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A b s t r a c t .  Previous research on materialized views has primarily been 

in the context of flat relational databases--mater ia l ized views defined in 

terms of one or more flat relations. This paper discusses a broader class 

of view defini t ions--material ized views defined over a nested da ta  model 

such as the nested relational model or an object-oriented da ta  model. An 

at t r ibute  of a tuple deriving the view can be a reference (i.e., a pointer) to 

a nested relation, with arbi trary levels of nesting possible. The extended 

capability of this nested da ta  model, together with materialized views, 

simplifies da ta  modeling and gives more flexibility. 

Simple extensions of s tandard view maintenance techniques to the nested 

model would do too much work for maintenance: a change in a nested set 

would re-process the entire nested set, not just  the changed parts. We 

show how existing incremental maintenance algorithms can be extended 

to maintain the views without performing this additional work. 

We describe the implementation of these techniques in the SWORD in- 

terface to the Ode database system. The implementation is based on the 

representation of nested structures by classes and the use of an SQL-like 

language to define materialized views. We outline the da ta  structures 

and algorithms used in the implementation and examine performance. 

This is one of the first pieces of work to explore the applicability of 

materialized views over complex objects. 

1 I n t r o d u c t i o n  

Most  pas t  research on m a t e r i a l i z e d  views has  focused on high level i nc remen ta l  

a l go r i t hms  for u p d a t i n g  m a t e r i a l i z e d  views efficiently when the  base  re la t ions  

are  u p d a t e d  [9, 37, 8, 31, 10, 17, 16, 25, 40]. Those  s tud ies  are  in the  contex t  of  

f i r s t -no rma l - fo rm re l a t iona l  d a t a b a s e s - - m a t e r i a l i z e d  views are  defined in t e r m s  

of  one or more  re la t ions  us ing a r e l a t iona l  query l anguage .  In  th is  pape r ,  we al low 

a ma te r i a l i z ed  view to be  defined over a nes ted  d a t a  mode l ,  where a t up l e  can 

have a r b i t r a r i l y  deeply  nes ted  s t ruc tu res .  For  the  s imp l i c i t y  of  our  discussion 
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we assume in the rest of paper that  all materialized views are snapshot views [2], 

i.e., views that  are maintained when an explicit maintenance request is made. 

The extension of the relational model to non-first-normal-form goes back 

to [27], which introduced the concept of nesting. The work of, e.g., [18, 19, 4, 1, 

38, 39] further investigated nested properties including the algebra and calculus. 

Query languages and implementation issues are discussed in, e.g., [5, 15, 30, 

24, 33, 34]. The above research aims to extend the relational model to directly 

represent data  that  is usually organized hierarchically such as in CAD/CAM 

and multimedia applications. The idea of having relation names as arguments is 

presented in [32]. This extension allows relation names to be stored as attributes 

of other relations (essentially using the name as a pointer), and allows access 

to one relation or another based on the value of some other attribute. Thus, 

nested relations can be implemented without directly embedding relations in 

tuples. Object-oriented databases (OODBs) share this property. An object often 

has a complex sub-object that  is referenced by an object identifier. Further, the 

nested structures are usually unnamed (i.e., the structure has no external name 

by which it can be referenced; it can be referenced only by navigating through 

the containing relation/object). In this paper, we consider nesting by reference, 

as described for the relational and object-oriented models above. We leave the 

case of embedded nested values within a tuple or object for further work. 

We consider the problem of maintaining materialized views over such nested 

structures. A simple extension of maintenance algorithms for views over normal 

form relations to views over nested structures yields inefficient algorithms. For 

example, suppose that  p is a binary relation whose second argument is a nested 

relation with a single attribute. Let q be another binary relation. Let V be a view 

defined Y(X, Y) de__l p(X, Z), Z(W), q(W,Y). (in a HiLog style language [11, 

32]). Thus, V is a join ofp  with q on the elements ofp 's  nested attribute. Suppose 

that  p(a, s) are the tuples in the extension of p, and that  {(1), (2 ) , . . . ,  (n)} 

are the values in the nested relation s. Let us modify s by adding (n + 1) to 

the extension of s. A straightforward application of known view maintenance 

techniques could "undo" the effect of the whole set {(1}, (2) , . . . ,  (n)} and then 

"redo" the effect of {(1}, (2) , . . . ,  (n + 1)}. Much of this work is unnecessary-- 

only work corresponding to inserting (n -F 1) is necessary. We develop auxiliary 

data structures to find such relevant changes efficiently. 

The motivation of this study is the development of the SWORD interface [29] 

to the Ode OODB [3]. SWORD provides an SQL-like declarative language to 

define materialized views compositionally and hierarchically on collections of 

Ode objects. SWORD supports transparent incremental maintenance of those 
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views using the incremental view maintenance algorithm of [17]. The algorithm 

accumulates the changes made to each base relation of the materialized view 

in a log, a sequential file associated with a base relation. It uses the logs to 

maintain views. There is only one log for each base relation regardless of the 

number of the views it derives (i.e., the log is shared by a set of views to be 

maintained). A log entry holds an idenlifier of the changed tuple (the change 

may be an insertion, deletion and modification). The data structures used to 

implement logs are described in [13]. 

Two problems arise when we enhance the materialized views in SWORD to 

work with a nested data model. First, how should the log structure be extended? 

