
I m p l e m e n t i n g Incrementa l V i e w M a i n t e n a n c e

in N e s t e d Data M o d e l s

A k i r a K a w a g u c h i 1 D a n i e l L i e u w e n ~

I n d e r p a l M u m i c k 3 K e n n e t h R o s s 1

1 Columbia University, {akira,kar}@cs.columbia.edu

2 Bell Laboratories/Lucent Technologies, lieuwen@research.bell-labs.com

3 Savera Systems (work performed at AT&T Laboratories), mumick@savera.com

A b s t r a c t . Previous research on materialized views has primarily been

in the context of flat relational databases--mater ia l ized views defined in

terms of one or more flat relations. This paper discusses a broader class

of view defini t ions--material ized views defined over a nested da ta model

such as the nested relational model or an object-oriented da ta model. An

at t r ibute of a tuple deriving the view can be a reference (i.e., a pointer) to

a nested relation, with arbi trary levels of nesting possible. The extended

capability of this nested da ta model, together with materialized views,

simplifies da ta modeling and gives more flexibility.

Simple extensions of s tandard view maintenance techniques to the nested

model would do too much work for maintenance: a change in a nested set

would re-process the entire nested set, not just the changed parts. We

show how existing incremental maintenance algorithms can be extended

to maintain the views without performing this additional work.

We describe the implementation of these techniques in the SWORD in-

terface to the Ode database system. The implementation is based on the

representation of nested structures by classes and the use of an SQL-like

language to define materialized views. We outline the da ta structures

and algorithms used in the implementation and examine performance.

This is one of the first pieces of work to explore the applicability of

materialized views over complex objects.

1 I n t r o d u c t i o n

Most pas t research on m a t e r i a l i z e d views has focused on high level i nc remen ta l

a l go r i t hms for u p d a t i n g m a t e r i a l i z e d views efficiently when the base re la t ions

are u p d a t e d [9, 37, 8, 31, 10, 17, 16, 25, 40]. Those s tud ies are in the contex t of

f i r s t -no rma l - fo rm re l a t iona l d a t a b a s e s - - m a t e r i a l i z e d views are defined in t e r m s

of one or more re la t ions us ing a r e l a t iona l query l anguage . In th is pape r , we al low

a ma te r i a l i z ed view to be defined over a nes ted d a t a mode l , where a t up l e can

have a r b i t r a r i l y deeply nes ted s t ruc tu res . For the s imp l i c i t y of our discussion

203

we assume in the rest of paper that all materialized views are snapshot views [2],

i.e., views that are maintained when an explicit maintenance request is made.

The extension of the relational model to non-first-normal-form goes back

to [27], which introduced the concept of nesting. The work of, e.g., [18, 19, 4, 1,

38, 39] further investigated nested properties including the algebra and calculus.

Query languages and implementation issues are discussed in, e.g., [5, 15, 30,

24, 33, 34]. The above research aims to extend the relational model to directly

represent data that is usually organized hierarchically such as in CAD/CAM

and multimedia applications. The idea of having relation names as arguments is

presented in [32]. This extension allows relation names to be stored as attributes

of other relations (essentially using the name as a pointer), and allows access

to one relation or another based on the value of some other attribute. Thus,

nested relations can be implemented without directly embedding relations in

tuples. Object-oriented databases (OODBs) share this property. An object often

has a complex sub-object that is referenced by an object identifier. Further, the

nested structures are usually unnamed (i.e., the structure has no external name

by which it can be referenced; it can be referenced only by navigating through

the containing relation/object). In this paper, we consider nesting by reference,

as described for the relational and object-oriented models above. We leave the

case of embedded nested values within a tuple or object for further work.

We consider the problem of maintaining materialized views over such nested

structures. A simple extension of maintenance algorithms for views over normal

form relations to views over nested structures yields inefficient algorithms. For

example, suppose that p is a binary relation whose second argument is a nested

relation with a single attribute. Let q be another binary relation. Let V be a view

defined Y(X, Y) de__l p(X, Z), Z(W), q(W,Y). (in a HiLog style language [11,

32]). Thus, V is a join ofp with q on the elements ofp 's nested attribute. Suppose

that p(a, s) are the tuples in the extension of p, and that {(1), (2) , . . . , (n)}

are the values in the nested relation s. Let us modify s by adding (n + 1) to

the extension of s. A straightforward application of known view maintenance

techniques could "undo" the effect of the whole set {(1}, (2) , . . . , (n)} and then

"redo" the effect of {(1}, (2) , . . . , (n + 1)}. Much of this work is unnecessary--

only work corresponding to inserting (n -F 1) is necessary. We develop auxiliary

data structures to find such relevant changes efficiently.

The motivation of this study is the development of the SWORD interface [29]

to the Ode OODB [3]. SWORD provides an SQL-like declarative language to

define materialized views compositionally and hierarchically on collections of

Ode objects. SWORD supports transparent incremental maintenance of those

204

views using the incremental view maintenance algorithm of [17]. The algorithm

accumulates the changes made to each base relation of the materialized view

in a log, a sequential file associated with a base relation. It uses the logs to

maintain views. There is only one log for each base relation regardless of the

number of the views it derives (i.e., the log is shared by a set of views to be

maintained). A log entry holds an idenlifier of the changed tuple (the change

may be an insertion, deletion and modification). The data structures used to

implement logs are described in [13].

Two problems arise when we enhance the materialized views in SWORD to

work with a nested data model. First, how should the log structure be extended?

Second, how can one capture the change made in a referenced complex relation?

The implementation creates an entry in relation T 's log in response to each

update to a tuple of T. Suppose that a tuple t of T has a pointer to another

relation R whose tuple r is updated. The change to r must be identified both

for referring relation T and for referred relation R. How can we identify all such

referring tuples t? Recording the change in the log of the referring relation T is

not easy since the pointer value in the tuple t will not change unless the whole

referred relation R is dropped or newly created. Furthermore, since nested sets

are referenced through pointers, the insertion of a single tuple may affect many

containing objects-- thus, the space required for the log (and, consequently, the

t ime for creating and scanning log records) may balloon. A more subtle problem

arises if we consider the efficiency of the maintenance that involves implicit join

operations between flat and nested attributes or between nested attributes.

