4: Consider an example for finding “good”
flight plans from a travel agency database. The flight
records include columns: S, T, F, P that respectively give
the number of stops S in the flight plan, the total time of the
flight plan, whether the flight is with an airline for which
you are a member of the frequent flier program (F = yes)
or not (F = no), and the price P of the flight plan. The
three preference relations of a flier might be: (a) Flights
with fewer stops are preferable.

f1 r1(S1) �1 r1(S2) :- S1 < S2

(b) Flights shorter by at least an hour are preferable

f2 r2(T1) �2 r2(T2) :- T1 < T2 − 1

and (c) Cheaper flights are preferred but a non-frequent flier
flight must be 20% cheaper to be preferred over a frequent
flier flight.

f3 r3(F1, P1) �3 r3(F2, P2) :-
F1 = F2, P1 < P2

f4 r3(F1, P1) �3 r3(F2, P2) :-
F1 = yes, F2 = no, P1 < P2

f5 r3(F1, P1) �3 r3(F2, P2) :-
F1 = no, F2 = yes, P1 < 0.8 ∗ P2



Pareto() { /* All entries start unmarked */
while (there are unmarked records) {

X := some unmarked record;
while (X is unmarked & there is

some Y such that Y � X)
{ mark X; X := Y ; }

if (X is unmarked)
{ output X; mark X; }

} }

Figure 1. Outputting the Pareto-optimal ele-
ments

The final ordering relation might be �1 &(�2 ⊗ �3). That
is better flights have fewer stops, and if the number of stops
is equal, then better flights are either (i) shorter by more than
an hour with the same price and frequent-flier status, or (ii)
take the same time but are better with respect to (qualified)
price, or (iii) shorter by more than an hour and better with
respect to (qualified) price.2 The ordering can be defined by
a collection of rules with head

r(S1, T1, F1, P1) � r(S2, T2, F2, P2) :-

and bodies given below:

S1 < S2

S1 = S2, T1 = T2, F1 = F2, P1 < P2

S1 = S2, T1 = T2, F1 = yes, F2 = no, P1 < P2

S1 = S2, T1 = T2, F1 = no, F2 = yes, P1 < 0.8 ∗ P2

S1 = S2, T1 < T2 − 1, P1 = P2, F1 = F2

4. Preferences and Indexing

4.1. The Pareto-Optimal Set

Based on the preference relation, one can generate as
output the Pareto-optimal set of records, i.e., those records
R for which there is no R′ in the database with R′ � R.
Pseudo-code is given in Figure 1. We assume that the
database records have all been inserted into an appropriate
index structure. (The choice of index data structure will be
discussed in Section 4.2.).

An index structure may be useful to efficiently find a
single record Y better than a given record X. If O(f(n))
is the complexity of this lookup step, it is relatively easy
to see that the overall complexity of the Pareto algorithm
is O(nf(n)). Note that the mark-related operations of the
algorithms above can be performed in constant time and
linear space using a hash table.

2See [14, 13] for an extended discussion of potential semantic anoma-
lies associated with examples like these that use traditional prioritized and
Pareto compositions.

Algorithm Pareto shares some similarities with the TA
algorithm [5]. Pareto outputs one of the top records when
it knows that the record is undominated. TA outputs the
top-k objects, when no other object in the data set can have
a higher grade than the current k best objects. However,
their query models are different: TA needs to aggregate
information from several indexes to get complete object
information, and unlike Pareto does not need to consider
all objects but can stop as soon as it has reached some
guarantees on the scores of the k best objects.

4.2. Index Structures

Given a set of rules, one applies the transitive closure
operation to get a set of rules of the form

r(X1, . . . , Xn) � r(Y1, . . . , Yn) :-
C(X1, . . . , Xn, Y1, . . . , Yn)

where C is a constraint (from the constraint language) on
the variables X1, . . . , Xn, Y1, . . . , Yn. For the Pareto algo-
rithm, we need to determine records that are “better” than
a given record r(a1, . . . , an), where the ai are known con-
stants. We must therefore search the database for records
r(X1, . . . , Xn) satisfying C(X1, . . . , Xn, a1, . . . , an).