Second, how can one capture the change made in a referenced complex relation? 

The implementation creates an entry in relation T 's  log in response to each 

update to a tuple of T. Suppose that  a tuple t of T has a pointer to another 

relation R whose tuple r is updated. The change to r must be identified both 

for referring relation T and for referred relation R. How can we identify all such 

referring tuples t? Recording the change in the log of the referring relation T is 

not easy since the pointer value in the tuple t will not change unless the whole 

referred relation R is dropped or newly created. Furthermore, since nested sets 

are referenced through pointers, the insertion of a single tuple may affect many 

containing objects-- thus,  the space required for the log (and, consequently, the 

t ime for creating and scanning log records) may balloon. A more subtle problem 

arises if we consider the efficiency of the maintenance that  involves implicit join 

operations between flat and nested attributes or between nested attributes. 

P a p e r  O u t l i n e :  Section 2 reviews the nested data  model [39, 33] used in this 

paper and then investigates maintaining materialized views over nested data  

models. The implementation architecture for the non-nested case is reviewed 

in Section 3; Section 4 presents the necessary extensions for handling nested 

structures. Section 5 discusses performance results. Related work is discussed in 

Section 6; Section 7 presents conclusions. 

2 M a i n t a i n i n g  M a t e r i a l i z e d  V i e w s  o v e r  N e s t e d  D a t a  

2.1 N o t a t i o n  a n d  D e f i n i t i o n s  

We describe our techniques in the nested relational model context. It should, 

however, be understood that  the techniques developed apply also to OODBs. 4 

4 While we did not discuss the use of our algorithms for OODBs over data with cyclic 

references, our algorithms extend [17]'s counting algorithms which can incrementally 
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Following [39], a database scheme is a collection of rules of the form R = 

[R1, ..., Rk]. Objects R 1 , . . . ,  Rk are called names. An object is a higher-order 
name if it appears on some rule's left-hand side; else, it is a zero-order name. 

Nested schemes may contain any combination of zero or higher-order attributes 

on the right-hand side of the rules as long as the scheme remains non-recursive. 

An instance of R = [R1, ..., R~] is a collection of tuples such that each tuple 

contains arbitrary combinations of values, or indirect references (relation names 

or pointers to relations) based on the types of names R1, ..., Rk. Some object, 

Ri say, may be a higher-order name, in which case the instance of Ri will be a 

recursive expansion of the rules in the right-hand side. Hence a tuple of R can 

be viewed as having arbitrarily deeply nested relation instances. A relation is a 

stored instance of the database scheme. We call a relation R, defined by schema 

R = [R1, ..., Rk], a nesting relation if at least one of its attributes R1, ..., Rk, 

say Ri, is a higher order name. We also call the higher order name, R/ a nested 
relation. A relation that  is not defined as a view is called a base relation. 

M a t e r i a l i z e d  Views:  A view V is a relation that is defined using a query Q over 

some set of relations {R1, ..., Rn}, denoted as 

V dJQ(R1,. . . ,  Rr~). The query is said to be defined over relation Ri if Ri appears 

in the query definition, or if the query follows a reference to a relation of type 

Ri. R1, . . . ,R,~ are called the referenced relations, and may be base relations 

or materialized view relations. The referenced relation can be a nesting relation 

or a nested relation. A materialized view is a view whose tuples are physically 

stored in the database. A virtual view is an unmaterialized view; it is computed 

when it is needed for a query using the Ri. (For brevity, we do not discuss virtual 

views in the rest of this paper until Section 5 on performance.) [] 

Log  a n d  D e l t a :  For every referenced relation Ri, an additional structure, which 

we call a log, contains the changes made to Ri. Any update to a referenced rela- 

tion causes a corresponding log entry to be created. The log is used to construct 

a set of tuples that will be used for the incremental maintenance of view V. We 

call this set a delta, denote as z~Ri. If multiple views V1, • •., V,~ are defined using 

relation R/, the log must be capable of constructing z2R/(Vj) (i. e., a delta of Ri 

with regard to view ~ ) ,  for 1 < j < n. [] 

V i e w - D e p e n d e n c y  G r a p h :  The dependency graph G of a view V is a graph 

with a node for each relation referenced in the view definition, a node labeled V, 

and a directed edge from the node for each referenced relation to the node for V. 

maintain recursively defined views over circular data. Thus, we believe our techniques 

our applicable to arbitrary data in OODBs. Furthermore, our algorithms directly 

apply to non-recursive view definitions over circular data without extensions. 
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The dependency graph shows how the view is derived from base relations and/or 

other views. The view-dependency graph G of a database schema is the union 

of the dependency graphs for all the views in the schema. The view-dependency 

graph shows how all the views in the schema are derived from each other and 

from base relations. [] 

2.2 Incremental  Change Computat ion  

We consider the counting algorithm of [17] for view maintenance. The counting 

algorithm keeps a count of the number of derivations for each view tuple. For 

instance, given a join view V de__/ R1 M R2 M R3, the counting algorithm derives 

the following algebraic equation to compute the changes z~V to view V: 

z2V = AR1 M R~ e~ M R~ ~ ~ R~ ld M z~R2 M R~ ~ ~ R~ Id M R~ Id M z~R3 

where z2Ri is the set of insertions and/or deletions to relation Ri, R~ ld is the 

old (or pre-update) state of the base relation Ri (before the updates of AR4 are 

applied to R4), and R~ ~w is the new (or post-update) state of the base relation 

Ri (after the updates of z~Ri are applied to it). The ~ operator denotes bag 

union. In the set of changes, insertions (deletions) are represented with positive 

(negative) counts. Updates are represented by deletions of the before images, and 

insertions of the new tuples. The count value for each tuple is represented in the 

materialized view V, and the new materialized view is obtained by combining 

the changes z~V with the stored value of view V as follows: Positive counts are 

added in; negative counts are subtracted. A tuple with a count of zero is deleted. 