P a p e r O u t l i n e : Section 2 reviews the nested data model [39, 33] used in this

paper and then investigates maintaining materialized views over nested data

models. The implementation architecture for the non-nested case is reviewed

in Section 3; Section 4 presents the necessary extensions for handling nested

structures. Section 5 discusses performance results. Related work is discussed in

Section 6; Section 7 presents conclusions.

2 M a i n t a i n i n g M a t e r i a l i z e d V i e w s o v e r N e s t e d D a t a

2.1 N o t a t i o n a n d D e f i n i t i o n s

We describe our techniques in the nested relational model context. It should,

however, be understood that the techniques developed apply also to OODBs. 4

4 While we did not discuss the use of our algorithms for OODBs over data with cyclic

references, our algorithms extend [17]'s counting algorithms which can incrementally

205

Following [39], a database scheme is a collection of rules of the form R =

[R1, ..., Rk]. Objects R 1 , . . . , Rk are called names. An object is a higher-order
name if it appears on some rule's left-hand side; else, it is a zero-order name.

Nested schemes may contain any combination of zero or higher-order attributes

on the right-hand side of the rules as long as the scheme remains non-recursive.

An instance of R = [R1, ..., R~] is a collection of tuples such that each tuple

contains arbitrary combinations of values, or indirect references (relation names

or pointers to relations) based on the types of names R1, ..., Rk. Some object,

Ri say, may be a higher-order name, in which case the instance of Ri will be a

recursive expansion of the rules in the right-hand side. Hence a tuple of R can

be viewed as having arbitrarily deeply nested relation instances. A relation is a

stored instance of the database scheme. We call a relation R, defined by schema

R = [R1, ..., Rk], a nesting relation if at least one of its attributes R1, ..., Rk,

say Ri, is a higher order name. We also call the higher order name, R/ a nested
relation. A relation that is not defined as a view is called a base relation.

M a t e r i a l i z e d Views: A view V is a relation that is defined using a query Q over

some set of relations {R1, ..., Rn}, denoted as

V dJQ(R1,. . . , Rr~). The query is said to be defined over relation Ri if Ri appears

in the query definition, or if the query follows a reference to a relation of type

Ri. R1, . . . ,R,~ are called the referenced relations, and may be base relations

or materialized view relations. The referenced relation can be a nesting relation

or a nested relation. A materialized view is a view whose tuples are physically

stored in the database. A virtual view is an unmaterialized view; it is computed

when it is needed for a query using the Ri. (For brevity, we do not discuss virtual

views in the rest of this paper until Section 5 on performance.) []

Log a n d D e l t a : For every referenced relation Ri, an additional structure, which

we call a log, contains the changes made to Ri. Any update to a referenced rela-

tion causes a corresponding log entry to be created. The log is used to construct

a set of tuples that will be used for the incremental maintenance of view V. We

call this set a delta, denote as z~Ri. If multiple views V1, • •., V,~ are defined using

relation R/, the log must be capable of constructing z2R/(Vj) (i. e., a delta of Ri

with regard to view ~) , for 1 < j < n. []

V i e w - D e p e n d e n c y G r a p h : The dependency graph G of a view V is a graph

with a node for each relation referenced in the view definition, a node labeled V,

and a directed edge from the node for each referenced relation to the node for V.

maintain recursively defined views over circular data. Thus, we believe our techniques

our applicable to arbitrary data in OODBs. Furthermore, our algorithms directly

apply to non-recursive view definitions over circular data without extensions.

206

The dependency graph shows how the view is derived from base relations and/or

other views. The view-dependency graph G of a database schema is the union

of the dependency graphs for all the views in the schema. The view-dependency

graph shows how all the views in the schema are derived from each other and

from base relations. []

2.2 Incremental Change Computat ion

We consider the counting algorithm of [17] for view maintenance. The counting

algorithm keeps a count of the number of derivations for each view tuple. For

instance, given a join view V de__/ R1 M R2 M R3, the counting algorithm derives

the following algebraic equation to compute the changes z~V to view V:

z2V = AR1 M R~ e~ M R~ ~ ~ R~ ld M z~R2 M R~ ~ ~ R~ Id M R~ Id M z~R3

where z2Ri is the set of insertions and/or deletions to relation Ri, R~ ld is the

old (or pre-update) state of the base relation Ri (before the updates of AR4 are

applied to R4), and R~ ~w is the new (or post-update) state of the base relation

Ri (after the updates of z~Ri are applied to it). The ~ operator denotes bag

union. In the set of changes, insertions (deletions) are represented with positive

(negative) counts. Updates are represented by deletions of the before images, and

insertions of the new tuples. The count value for each tuple is represented in the

materialized view V, and the new materialized view is obtained by combining

the changes z~V with the stored value of view V as follows: Positive counts are

added in; negative counts are subtracted. A tuple with a count of zero is deleted.

A view defined over the nested data model can be maintained by the counting

algorithm if we can define and identify the nested delta sets correctly. We assume

that the view definition language is based on a query language such as HiLog [11].

E X A M P L E 2.1 Consider the schema Emp = [Nm, Dependent], Dependent =

[D-Nm, Age], Health-Ins = [D-Nm] with the following database extension:

Emp = {(Fred, D1),(Mary, D2)};Health-Ins = {(Dave), (Jane)};D1 =

{(Dave, 85), (Bob, 10), (Jane, 5)}; D2 = {(Dave, 85), (Alice, 3)}. (D1 and 02 are

ids of otherwise unnamed relations of type Dependent). Consider the view V

which contains the employees' dependents who have their own health insurance.