Example 4.1: Consider the rules r1, r2, r21 from Exam-
ples 2.1 and 2.2. Suppose we have a database record
d = r(blue, 1000), and want to determine records that
are better than d. Substituting the constants from d as
values for C2 and P2 in the three rules yields the queries
(C1 = red, P1 < 900), (C1 = blue, P1 < 800), and
(C1 = red, P1 < 720). (If the system is sufficiently smart,
it might notice that the third query is redundant, being a
special case of the first query.) A tree index on (C, P )
would allow such records to be found efficiently.

Example 4.1 highlights the advantages of using =-
allowed and <-allowed rules. The constraints that are
generated when values for the Yj variables are fixed are
guaranteed to be of the form Xi = a or Xi < b, where
a and b are constants. Further, at most one such constraint
is needed for each variable — other constraints on that
variable will be redundant. These will be easier to support
directly using standard indexes than non-allowed rules. For
example, the non-=-allowed rule

r(X1, X2) � r(Y1, Y2) :- X1 = X2, Y1 = a, Y2 = b

yields a query of the form r(X, X), which is not efficiently
supported in standard index structures.

For allowed rules, a query template will be a collection of
equality and inequality predicates on distinct variables. Let
us call the equality variables E1, . . . , Ep, and the inequality



Structure Applicability Space Build-time Probe-time Pareto
Hash table q = 0 O(n) O(n) O(1) O(Tn)
B-tree q ≤ 1 O(n) O(n log n) O(log n) O(Tn log n)

Hash table of kd trees q = k > 1 O(n) O(n log n) O(n1−1/k) O(Tn2−1/k)

Hash table of k dimen-
sional range trees

q = k > 1 O(n logk−1 n) O(n logk−1 n) O(logk n) O(Tn logk n)

Table 1. Space and time complexity as a function of the number of records n, and the size T of the
transitive closure of the rules, for various index structures.

variables I1, . . . , Iq . If q = 0, then a hash table or tree-
index on (E1, . . . , Ep) are good candidates. If q = 1, one
could also employ a hash table on (E1, . . . , Ep) where the
elements of the hash table are tree indexes on I1 on the
corresponding subsets of the data. A simple tree index
on (E1, . . . , Ep, I1) is another candidate. If q > 1, we
could employ a hash table of kd trees or a hash table of
range-trees, where the trees index the I1, . . . , Iq columns.
The various choices and their complexity are summarized
in Table 1. Note that the probe time refers to a probe that
returns a single match. (In a database context, one would
use I/O efficient versions of these tree structures, such as
Bkd-trees [11] or KDB-trees [12].)

In general, the transitive closure rules may yield multiple
lookup templates, each of which may be best handled by
a different kind of index. It is likely to be worthwhile
to build multiple indexes to facilitate such lookups. The
lookup templates are database independent, and so building
multiple indexes does not add to the data complexity of
the approach. In practice, the number of indexes needed is
likely to be small. In some cases, such as when one template
is a prefix of another, a single index can support multiple
templates.

If we do not have control over which indexes are built,
then we should simply choose the best available index
for each template. For example, if we need to probe on
(E1, . . . , Ep, I1), and an index exists on (E1, . . . , Ep−1)
then we can use the index to narrow down the search,
and explicitly check the conditions on Ep and I1 on each
returned record until a match is found.

There are other ways to give prominence to preferred
records besides outputting only the Pareto-optimal records.
In [14] we discuss ways to output records r in an ascending
order with respect to the number of records in the data set
that dominate r.

5. Conclusions

We have defined an expressive and useful constraint
language using equalities, inequalities, and arithmetic. We
have shown that the transitive closure of partial order con-
straints expressed in our language can be effectively com-

puted. We have investigated the complexity of composing
preferences into larger preference relations, and have de-
scribed how to eliminate certain semantic anomalies present
in previous notions of composition. We have described
the selection of index structures to support the selection of
Pareto-optimal records.

We believe that the constraints introduced here are prac-
tical, and can form the basis of a large-scale preference
management system.
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