A view defined over the nested data model can be maintained by the counting 

algorithm if we can define and identify the nested delta sets correctly. We assume 

that the view definition language is based on a query language such as HiLog [11]. 

E X A M P L E  2.1 Consider the schema Emp = [Nm, Dependent], Dependent = 

[D-Nm, Age], Health-Ins = [D-Nm] with the following database extension: 

Emp = {(Fred, D1),(Mary, D2)};Health-Ins = {(Dave), (Jane)};D1 = 

{(Dave, 85), (Bob, 10), (Jane, 5)}; D2 = {(Dave, 85), (Alice, 3)}. (D1 and 02 are 

ids of otherwise unnamed relations of type Dependent). Consider the view V 

which contains the employees' dependents who have their own health insurance. 

V is defined by the following HiLog expression: V(X,  Z) d~=l 

Emp(X, Y), Y(Z,  A), Health-Ins(Z). The materialization of Y is 

{(Fred, Dave), (Fred, Jane), (Mary, Dave)}. To respond to a change in the rela- 

tion Health-Ins, we apply the counting algorithm. For this kind of update, we can 

intuitively express z2V as ,~V(X, Z) = 
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Emp°Id(x,Y) ~ Y°t't(Z,A) M ZIHeath-Ins(Z).  Note, yoZa is not precise since 

Y is a variable. We discuss what yold means below. Deleting Jane from Health- 

Ins (written as ZlHeath-Ins = {(Jane}-1}) yields Z~Y = {(Fred, Jane}-X}. [] 

Example  2.1 shows that  handling updates to non-nested relations is straight- 

forward. We now consider updates to the nested relations. 

M e t a - R e l a t i o n ,  E x t r a c t i o n  F u n c t i o n :  Consider a nesting relation R = 

[ . . . , S , . . . ]  where S is a higher-order name. For each such nested S in the 

database we define a meta-relation us as follows, us(X)  is true precisely when X 

is the id of a nested relation in the database extension, of the same type as S. For 

each such nested relation S, we define an extraction function 

es(X,  A1 , . . . ,Ak) ,  where S is defined by the rule S = [A1, . . . ,Ak] .  (In other 

words, A1, . . . ,  Ak are the at tr ibutes of relations of type S.) 

es(X, A1 , . . . ,Ak)  = us(X)  • X ( A x , . . . , A k )  Q 

For the nested Dependent tables of Example2 .1 ,  we would have 

UDependen t = {D1,D2} and eDependen t = {(D1,Dave,  85), (D1, Bob, 10}, 
(D1, Jane, 5), (D2, Dave, 85), (D2, Alice, 3}}. 

Consider again a nested relation R = [ . . . ,  S , . . . ]  where S is a higher-order 

name. Let a view V be defined using R and S, so that  V' = R ( . . . , X , . . . )  M 

X ( . . . )  is a subexpression within V. (Here, X is a variable appearing in the 

position of the nested at t r ibute of type S.) Rather  than doing maintenance on 

this subexpression directly, we mainta in  the equivalent subexpression 

n( . . . ,X , . . . )  M es(X,. . .) .  (1) 

The benefit of this t ransformation is that  we no longer have a HiLog variable as a 

relation name. Treating es as a relation, we can express ZIV t using the counting 

algorithm as AR( . .  X , . . . )  t~ en~WtX . R°td(. . . 
• , s , . . )  . . , x , . . ) M n e s ( X , . . )  

In the event that  there are multiple levels of nesting, so that  S itself contains a 

nested relation T as an at t r ibute  (S = [ . . . , T , . . . ] ) ,  we can recursively express 

.dies in terms of S and eT as above. 

The expression (1) also gives us a hint about  where to keep the delta informa- 

tion for unnamed nested relations. The extraction function can be thought of as 

a materialized view. However, only the log of the view, not the view's extension, 

is stored. Conceptually, we should keep the delta information for nested relations 

of a given type S in a single place associated with S. For the efficient incremental 

change computat ion,  ,dies(X,...) must  be quickly found in the database,  so tha t  

the system can avoid scanning all tuples in R. In Section 4 we show how this is 

implemented using "nested descriptors." 
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E X A M P L E  2.2 The view V in Example 2.1 can be incrementally computed 

as follows: 

A V ( X ,  Z) = AEmp(X, Y) • e~)~endent (Y, Z, A) t~ Heath-InsneW(Z) 

Emp °Id ( X, Y)  M ~eDependent (Y , Z, A) N Heath-InsneW(Z) 

old (Y, Z, A) M z~Heath-Ins(Z) +~ Emp°ld(x, Y)  ~ eDependen t 

Suppose Fred changed his name to Greg after V's materialization, and that  he no 

longer has a dependent Dave. So zSEmp = {(FFred, D1) - i ,  (Greg, D1) +i} and 

zSeDependen t = {(D1, Dave, 85)-l}.  Using the expression above, we compute 
zSY as {(Fred, Dave) - i ,  (Fred, Jane) -1, (Greg, Jane)+i}. O 

Observe that  the incremental work needed to maintain a view over nested 

data  is in principle proportional to the changes in the contents of the nested 

relations, and not proportional to the size of the nested relations themselves. 