V is defined by the following HiLog expression: V(X, Z) d~=l

Emp(X, Y), Y(Z, A), Health-Ins(Z). The materialization of Y is

{(Fred, Dave), (Fred, Jane), (Mary, Dave)}. To respond to a change in the rela-

tion Health-Ins, we apply the counting algorithm. For this kind of update, we can

intuitively express z2V as ,~V(X, Z) =

207

Emp°Id(x,Y) ~ Y°t't(Z,A) M ZIHeath-Ins(Z). Note, yoZa is not precise since

Y is a variable. We discuss what yold means below. Deleting Jane from Health-

Ins (written as ZlHeath-Ins = {(Jane}-1}) yields Z~Y = {(Fred, Jane}-X}. []

Example 2.1 shows that handling updates to non-nested relations is straight-

forward. We now consider updates to the nested relations.

M e t a - R e l a t i o n , E x t r a c t i o n F u n c t i o n : Consider a nesting relation R =

[. . . , S , . . .] where S is a higher-order name. For each such nested S in the

database we define a meta-relation us as follows, us(X) is true precisely when X

is the id of a nested relation in the database extension, of the same type as S. For

each such nested relation S, we define an extraction function

es(X, A1 , . . . ,Ak) , where S is defined by the rule S = [A1, . . . ,Ak] . (In other

words, A1, . . . , Ak are the at tr ibutes of relations of type S.)

es(X, A1 , . . . ,Ak) = us(X) • X (A x , . . . , A k) Q

For the nested Dependent tables of Example2 .1 , we would have

UDependen t = {D1,D2} and eDependen t = {(D1,Dave, 85), (D1, Bob, 10},
(D1, Jane, 5), (D2, Dave, 85), (D2, Alice, 3}}.

Consider again a nested relation R = [. . . , S , . . .] where S is a higher-order

name. Let a view V be defined using R and S, so that V' = R (. . . , X , . . .) M

X (. . .) is a subexpression within V. (Here, X is a variable appearing in the

position of the nested at t r ibute of type S.) Rather than doing maintenance on

this subexpression directly, we mainta in the equivalent subexpression

n(. . . ,X , . . .) M es(X,. . .) . (1)

The benefit of this t ransformation is that we no longer have a HiLog variable as a

relation name. Treating es as a relation, we can express ZIV t using the counting

algorithm as AR(. . X , . . .) t~ en~WtX . R°td(. . .
• , s , . .) . . , x , . .) M n e s (X , . .)

In the event that there are multiple levels of nesting, so that S itself contains a

nested relation T as an at t r ibute (S = [. . . , T , . . .]) , we can recursively express

.dies in terms of S and eT as above.

The expression (1) also gives us a hint about where to keep the delta informa-

tion for unnamed nested relations. The extraction function can be thought of as

a materialized view. However, only the log of the view, not the view's extension,

is stored. Conceptually, we should keep the delta information for nested relations

of a given type S in a single place associated with S. For the efficient incremental

change computat ion, ,dies(X,...) must be quickly found in the database, so tha t

the system can avoid scanning all tuples in R. In Section 4 we show how this is

implemented using "nested descriptors."

208

E X A M P L E 2.2 The view V in Example 2.1 can be incrementally computed

as follows:

A V (X , Z) = AEmp(X, Y) • e~)~endent (Y, Z, A) t~ Heath-InsneW(Z)

Emp °Id (X, Y) M ~eDependent (Y , Z, A) N Heath-InsneW(Z)

old (Y, Z, A) M z~Heath-Ins(Z) +~ Emp°ld(x, Y) ~ eDependen t

Suppose Fred changed his name to Greg after V's materialization, and that he no

longer has a dependent Dave. So zSEmp = {(FFred, D1) - i , (Greg, D1) +i} and

zSeDependen t = {(D1, Dave, 85)-l}. Using the expression above, we compute
zSY as {(Fred, Dave) - i , (Fred, Jane) -1, (Greg, Jane)+i}. O

Observe that the incremental work needed to maintain a view over nested

data is in principle proportional to the changes in the contents of the nested

relations, and not proportional to the size of the nested relations themselves.

In the next two sections we outline how we achieve this performance level in
practice.

3 I m p l e m e n t a t i o n f o r F i r s t N o r m a l F o r m R e l a t i o n s

This section briefly reviews the implementation of our view maintenance system

presented in [13]. The extensions to handle nested data are discussed in Section 4.

A part of the effort in [13] addresses scalability and efficiency concerns since

materialized views introduce additional system overheads (e.g., space for storing

log, log update time, view maintenance time). Some of the requirements are: (a)

The overhead of making log entries must be independent of the number of views.

Thus, we rule out a design based on a separate log for each relation-view pair.

(b) Time required to compute the delta must be proportional to the size of the

relevant log. This prevents us from scanning the entire log to determine the

portion of the log's changes. (c) The total space used to store all the logs in

the system should be proportional to the number of updates that need to be

propagated into materialized views. Thus, log entries should not be replicated,

and old log entries must be discarded. (d) Queries over a relation should not

be slowed down when views are defined over the relation. (e) Given a view, we

should be able to quickly check whether it needs to be refreshed.

A relation (base or materialized view) is implemented as a collection class

in Ode. A collection has a materialization containing tuples and a descriptor. A
tuple is implemented as an Ode object. The descriptor holds meta-information

about the collection, such as the creation date, a pointer to the materialization,

209

and other pointers needed to support materialized views. The collection class pro-

vides a number of member functions (methods) such as ins e r r () , remove () , and

r e p l a c e () that can be invoked from the O + + interface to Ode. The i n s e r t ()

function creates a new tuple with the given values, and inserts it into the ma-

terialization. The remove() function removes a tuple from the materialization

by marking it as removed, and placing it in a pool of removed tuples. The tu-

ple must stay in this pool until the effects of its removal are propagated to all

views defined on the relation, after which point it can be garbage collected. The

r e p l a c e () function updates an existing tuple, and stores the pre-update value

in a newly created tuple that is placed in the pool of removed tuples. A separate

I t e r a t o r class is provided to iterate over the materialization of any relation.