In the next two sections we outline how we achieve this performance level in 
practice. 

3 I m p l e m e n t a t i o n  f o r  F i r s t  N o r m a l  F o r m  R e l a t i o n s  

This section briefly reviews the implementation of our view maintenance system 

presented in [13]. The extensions to handle nested data  are discussed in Section 4. 

A part of the effort in [13] addresses scalability and efficiency concerns since 

materialized views introduce additional system overheads (e.g., space for storing 

log, log update time, view maintenance time). Some of the requirements are: (a) 

The overhead of making log entries must be independent of the number of views. 

Thus, we rule out a design based on a separate log for each relation-view pair. 

(b) Time required to compute the delta must be proportional to the size of the 

relevant log. This prevents us from scanning the entire log to determine the 

portion of the log's changes. (c) The total space used to store all the logs in 

the system should be proportional to the number of updates that  need to be 

propagated into materialized views. Thus, log entries should not be replicated, 

and old log entries must be discarded. (d) Queries over a relation should not 

be slowed down when views are defined over the relation. (e) Given a view, we 

should be able to quickly check whether it needs to be refreshed. 

A relation (base or materialized view) is implemented as a collection class 

in Ode. A collection has a materialization containing tuples and a descriptor. A 
tuple is implemented as an Ode object. The descriptor holds meta-information 

about the collection, such as the creation date, a pointer to the materialization, 
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and other pointers needed to support  materialized views. The collection class pro- 

vides a number of member functions (methods) such as ins  e r r  ( ) ,  remove ( ) ,  and 

r e p l a c e ( )  that  can be invoked from the O + +  interface to Ode. The i n s e r t ( )  

function creates a new tuple with the given values, and inserts it into the ma- 

terialization. The remove()  function removes a tuple from the materialization 

by marking it as removed, and placing it in a pool of removed tuples. The tu- 

ple must stay in this pool until the effects of its removal are propagated to all 

views defined on the relation, after which point it can be garbage collected. The 

r e p l a c e ( )  function updates an existing tuple, and stores the pre-update value 

in a newly created tuple that  is placed in the pool of removed tuples. A separate 

I t e r a t o r  class is provided to iterate over the materialization of any relation. 

E x t r a c t i n g  R e l e v a n t  C h a n g e s  f r o m  Logs:  The changes made since the last 

maintenance operation on a view V are the only log entries relevant for a main- 

tenance operation on V. The D e l t a I t e r a t o r  class is provided to iterate over 

the relevant changes of a relation R for V. When a D e l t a I t e r a t o r  object is 

created for a given relation/view pair, we scan R's log starting from the last 

maintenance pointer for the view V stored in R's descriptor, and build an in- 

memory hash table by hashing the oid in the log entry. A bucket contains an 

in-memory copy of the log entry itself. The log is not modified. Hashing is used 

to compute the net effect of the changes in the log by eliminating and/or  col- 

lapsing redundant log entries due to insert-remove pairs, replace-remove pairs, 

replace-replace pairs, and insert-replace pairs [35, 20]. Since the creation of the 

hash table requires time proportional to the size of the log relevant to the view, 

and using the hash table requires even less time, we clearly satisfy the efficiency 

requirement (b). 

4 H a n d l i n g  N e s t e d  S t r u c t u r e s  

This section describes key ideas to efficiently capture the incremental changes to 

nested components. Nested relations in SWORD are defined using an O+q-- class 

with an attribute that is an embedded collection class or a pointer to another 

collection class. We insisted both that  view maintenance be transparent to 

the user and that  it not do any (significant amount of) extra work if no views 

exist. Our algorithms trigger transparent view maintenance work only if the user 

instantiates a view using the view definition language. 

Ef f i c i ency  R e q u i r e m e n t s :  A major  challenge is efficiently detecting changes 

made to the elements that  are in a nested attribute. We must establish asso- 

ciations between such elements and owner tuples. This must be done by the 
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t ime we construct the extraction function of Section 2.2 for maintenance. In an 

implementation, a change made to an element of the internally nested relation 

could be placed in the log of that  nested relation. A naive approach is to prop- 

agate this change to the log of every nesting relation whose tuples reference the 

nesting relation being changed. This approach imposes a heavy burden on the 

update transaction since the transaction needs to find all owner tuples in order 

to insert the log entries. If a large number of tuples contain references to the 

updated relation, or if the nesting level is deep, the log operation can become 

very expensive. Log space may blow up. Thus, additional requirements imposed 

on the implementation are to find (1) an efficient way to collect and store the 

changes made to the nested elements, (2) ah efficient way to establish nesting- 

nested associations, and (3) the smallest possible update  transaction overhead. 

Section 3's requirements apply as well. 

4.1 Capturing Changes in Nested Tables 

To meet requirement (1), we create a system collection descriptor that  owns a log 

for all nested relations of the same scheme (or class) definition. The descriptor is 

• created when a view involving these nested relations is initially materialized. We 

call this descriptor a nested descriptor. Each SWORD view definition is inspected 

to find any nested relations (SWORD, like HiLog, requires specifying a variable 

that  ranges over nested relations with the same scheme type). The tuples in the 

set of individual nested relations are of the same type. Thus, all log entries in the 

nested descriptor's log are of the same type. After creating a nested descriptor D, 

every update to a corresponding nested relation N is recorded in D's log (instead 

of in N 's  log). When the update transaction calls the i n s e r t ( ) ,  remove( )  or 

r e p l a c e ( )  method of N,  the method checks if a nested descriptor, D, of the 

same relation type exists. If so, it inserts a log entry into D's log. The insertion 

is done only once. This check is the only overhead to the update transaction, 

and this overhead is negligible. Thus, requirement (3) is met.  

Consider a database scheme defined by the following collection of rules. 

R = [T,. . . ] ,  S = [V,.. .] ,  T = [U,...], V = [...]. Figure 1 illustrates the structure 

of the relations (R, S, T1, T2, U1, U2) and the associated logs (disregard the in- 

dices for now). According to the figure, tuples of the relation R have pointers to 

T1 and T2, the tuple of S has a pointer to U1, and so on. Boxes labeled R, T1, T2, 

... in the figure represent relation descriptors since they contain control informa- 

tion about relations (e.g., information about each relation's indices/views). 

Suppose also that  two views V1 and V2 are defined over R, T, and U (S 

is not used for the view definition). For example, V1 is defined as a query of 
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R1 --~-~I 2 3 

R-log 

/•I(appended) 
flag oid oid Coeforc image) 

T2 

l0 

+ insert-flag 
- remove-flag 
* replace-flag 

30 31 

Nested descriptor 
r ' " - ]  Index 

i T 2 [  l 

"%liE:IN 

flag o i d ~ o i d  (descriptor) 
oid (before image) 

Nested descriptor 
Index 

I Ull2 r 
~ l ~  [ U2 [ I0, 11, 20, 21[ 

flag o l d ' o l d  (descriptor) 
oid (before image) 

Fig.  1. Log Structure for Nested Tables 

V1 d..~f R ( X , . . . )  N X ( Y , . . . )  N Y( . . . ) ,  where a variable X is in the position of 
the nested attribute T and a variable Y is in the position of the nested attribute 

of U. In Figure 1, the relation descriptor for R has pointers (labeled V1 and V2) 

into the log. The pointer for V1 (V2) points to the last log entry that has been 

applied to view V1 (V2) to have brought it up to date. R contains two current 

tuples with oid = 1, 3 which we will refer to as tl and ta (oid = 2 is a deleted tuple 

that must be kept around for view maintenance purposes for the time being). 

tl  references the nested set T2. T2 contains a single active tuple with oid = 20, 

t20. (Tuple t20 originally had the same contents as the tuple with old = 21, 

t21. When t20 was modified, a copy, t~l was made first for view maintenance. 

The last log entry for T's nested descriptor indicates that.) Notice that the log 

entry includes the old of the relation descriptor. The principles of [13] are used 

to extract relevant changes from the log for views V1 and Vs. For example, the 

maintenance of V1 and V~ requires computing the extraction function using t l .  
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Note that  t l  is not found in the log of R since the changes were made to T~ and 

Us. Such changes are efficiently found in the logs of nested descriptors T and U. 

The details will be discussed in Section 4.3. 

4.2 N e s t e d - N e s t i n g  A s s o c i a t i o n s  

To meet  requirement (2), we consider an index structure tha t  is associated with 

each nested descriptor. The reason to have this index is to efficiently expand all 

changes (particularly those that  have occurred in deeply nested elements) into 

the extraction function of Section 2.2 for maintenance.  The index will be created 

at the same t ime as the corresponding descriptor. Subsequent view maintenance 

operations will mainta in  the index entries. The query transactions never use 

this index. This structure is similar to those used in nested indices and a pa th  

indices [7], but the motivat ion is quite different since those indices are used to 

answer queries. 

Each key in the index is the oid of a relation descriptor (e.g., T1, T2) that  is 

directly referenced by some tuple in a nesting relation. This allows the old of each 

tuple that  is directly nesting another relation to be found (e.g., it allows us to find 

that  t l  contains T2). During the first view material izat ion operation, the index 

entries are initialized using mappings  from the old of an owned relation descriptor 

(e.g., T2) to the oids of each tuple that  directly owns this relation descriptor 

(e.g., tl). Every tuple in the nesting relation must  be inserted into this index, 

whether or not it contributes to the current instance of the materialized view. 5 