E x t r a c t i n g R e l e v a n t C h a n g e s f r o m Logs: The changes made since the last

maintenance operation on a view V are the only log entries relevant for a main-

tenance operation on V. The D e l t a I t e r a t o r class is provided to iterate over

the relevant changes of a relation R for V. When a D e l t a I t e r a t o r object is

created for a given relation/view pair, we scan R's log starting from the last

maintenance pointer for the view V stored in R's descriptor, and build an in-

memory hash table by hashing the oid in the log entry. A bucket contains an

in-memory copy of the log entry itself. The log is not modified. Hashing is used

to compute the net effect of the changes in the log by eliminating and/or col-

lapsing redundant log entries due to insert-remove pairs, replace-remove pairs,

replace-replace pairs, and insert-replace pairs [35, 20]. Since the creation of the

hash table requires time proportional to the size of the log relevant to the view,

and using the hash table requires even less time, we clearly satisfy the efficiency

requirement (b).

4 H a n d l i n g N e s t e d S t r u c t u r e s

This section describes key ideas to efficiently capture the incremental changes to

nested components. Nested relations in SWORD are defined using an O+q-- class

with an attribute that is an embedded collection class or a pointer to another

collection class. We insisted both that view maintenance be transparent to

the user and that it not do any (significant amount of) extra work if no views

exist. Our algorithms trigger transparent view maintenance work only if the user

instantiates a view using the view definition language.

Ef f i c i ency R e q u i r e m e n t s : A major challenge is efficiently detecting changes

made to the elements that are in a nested attribute. We must establish asso-

ciations between such elements and owner tuples. This must be done by the

210

t ime we construct the extraction function of Section 2.2 for maintenance. In an

implementation, a change made to an element of the internally nested relation

could be placed in the log of that nested relation. A naive approach is to prop-

agate this change to the log of every nesting relation whose tuples reference the

nesting relation being changed. This approach imposes a heavy burden on the

update transaction since the transaction needs to find all owner tuples in order

to insert the log entries. If a large number of tuples contain references to the

updated relation, or if the nesting level is deep, the log operation can become

very expensive. Log space may blow up. Thus, additional requirements imposed

on the implementation are to find (1) an efficient way to collect and store the

changes made to the nested elements, (2) ah efficient way to establish nesting-

nested associations, and (3) the smallest possible update transaction overhead.

Section 3's requirements apply as well.

4.1 Capturing Changes in Nested Tables

To meet requirement (1), we create a system collection descriptor that owns a log

for all nested relations of the same scheme (or class) definition. The descriptor is

• created when a view involving these nested relations is initially materialized. We

call this descriptor a nested descriptor. Each SWORD view definition is inspected

to find any nested relations (SWORD, like HiLog, requires specifying a variable

that ranges over nested relations with the same scheme type). The tuples in the

set of individual nested relations are of the same type. Thus, all log entries in the

nested descriptor's log are of the same type. After creating a nested descriptor D,

every update to a corresponding nested relation N is recorded in D's log (instead

of in N 's log). When the update transaction calls the i n s e r t () , remove() or

r e p l a c e () method of N, the method checks if a nested descriptor, D, of the

same relation type exists. If so, it inserts a log entry into D's log. The insertion

is done only once. This check is the only overhead to the update transaction,

and this overhead is negligible. Thus, requirement (3) is met.

Consider a database scheme defined by the following collection of rules.

R = [T,. . .] , S = [V,.. .] , T = [U,...], V = [...]. Figure 1 illustrates the structure

of the relations (R, S, T1, T2, U1, U2) and the associated logs (disregard the in-

dices for now). According to the figure, tuples of the relation R have pointers to

T1 and T2, the tuple of S has a pointer to U1, and so on. Boxes labeled R, T1, T2,

... in the figure represent relation descriptors since they contain control informa-

tion about relations (e.g., information about each relation's indices/views).

Suppose also that two views V1 and V2 are defined over R, T, and U (S

is not used for the view definition). For example, V1 is defined as a query of

211

R1 --~-~I 2 3

R-log

/•I(appended)
flag oid oid Coeforc image)

T2

l0

+ insert-flag
- remove-flag
* replace-flag

30 31

Nested descriptor
r ' " -] Index

i T 2 [l

"%liE:IN

flag o i d ~ o i d (descriptor)
oid (before image)

Nested descriptor
Index

I Ull2 r
~ l ~ [U2 [I0, 11, 20, 21[

flag o l d ' o l d (descriptor)
oid (before image)

Fig. 1. Log Structure for Nested Tables

V1 d..~f R (X , . . .) N X (Y , . . .) N Y(. . .) , where a variable X is in the position of
the nested attribute T and a variable Y is in the position of the nested attribute

of U. In Figure 1, the relation descriptor for R has pointers (labeled V1 and V2)

into the log. The pointer for V1 (V2) points to the last log entry that has been

applied to view V1 (V2) to have brought it up to date. R contains two current

tuples with oid = 1, 3 which we will refer to as tl and ta (oid = 2 is a deleted tuple

that must be kept around for view maintenance purposes for the time being).

tl references the nested set T2. T2 contains a single active tuple with oid = 20,

t20. (Tuple t20 originally had the same contents as the tuple with old = 21,

t21. When t20 was modified, a copy, t~l was made first for view maintenance.

The last log entry for T's nested descriptor indicates that.) Notice that the log

entry includes the old of the relation descriptor. The principles of [13] are used

to extract relevant changes from the log for views V1 and Vs. For example, the

maintenance of V1 and V~ requires computing the extraction function using t l .

212

Note that t l is not found in the log of R since the changes were made to T~ and

Us. Such changes are efficiently found in the logs of nested descriptors T and U.

The details will be discussed in Section 4.3.

4.2 N e s t e d - N e s t i n g A s s o c i a t i o n s

To meet requirement (2), we consider an index structure tha t is associated with

each nested descriptor. The reason to have this index is to efficiently expand all

changes (particularly those that have occurred in deeply nested elements) into

the extraction function of Section 2.2 for maintenance. The index will be created

at the same t ime as the corresponding descriptor. Subsequent view maintenance

operations will mainta in the index entries. The query transactions never use

this index. This structure is similar to those used in nested indices and a pa th

indices [7], but the motivat ion is quite different since those indices are used to

answer queries.