After the index is created , new nesting tuples may  be inserted into a relation 

relevant to a view. The oids of these new tuples will not appear  in the nested 

descriptor 's index until view maintenance occurs. Thus, during the subsequent 

view maintenance,  mappings  for recently inserted tuples must  be inserted into 

the index (e.g., the pair mapping  T1 to $3 was added to the T index when the 

log entry for the insertion of t3 w as  processed during the previous maintenance 

operation on view V2). Garbage collection sweeps every removed old in the index 

that  is no longer used for any view maintenance.  Since this index never adds 

overhead to update  transactions, we satisfy requirement (3). Similarly, log entries 

may  indicate that  a nesting tuple has been deleted, in which case its index entry 

must  be removed (e.g., the mapping  from T1 to old = 2 must  be removed 

s This is because we scan each relevant log only once to maintain views. If a tuple that 

previously did not participate in the view was modified so that it could contribute 

to the join and it was not already in the index, we would have to add it in an initial 

pass over the relevant logs and then use it in a second pass over the logs. 
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when the log record for the deletion of o i d =  2 is processed). A modification 

is treated like a deletion followed by an insertion. (Note, the implementation 

actually optimizes the conceptual index described above by storing a pointer 

to a list of backpointers in the nested descriptor itself to reduce index lookup 

t ime--e.g. ,  T1 contains a pointer to a list containing 2 and 3.) 

In Figure 1, two indices for T and U are shown. Currently both indices have 

sufficient information to locate which tuple directly owns the old of the relation 

descriptor. Suppose that  a new tuple is inserted in R. Then the view maintenance 

process finds it in the log of R and inserts into the index of T (it may also add 

its nested set's contents to the index for U). Notice that tuples of S do not 

participate to the index since S is not defined in any view. 

4.3 Incrementa l  C o m p u t a t i o n  

We use a hashing method similar to [35] to quickly compute the net effect of 

the changes in the log. We create hash buckets by following the nesting lev- 

els. Recall from Section 4.1 that  the view Vi in Figure 1 is defined as Vi d~.j 

R ( X , . . . )  M X ( Y , . . . )  M Y ( . . . ) ,  where the variables X and Y are respectively 

bound to T and U. Algorithms of extracting the changes of R and producing the 

extraction functions of eT and ev are highlighted in the following three steps: 

1. (Non-nested sets:) For each set mentioned by name in the view definition 

(i.e., for each non-nested set such as R, scan the corresponding log to create 

hash buckets in the standard way (see Section 3). Also, 

1-1. If the entry contains the insert flag and the old onew, add a mapping 

(if none exists) from each of o,e~'s  nested sets to onew in the indices 

of the corresponding nested descriptors. If no mappings from the nested 

set previously appeared in the index, continue this recursively for nested 

sets of the nested set. 

2. (Nested sets:) For each nested set mentioned at the next nesting level in 

the view definition (e.g., T bound by X),  scan the nested descriptor's log to 

create hash buckets similarly. Furthermore, the descriptor oid (e.g., T1 and 

T2) stored in each scanned log entry L is used to probe the contents of the 

index in order to determine if L affects the tuple that  owns this nested set: 

2-1. L's old o is used to probe the nested descriptor index. The oids of all 

tuples mapped to by o that  do not yet appear in the hash table are 

added to the hash buckets as in step 1 (except for those that  are marked 

as deleted or which are used as old versions of tuples). If o is contained in 

a nested set, recursively probe the nested descriptor of its containing set 
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and add the containing tuples to the hash table if they are not already 

there. Continue doing this until no such containing tuples exist or they 

are all in the hash relation already. 

3. Recursively apply step 2 to each of the relations at the next level of nesting 

(e.g., U bound by Y). 

Consider maintenance of V1. The incremental computation scans the logs of 

R, T and U to build the net effect of the changes made to them. In step 1, the 

log of the non-nested set R is hashed, and old = 2, 3 are added to the hash table. 

In step 2, the log of the nested descriptor T is scanned, and oid = 11, 12, 20 

are added to the bucket. Also, step 2-1 adds old = 1 to the hash table created 

for R in step 1 (oid = 2, 3 are already there, oid = 1 is identified by probing the 

index with T2's descriptor oid--R's tuple t l  is not updated itself but its nested 

set T2 is updated). In step 3, the log of U is scanned to create hash buckets. 

(This is the recursive step of 2.) oid = 31,36 are inserted into U's hash table. 

In step 2-1, oid = 10 is added to the hash table created for T because oid = 10 

does not appear there yet. old = 20, 11 are in the bucket already; oid = 21 is an 

old version and so is excluded. 

In the end, the hash tables of R, T, and U contain the oids {1,2,3}, 

{ 10, 11, 12, 20}, and {31, 36}, respectively. The extraction functions then produce 

descriptor oid/tuple old pairs by looking into these hash tables. For example, 

Z~eT ---- {(T1, 10), (T1, 11), (T1, 12), (T2, 20)}. The incremental join computation 

of zSV1 uses these descriptor oids to find matching pointer values bound to X 

(the joined values from the nested set can be obtained by the tuple oids). These 

hash tables are also used to compute pre-update states of the database during 

the incremental view maintenance [13]. 

5 P e r f o r m a n c e  S t u d y  

This section describes an experimental performance study on top of the disk- 

based Ode<EOS> database system. The experiments compare the performance 

of maintaining snapshot views over data  that  is naturally represented using 

nesting/nested relationships. All experiments were run in single user mode on a 

128 MB, 200 MHz, UltraSparc II station (running Solaris Sun OS5.5.1 operating 

system). The database was kept on the local disc attachment to eliminate NFS 

delays. 