Each key in the index is the oid of a relation descriptor (e.g., T1, T2) that is

directly referenced by some tuple in a nesting relation. This allows the old of each

tuple that is directly nesting another relation to be found (e.g., it allows us to find

that t l contains T2). During the first view material izat ion operation, the index

entries are initialized using mappings from the old of an owned relation descriptor

(e.g., T2) to the oids of each tuple that directly owns this relation descriptor

(e.g., tl). Every tuple in the nesting relation must be inserted into this index,

whether or not it contributes to the current instance of the materialized view. 5

After the index is created , new nesting tuples may be inserted into a relation

relevant to a view. The oids of these new tuples will not appear in the nested

descriptor 's index until view maintenance occurs. Thus, during the subsequent

view maintenance, mappings for recently inserted tuples must be inserted into

the index (e.g., the pair mapping T1 to $3 was added to the T index when the

log entry for the insertion of t3 w as processed during the previous maintenance

operation on view V2). Garbage collection sweeps every removed old in the index

that is no longer used for any view maintenance. Since this index never adds

overhead to update transactions, we satisfy requirement (3). Similarly, log entries

may indicate that a nesting tuple has been deleted, in which case its index entry

must be removed (e.g., the mapping from T1 to old = 2 must be removed

s This is because we scan each relevant log only once to maintain views. If a tuple that

previously did not participate in the view was modified so that it could contribute

to the join and it was not already in the index, we would have to add it in an initial

pass over the relevant logs and then use it in a second pass over the logs.

213

when the log record for the deletion of o i d = 2 is processed). A modification

is treated like a deletion followed by an insertion. (Note, the implementation

actually optimizes the conceptual index described above by storing a pointer

to a list of backpointers in the nested descriptor itself to reduce index lookup

t ime--e.g. , T1 contains a pointer to a list containing 2 and 3.)

In Figure 1, two indices for T and U are shown. Currently both indices have

sufficient information to locate which tuple directly owns the old of the relation

descriptor. Suppose that a new tuple is inserted in R. Then the view maintenance

process finds it in the log of R and inserts into the index of T (it may also add

its nested set's contents to the index for U). Notice that tuples of S do not

participate to the index since S is not defined in any view.

4.3 Incrementa l C o m p u t a t i o n

We use a hashing method similar to [35] to quickly compute the net effect of

the changes in the log. We create hash buckets by following the nesting lev-

els. Recall from Section 4.1 that the view Vi in Figure 1 is defined as Vi d~.j

R (X , . . .) M X (Y , . . .) M Y (. . .) , where the variables X and Y are respectively

bound to T and U. Algorithms of extracting the changes of R and producing the

extraction functions of eT and ev are highlighted in the following three steps:

1. (Non-nested sets:) For each set mentioned by name in the view definition

(i.e., for each non-nested set such as R, scan the corresponding log to create

hash buckets in the standard way (see Section 3). Also,

1-1. If the entry contains the insert flag and the old onew, add a mapping

(if none exists) from each of o,e~'s nested sets to onew in the indices

of the corresponding nested descriptors. If no mappings from the nested

set previously appeared in the index, continue this recursively for nested

sets of the nested set.

2. (Nested sets:) For each nested set mentioned at the next nesting level in

the view definition (e.g., T bound by X), scan the nested descriptor's log to

create hash buckets similarly. Furthermore, the descriptor oid (e.g., T1 and

T2) stored in each scanned log entry L is used to probe the contents of the

index in order to determine if L affects the tuple that owns this nested set:

2-1. L's old o is used to probe the nested descriptor index. The oids of all

tuples mapped to by o that do not yet appear in the hash table are

added to the hash buckets as in step 1 (except for those that are marked

as deleted or which are used as old versions of tuples). If o is contained in

a nested set, recursively probe the nested descriptor of its containing set

214

and add the containing tuples to the hash table if they are not already

there. Continue doing this until no such containing tuples exist or they

are all in the hash relation already.

3. Recursively apply step 2 to each of the relations at the next level of nesting

(e.g., U bound by Y).

Consider maintenance of V1. The incremental computation scans the logs of

R, T and U to build the net effect of the changes made to them. In step 1, the

log of the non-nested set R is hashed, and old = 2, 3 are added to the hash table.

In step 2, the log of the nested descriptor T is scanned, and oid = 11, 12, 20

are added to the bucket. Also, step 2-1 adds old = 1 to the hash table created

for R in step 1 (oid = 2, 3 are already there, oid = 1 is identified by probing the

index with T2's descriptor oid--R's tuple t l is not updated itself but its nested

set T2 is updated). In step 3, the log of U is scanned to create hash buckets.

(This is the recursive step of 2.) oid = 31,36 are inserted into U's hash table.

In step 2-1, oid = 10 is added to the hash table created for T because oid = 10

does not appear there yet. old = 20, 11 are in the bucket already; oid = 21 is an

old version and so is excluded.

In the end, the hash tables of R, T, and U contain the oids {1,2,3},

{ 10, 11, 12, 20}, and {31, 36}, respectively. The extraction functions then produce

descriptor oid/tuple old pairs by looking into these hash tables. For example,

Z~eT ---- {(T1, 10), (T1, 11), (T1, 12), (T2, 20)}. The incremental join computation

of zSV1 uses these descriptor oids to find matching pointer values bound to X

(the joined values from the nested set can be obtained by the tuple oids). These

hash tables are also used to compute pre-update states of the database during

the incremental view maintenance [13].

5 P e r f o r m a n c e S t u d y

This section describes an experimental performance study on top of the disk-

based Ode<EOS> database system. The experiments compare the performance

of maintaining snapshot views over data that is naturally represented using

nesting/nested relationships. All experiments were run in single user mode on a

128 MB, 200 MHz, UltraSparc II station (running Solaris Sun OS5.5.1 operating

system). The database was kept on the local disc attachment to eliminate NFS

delays.