E x p e r i m e n t a l  Se tup :  We build databases containing base tables and snapshot 

materialized views, run 1,000 transactions against each database, and gather 

various statistics for the set of 1,000 transactions. 
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Databases :  Our experiments use materialized views of the following form: 

Nest(A,C) de y base l (A,N) ,N(B,C) ,pred(B)  

Flat(A,  C) d~_] base2(A,X),base3(X, B, C),pred(B) 
All the non-view tuples (e.g., basel-base3,  N) are 300 bytes long. A, B, C, and 

X are integer fields. There is the natural one-to-one mapping between tuples 

of basel  and base2 (the nested sets and base3) that one would expect--the 

X field of base2/base3 contains the values 1-[base2[ which correspond to the 

order in which the base l /base2  tuples were generated. B+tree indices are built 

on the following attributes: A and C for N e s t  and Flat ;  A for basel;  A and X 

for base2; and X for base3. These indices improve both query and incremental 

view maintenance performance. 

Before each experiment, each base table is initialized with tuples of uniformly- 

distributed, randomly generated data, and each view is materialized. The fields 

B and C were randomly filled with values in the range [1, [base3[] (A from the 

range [1, [basel[]). In all experiments, base3 contains 200,000 tuples. 

Compar isons :  We compared only incremental maintenance techniques. Full re- 

fresh of views with the associated indices takes about twenty minutes--far longer 

than incremental refresh. Since an approach to maintaining views over nested 

data without back pointers would require something similar to full refresh--each 

outer tuple examining its inner set for changes--we ignored this possibility. 

Transact ions:  A program produces a stream of transactions, each of which ei- 

ther queries or updates the database. A query transaction contains only d i sp lay  

operations on a randomly chosen view, while an update transaction contains ei- 

ther insert, remove, or replace operations on a randomly chosen base table. 

The rep lace  operation updates the C field of a nested/base3 tuple. The update 

ratio of the transaction stream is the number of update transactions divided 

by the total number of transactions in the stream. For instance, if the stream 

contains 750 updates and 250 queries, then the update ratio is 0.75. 

Each transaction contains 1-8 (an average of 4.5) operations over the same 

table (in Section 5.3, it is 1-4). Thus, for example, a query transaction reads 1-8 

tuples matching randomly chosen values from a single view table. 

5.1 Compar i son  be tween  Fla t  and  Nes ted  Rep re sen t a t i on  

Purpose :  Our first experiments compare the cost of incrementally maintaining 

snapshot views over nested and non-nested versions of data. Given the complex- 

ity of Section 4's algorithm, NestMat,  we wanted to verify that it was com- 

petitive with maintenance over non-nested data. Since nesting offers superior 
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ease of data modeling, competitive performance is good enough to argue for 

nesting support. (Since Nest and Flat have identical contents, the read perfor- 

mance should be identical, so we will only consider update performance--the 

total time to update base tables and maintain views.) 

M e t h o d :  In our first experiment, ba se l  (base2) has 2,000 tuples; each b a s e l  

tuple has its own non-shared nested set containing approximately 100 tuples. 

(There are 200,000 nested tuples randomly assigned to nesting tuples.) We call 

this the Small Family data distribution, pred(B) had a 50% selectivity, so the 

materialized view contained 100,000 tuples. Figure 2(a) contains the results for 

various snapshot frequencies. In our second experiment, b a s e l  (base2) has 200 

tuples; each b a s e l  tuple has its own non-shared nested set containing (approx- 

imately) 1,000 tuples. We call this the Large Family data distribution. Other 

factors remain the same as in the previous experiment. Figure 2(b) contains the 

results. 

Ana lys i s :  We note first that  replaces are more expensive than inserts/deletes 

because they must copy the old value of a tuple into a newly created tuple used 

by the log. We note also that  NestMat is superior to the algorithm over flat 

data. In large part, this is because insertions/deletions into base3 must modify 

the X index, while corresponding insertions/deletions of nested tuples do not 

modify an index--the representation eliminates the need for this index. Another 

important factor appears to be that  it is cheaper to follow a pointer to a list of 

containing objects than to traverse a B+-tree on base2's  X field. We note in 

Figure 2 that  (b) has considerably better performance in the flat case than (a), 

while the nested performance is about the same. This is because the nested case 

must do about the same amount of work traversing a list of backpointers in both 

cases. However, in the flat case, base2's  X index in (a) is ten times bigger than 

in (b), so more CPU and I /O costs are occurred using the index. 

5.2 Skewed  Access  

P u r p o s e :  Our previous work [14] showed that  incrementally maintaining a view 

over flat relations is considerably cheaper if the distribution of updates is highly 

skewed. Log trimming converts several updates to the same tuple into a single 

update which must be considered by the maintenance algorithm. We wanted to 

see if the same effect held in the nested case. 

M e t h o d :  In picking the tuples to modify, we picked a parent tuple initially, and 

then modified its children. 80% of our picks went to 20% of the b a s o l / b a s e 2  

tuples. Figure 2(c) compares the effect of skew in flat/nested relations. The graph 
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to compare it to is (a), since they use the same initial base data, just different 

update patterns. Both graphs contain update and maintenance time. 

Analysis:  The nested performance did not change very much in the presence of 

skew unlike the flat case. The flat case improves significantly as fewer snapshots 

are produced since a longer refresh cycle means more log trimming, and hence 

fewer modifications to the materialized view. However, increased trimming had 

only minor impact in the nested case. 
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5.3 Compar i son  wi th  Vi r tua l  Views 

Purpose :  Under heavy update loads, materialized views become too expensive 

to maintain, and it is better to use virtual views. We wished to determine at 

roughly what point this occurs in our system. 

M e t h o d :  We sent 1-4 updates/reads in each transaction, and varied the update 

ratio. We used the Small Family data distribution and the 40% insert / 40% 

delete / 20% replace update mix. Given an A value in the view, our queries find 

the corresponding C values. We compare the total costs of all transactions and 

view maintenance for snapshots with different snapshot periods and for virtual 

views (with no view maintenance). Note that with virtual views, the data is 

fresh. It is somewhat stale with snapshots. However, we are comparing costs 

when some staleness can be permitted. See Figure 2(d) for the results. 

Analysis:  MV1 (snapshot with no refresh) shows that it is more expensive to 

update a base tuple than to read a snapshot tuple. That is why, even with no 

refresh, the cost increases when the update ratio increases. MV2 and MV3 show 

the additional overhead of view maintenance on top of the raw base table update 

costs of MV1. Q1, which uses virtual views, has roughly constant performance 

across the update range. This is because the computation of a tuple of the virtual 
view required many I/Os to find base3 tuples that match a given base2 tuple-- 

to check the B/C values. Consequently, computing a virtual view tuple and 

modifying a base3 tuple (and the associated indices) had comparable cost. In 

our experiments, using virtual views proved superior to using materialized views 

once the update ratio reached 30%--40%. 

6 R e l a t e d  W o r k  

A preliminary version of this work was presented at a workshop [22]. That version 

describes earlier versions of the algorithms contained in this paper and contains 

more details on topics like garbage collection and log trimming. This paper 

extends that work with performance results. 

This paper describes a nested data model based on prior work [39, 33, 32]. 

Various query languages and implementation frameworks for the nested relation 

model have been studied (e.g., [5, 15, 30, 24, 33, 34]). These papers do not 

explicitly mention view definition/maintenance. 

Our view definition language in SWORD is based on Noodle [28], and is sim- 

ilar to HiLog [11, 32], where relation names or references may appear as argu- 

ments of other relations. We described how [17]'s view maintenance algorithms 



219 

for flat data models can be extended to handle a nested data model. We then 

described an implementation based on this extension. 

This paper assumes that  all materialized views are snapshot views (i. e., views 

that  are maintained when an explicit maintenance request is made). Snapshots 

were first proposed in [2]. Snapshot view implementation techniques are de- 

scribed in [23, 20, 35]. These papers consider only SP (select-project) views. [23] 

focuses on detecting relevant changes to snapshots using update tags on base 

relations. [20, 35] present techniques for maintaining logs and computing the net 

update to a view. Our log structures are based on the ideas in [35]. However, 

since [35]'s techniques are limited to SP views, they are not concerned with pro- 

viding efficient access to past states of relations. Oracle supports snapshot views. 

However, Oracle only incrementally maintains SP views--using full recomputa- 

tion on join and aggregate views. In [14], a model that  allows multiple views 

to be maintained with different policies (immediate, deferred and snapshot) is 

studied, and an experimental performance comparison is made. 

Concurrency control algorithms and a serializability model to guarantee se- 

rializability in the presence of deferred views are discussed in [21]. The focus of 

that  paper is on doing concurrency control when multiple transactions reading 

and updating relations are executing concurrently in the system. 

Our nested descriptor indices are similar to structures used to maintain join 

indices (e.g., [26, 7]) and for field replication [36]. All these techniques are based 

on creating index structures that  invert access paths specified by users to allow 

efficient maintenance of the desired access path (which can be considered as a 

materialized view of sorts). The nested descriptor indices presented in this paper 

can be implemented with structures similar to the modified B-tree structures 

used to model nested indices and path indices [7, 6]. 

7 C o n c l u s i o n  

This paper describes implementation techniques for maintaining materialized 

views over a nested data model. We showed that  such views can be maintained 

by simple extensions to the counting algorith m [17]. For efficient computation, 

we keep track of changes within nested relations by transparently creating a 

structure that  flattens nested log records. We then outlined the data struc- 

tures/algorithms for the implementation. The implementation was guided by 

specific goals to minimize view maintenance overhead. The techniques described 

allow these goals to be achieved. We also measured the performance of our tech- 

niques, demonstrating that  our algorithm's view maintenance performance over 

nested data  is superior to that  of [17]'s counting algorithm over a normalized 
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representation of the data.  This is one of the first pieces of work to explore the 

applicability of materialized views over complex objects. 

Currently, we only consider nested objects where an a t t r ibute  of a tuple 

can be a reference (i.e., a pointer) to a nested relation. We plan to extend out 

model to allow an a t t r ibute  to be a nested relation, without  the need to have 

pointers. Our implementa t ion supports  relational style SP and SPJ views over 

nested data. We plan to support  aggregate views over nested data,  based on 

the ideas in this paper.  We also plan to improve the maintenance algorithms. 

For instance, the t ime for view maintenance can be further improved by having 

a separate asynchronous process that  computes the incremental  changes to the 

view and holds them in view differential files [12]. These view differential files 

would be updated periodically and be used to update  the view relation when it 

is maintained.  We are also investigating more efficient creat ion/maintenance of 

the index for nested-nesting associations. 
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