E x p e r i m e n t a l Se tup : We build databases containing base tables and snapshot

materialized views, run 1,000 transactions against each database, and gather

various statistics for the set of 1,000 transactions.

215

Databases : Our experiments use materialized views of the following form:

Nest(A,C) de y base l (A,N) ,N(B,C) ,pred(B)

Flat(A, C) d~_] base2(A,X),base3(X, B, C),pred(B)
All the non-view tuples (e.g., basel-base3, N) are 300 bytes long. A, B, C, and

X are integer fields. There is the natural one-to-one mapping between tuples

of basel and base2 (the nested sets and base3) that one would expect--the

X field of base2/base3 contains the values 1-[base2[which correspond to the

order in which the base l /base2 tuples were generated. B+tree indices are built

on the following attributes: A and C for N e s t and Flat ; A for basel; A and X

for base2; and X for base3. These indices improve both query and incremental

view maintenance performance.

Before each experiment, each base table is initialized with tuples of uniformly-

distributed, randomly generated data, and each view is materialized. The fields

B and C were randomly filled with values in the range [1, [base3[] (A from the

range [1, [basel[]). In all experiments, base3 contains 200,000 tuples.

Compar isons : We compared only incremental maintenance techniques. Full re-

fresh of views with the associated indices takes about twenty minutes--far longer

than incremental refresh. Since an approach to maintaining views over nested

data without back pointers would require something similar to full refresh--each

outer tuple examining its inner set for changes--we ignored this possibility.

Transact ions: A program produces a stream of transactions, each of which ei-

ther queries or updates the database. A query transaction contains only d i sp lay

operations on a randomly chosen view, while an update transaction contains ei-

ther insert, remove, or replace operations on a randomly chosen base table.

The rep lace operation updates the C field of a nested/base3 tuple. The update

ratio of the transaction stream is the number of update transactions divided

by the total number of transactions in the stream. For instance, if the stream

contains 750 updates and 250 queries, then the update ratio is 0.75.

Each transaction contains 1-8 (an average of 4.5) operations over the same

table (in Section 5.3, it is 1-4). Thus, for example, a query transaction reads 1-8

tuples matching randomly chosen values from a single view table.

5.1 Compar i son be tween Fla t and Nes ted Rep re sen t a t i on

Purpose : Our first experiments compare the cost of incrementally maintaining

snapshot views over nested and non-nested versions of data. Given the complex-

ity of Section 4's algorithm, NestMat, we wanted to verify that it was com-

petitive with maintenance over non-nested data. Since nesting offers superior

216

ease of data modeling, competitive performance is good enough to argue for

nesting support. (Since Nest and Flat have identical contents, the read perfor-

mance should be identical, so we will only consider update performance--the

total time to update base tables and maintain views.)

M e t h o d : In our first experiment, ba se l (base2) has 2,000 tuples; each b a s e l

tuple has its own non-shared nested set containing approximately 100 tuples.

(There are 200,000 nested tuples randomly assigned to nesting tuples.) We call

this the Small Family data distribution, pred(B) had a 50% selectivity, so the

materialized view contained 100,000 tuples. Figure 2(a) contains the results for

various snapshot frequencies. In our second experiment, b a s e l (base2) has 200

tuples; each b a s e l tuple has its own non-shared nested set containing (approx-

imately) 1,000 tuples. We call this the Large Family data distribution. Other

factors remain the same as in the previous experiment. Figure 2(b) contains the

results.

Ana lys i s : We note first that replaces are more expensive than inserts/deletes

because they must copy the old value of a tuple into a newly created tuple used

by the log. We note also that NestMat is superior to the algorithm over flat

data. In large part, this is because insertions/deletions into base3 must modify

the X index, while corresponding insertions/deletions of nested tuples do not

modify an index--the representation eliminates the need for this index. Another

important factor appears to be that it is cheaper to follow a pointer to a list of

containing objects than to traverse a B+-tree on base2's X field. We note in

Figure 2 that (b) has considerably better performance in the flat case than (a),

while the nested performance is about the same. This is because the nested case

must do about the same amount of work traversing a list of backpointers in both

cases. However, in the flat case, base2's X index in (a) is ten times bigger than

in (b), so more CPU and I /O costs are occurred using the index.

5.2 Skewed Access

P u r p o s e : Our previous work [14] showed that incrementally maintaining a view

over flat relations is considerably cheaper if the distribution of updates is highly

skewed. Log trimming converts several updates to the same tuple into a single

update which must be considered by the maintenance algorithm. We wanted to

see if the same effect held in the nested case.

M e t h o d : In picking the tuples to modify, we picked a parent tuple initially, and

then modified its children. 80% of our picks went to 20% of the b a s o l / b a s e 2

tuples. Figure 2(c) compares the effect of skew in flat/nested relations. The graph

2 1 7

700

Flat1 (25% ins, 25% rem, 50% rep) --~
Flat2 (40% ins, 40% rem, 20% rep) ---

600 Nest1 (25% ins, 25% rem, 50% rep) --~-
Nest2 (40% ins, 40% rem, 20% rep) - . - - - A

500
oo "-m ..--'' 'm.., .~..

- 400 "'~ -x ~ " 1-

300 ~"~'-"-
[] ~--- -=" -~...~.~....~ - ~ .~ " - - . .~

2 0 0

1 0 0

0 i t i i

50 250 450 650 850
Snapshot Intervals

(a) Small Family Distribution
7 0 0

Flat1 (25% ins, 25% rem, 50% rep) --~
Flat2 (40% ins, 40% rem, 20% rep) ---

600 Nest1 (25% ins, 25% rein, 50% rep) -a.--
Nest2 (40% ins, 40% rem, 20% rep)

500 ¢n

= 400 . ~ . . ~
I -

w

~ o 200 ~ . = ~ . _ : = = = : = : "

100

0
50 250 450 650 850

Snapshot Intervals

(c) Skew's Effects (Small Family)

cn

"O

LU

I -

¢n

I--

LU

I--

700

600

Flat3 (25% ins, 25% rem, 50% rep) .-e
Fiat4 (40% ins, 40% rem, 20% rep) ---

Nest3 (25% ins, 25% rem, 50% rep) - = - - "
Nest4 (40% ins, 40% rem, 20% rep) -

500

400 " G ' " ' " ' ¢ ~ ~ . . .
. . x K " ' - - . . .

-. . ~

300 " ~

200 "-~---~.., ~.~,---LSL~

t 0 0

0 , i i i

50 250 450 650 850
Snapshot Intervals

(b) Large Family Distribution
5 0 0

MV1 (snapshot no refresh)

MV2 (snapshot every 150th tran) -0
MV3 (snapshot every 3o0th tran)

400 Q1 (Queries use virtual views) -~

3O0

.at"

200 "'~ " ' " " ~ "

. . a - ' " "

1 0 0 4,,~,:fif..:...,.

0 i i i

0.25 0.5 0.75
Update Ratio

(d) Comparison with virtual view

Fig. 2. Materialized V.iew Comparisons

to compare it to is (a), since they use the same initial base data, just different

update patterns. Both graphs contain update and maintenance time.

Analysis: The nested performance did not change very much in the presence of

skew unlike the flat case. The flat case improves significantly as fewer snapshots

are produced since a longer refresh cycle means more log trimming, and hence

fewer modifications to the materialized view. However, increased trimming had

only minor impact in the nested case.

218

5.3 Compar i son wi th Vi r tua l Views

Purpose : Under heavy update loads, materialized views become too expensive

to maintain, and it is better to use virtual views. We wished to determine at

roughly what point this occurs in our system.

M e t h o d : We sent 1-4 updates/reads in each transaction, and varied the update

ratio. We used the Small Family data distribution and the 40% insert / 40%

delete / 20% replace update mix. Given an A value in the view, our queries find

the corresponding C values. We compare the total costs of all transactions and

view maintenance for snapshots with different snapshot periods and for virtual

views (with no view maintenance). Note that with virtual views, the data is

fresh. It is somewhat stale with snapshots. However, we are comparing costs

when some staleness can be permitted. See Figure 2(d) for the results.

Analysis: MV1 (snapshot with no refresh) shows that it is more expensive to

update a base tuple than to read a snapshot tuple. That is why, even with no

refresh, the cost increases when the update ratio increases. MV2 and MV3 show

the additional overhead of view maintenance on top of the raw base table update

costs of MV1. Q1, which uses virtual views, has roughly constant performance

across the update range. This is because the computation of a tuple of the virtual
view required many I/Os to find base3 tuples that match a given base2 tuple--

to check the B/C values. Consequently, computing a virtual view tuple and

modifying a base3 tuple (and the associated indices) had comparable cost. In

our experiments, using virtual views proved superior to using materialized views

once the update ratio reached 30%--40%.

6 R e l a t e d W o r k

A preliminary version of this work was presented at a workshop [22]. That version

describes earlier versions of the algorithms contained in this paper and contains

more details on topics like garbage collection and log trimming. This paper

extends that work with performance results.

This paper describes a nested data model based on prior work [39, 33, 32].

Various query languages and implementation frameworks for the nested relation

model have been studied (e.g., [5, 15, 30, 24, 33, 34]). These papers do not

explicitly mention view definition/maintenance.

Our view definition language in SWORD is based on Noodle [28], and is sim-

ilar to HiLog [11, 32], where relation names or references may appear as argu-

ments of other relations. We described how [17]'s view maintenance algorithms

219

for flat data models can be extended to handle a nested data model. We then

described an implementation based on this extension.

This paper assumes that all materialized views are snapshot views (i. e., views

that are maintained when an explicit maintenance request is made). Snapshots

were first proposed in [2]. Snapshot view implementation techniques are de-

scribed in [23, 20, 35]. These papers consider only SP (select-project) views. [23]

focuses on detecting relevant changes to snapshots using update tags on base

relations. [20, 35] present techniques for maintaining logs and computing the net

update to a view. Our log structures are based on the ideas in [35]. However,

since [35]'s techniques are limited to SP views, they are not concerned with pro-

viding efficient access to past states of relations. Oracle supports snapshot views.

However, Oracle only incrementally maintains SP views--using full recomputa-

tion on join and aggregate views. In [14], a model that allows multiple views

to be maintained with different policies (immediate, deferred and snapshot) is

studied, and an experimental performance comparison is made.

Concurrency control algorithms and a serializability model to guarantee se-

rializability in the presence of deferred views are discussed in [21]. The focus of

that paper is on doing concurrency control when multiple transactions reading

and updating relations are executing concurrently in the system.

Our nested descriptor indices are similar to structures used to maintain join

indices (e.g., [26, 7]) and for field replication [36]. All these techniques are based

on creating index structures that invert access paths specified by users to allow

efficient maintenance of the desired access path (which can be considered as a

materialized view of sorts). The nested descriptor indices presented in this paper

can be implemented with structures similar to the modified B-tree structures

used to model nested indices and path indices [7, 6].

7 C o n c l u s i o n

This paper describes implementation techniques for maintaining materialized

views over a nested data model. We showed that such views can be maintained

by simple extensions to the counting algorith m [17]. For efficient computation,

we keep track of changes within nested relations by transparently creating a

structure that flattens nested log records. We then outlined the data struc-

tures/algorithms for the implementation. The implementation was guided by

specific goals to minimize view maintenance overhead. The techniques described

allow these goals to be achieved. We also measured the performance of our tech-

niques, demonstrating that our algorithm's view maintenance performance over

nested data is superior to that of [17]'s counting algorithm over a normalized

220

representation of the data. This is one of the first pieces of work to explore the

applicability of materialized views over complex objects.

Currently, we only consider nested objects where an a t t r ibute of a tuple

can be a reference (i.e., a pointer) to a nested relation. We plan to extend out

model to allow an a t t r ibute to be a nested relation, without the need to have

pointers. Our implementa t ion supports relational style SP and SPJ views over

nested data. We plan to support aggregate views over nested data, based on

the ideas in this paper. We also plan to improve the maintenance algorithms.

For instance, the t ime for view maintenance can be further improved by having

a separate asynchronous process that computes the incremental changes to the

view and holds them in view differential files [12]. These view differential files

would be updated periodically and be used to update the view relation when it

is maintained. We are also investigating more efficient creat ion/maintenance of

the index for nested-nesting associations.

References

1. S. Abiteboul and N. Bidoit. Non first normal form relations to represent hierar-
chically organized data. In Proc. PODS, 1984.

2. M. E. Adiba and Bruce Lindsay. Database snapshots. In Proc. VLDB, 1980.
3. R. Agrawal and N. Gehani. Ode (object database and environment): the language

and the "data model. In Proc. SIGMOD, 1989.
4. H. Arisawa, K. Moriya, and T. Miura. Properties on non-first-normal-form rela-

tional databases. In Proc. VLDB, 1983.
5. F. Bancilhon, P. Richard, and M. Scholl. On line processing of compacted rela-

tions. In Proc. VLDB, 1982.
6. E. Bertino. Query Processing for Advanced Database Systems, chapter A survey

of indexing techniques for object-oriented databases. Morgan Kaufmann, 1994.
7. E. Bertino and W. Kim. Indexing techniques for queries on nested objects. IEEE

TKDE, pages 196-214, June 1989.
8. J .A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Updating Materialized

Views. In Proc. SIGMOD, May 1986.
9. Peter O. Buneman and Eric K. Clemons. Efficiently monitoring relational

databases. ACM TODS, 4(3):368-382, September 1979.
10. S. Ceri and J. Widom. Deriving production rules for incremental view mainte-

nance. In Proc. VLDB, pages 108-119, 1991.
11. W. Chen, M. Kifer, and D. Warren. HiLog: A first order semantics for higher-order

logic programming constructs..In Proc. N. American Logic Prog. Conf., June 1989.
12. L. Colby, T. Griffin, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred

view maintenance. In Proc. SIGMOD, 1996.
13. L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Implementing ma-

terialized views, 1996. Unpublished manuscript.
14. L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting multi-

ple view maintenance policies. In Proc. SIGMOD, May 1997.
15. P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum,

P. Pistor, and G. Walch. A DBMS prototype to support extended NF 2 relations:
An integrated view on flat tables and hierarchies. In Proc. VLDB, 1986.

221

16. T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In
Proc. SIGMOD, 1995.

17. A. Gupta, I. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.
In Proc. SIGMOD, 1993.

18. R. Haskin and R. Lorie. On extending the functions of a relational database sys-
tem. In Proc. SIGMOD, 1982.

19. G. Jaeshke and H. Sheck. Remarks on the algebra of non-first-normal-form rela-
tional database. In Proc. PODS, 1982.

20. B. K/ihler and O. Risnes. Extended logging for database snapshots. In Proc.
VLDB, pages 389-398, 1987.

21. A. Kawaguchi, D. Lieuwen, I. Mumick, D. Quass, and K. Ross. Concurrency con-
trol theory for deferred materialized views. In Proc. ICDT, January 1997.

22. A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. View maintenance in nested
da ta models. In Proc. Worshop on Materialized Views: Techniques and Applica-
tions (associated with SIGMOD96), June 1996.

23. B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A snapshot differen-
tial refresh algorithm. In Proc. SIGMOD, 1986.

24. V. Linnemann. Non first normal relations and recursive queries: An SQL-based
approach. In Proc. Data. Eng. , 1987.

25. J. Lu, G. Moerkotte, J. Schu, and V. S. Subrahmanian. Efficient maintenance of
materialized mediated views. In Proc. SIGMOD, 1995.

26. D. Maier and J. Stein. Indexing in an object-oriented DBMS. In Workshop on
OODB Sys., 1986.

27. A. Makinouch. A consideration of normal form of non-necessarily normalized re-
lations in the relational da ta model. In Proc. VLDB, 1977.

28. I. Mumick and K. Ross. Noodle: A language for declarative querying in an object-
oriented database. In Proc. DOOD, 1993.

29. I. Mumick, K. Ross, and S. Sudarshan. Design and implementation of the SWORD
declarative object-oriented database system, 1993. Unpublished Manuscript.

30. P. Pistor and F. Andersen. Designing a generalized NF2 model with an SQL-type
language interface. In Proc. VLDB, 1986.

31. Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active relational
expressions. IEEE Th'DE, 3(3):337-341, 1991.

32. K. Ross. Relations with relation names as arguments: Algebra and calculus. In
Proc. PODS, 1992.

33. M. Roth, H. Korth, and D Batory. SQL/NF: A query language for -~INF relational
databases. Information Systems, 12(1):99-114, 1987.

34. M. Scholl, H. Paul, and H. Schek. Supporting flat relations by a nested relational
kernel. In Proc. VLDB, 1987.

35. A. Segev and J. Park. Updating distributed materialized views. IEEE TKDE,
1(2):173-184, June 1989.

36. E. Shekita and M. Carey. Performance enhancement through rephcation in an
object-oriented DBMS. In Proc. SIGMOD, 1989.

37. Oded Shmueli and A. Itai. Maintenance of Views. In Proc. SIGMOD, 1984.
38. L. Sterling and E. Shapiro. The Art of Prolo9. Advanced Programming Techniques.

MIT Press, Cambridge, MA, 1986.
39. S. Thomas and P. Fischer. Nested relational structures. In P. Kanellakis, editor,

The Theory off Databases. JAI Press, 1986.
40. Y. Zhuge, H. Garcia-Mohna, J. Hammer, and J. Widom. View maintenance in a

warehousing environment. In Proc. SIGMOD, 1995.

