‘Journal of the ACM, Vol. 41, No. 6, 1994, pp.1216-1266

Modular Stratification and Magic Sets
for Datalog Programs with Negation

Kenneth A. Ross*
Columbia University
kar@cs.columbia.edu

Abstract

A class of “modularly stratified” logic programs is defined. Modular stratification
generalizes stratification and local stratification, while allowing programs that are not
expressible as stratified programs. For modularly stratified programs the well-founded
semantics coincides with the stable model semantics, and makes every ground literal
true or false. Modularly stratified programs are weakly stratified, but the converse
is false. Unlike some weakly stratified programs, modularly stratified programs can
be evaluated in a subgoal-at-a-time fashion. An extension of top-down methods with
memoing that handles this broader class of programs is presented. A technique for
rewriting a modularly stratified program for bottom-up evaluation is demonstrated,
and extended to include magic-set techniques. The rewritten program, when evaluated
bottom-up, gives correct answers according to the well-founded semantics, but much
more efficiently than computing the complete well-founded model. A one to one
correspondence between steps of the extended top-down method and steps during the
bottom-up evaluation of the magic-rewritten program is exhibited, demonstrating that
the complexity of the two methods is the same. Extensions of modular stratification
to other operators such as set-grouping and aggregation, which have traditionally been
stratified to prevent semantic difficulties, are discussed.

Categories and Subject Descriptors: D.3.1 Programming Languages: Formal defini-
tions and theory — semantics. F.4.1 Mathematical Logic and Formal Languages:
Mathematical logic — logic programming. H.2.3 Database Management: Languages —
Query languages. H.2.4 Database Management: Systems — Query processing. 1.2.3
Artificial Intelligence: Deduction and theorem proving — deduction, logic programming,
nonmonotonic reasoning and belief revision.

General Terms: Algorithms, Languages, Theory.

Additional Key Words: Deductive databases, well-founded semantics, stratification, modular
stratification, magic sets, rule rewriting.

*This research was performed while the author was at Stanford University, and was supported by NSF
grant IRI-87-22886, a grant from IBM corporation, and by AFOSR under contract number 88-0266. A
preliminary abstract of this paper appeared at the Ninth ACM Symposium on Principles of Database Systems
[28].

1 Introduction

Much recent work has concerned defining the semantics of negation in deductive databases.
The “perfect model semantics” [22] has been generally accepted as natural, and is the basis
for several experimental deductive database systems. Unfortunately, the perfect model
semantics applies only to programs that are stratified (or locally stratified). A stratified
program is one in which, effectively, there is no predicate that depends negatively on itself.

Recent work [17] has shown that there are interesting logic programs that are not strat-
ifiable but for which a natural, unambiguous semantics exists. The well-founded semantics
[35] and the stable model semantics [14] are two (closely related) proposals for defining the
semantics of logic programs, whether stratified or not. For stratified programs they both
coincide with the perfect model semantics.

The well-founded semantics is a three-valued semantics. Literals may be true, false or
undefined. The stable model semantics is also a three-valued semantics in the sense that the
meaning of the program is, in general, determined by a set of (two-valued) models rather
than a single model.

Nevertheless, there are many cases where a non-stratified program has a total semantics,
i.e., a semantics in which every ground literal is either true or false. Allowing programs
that have some literals undefined may not be desirable, since handling this extra truth value
places an extra burden on the query evaluation procedure. In many cases, two truth values
suffice to model the situation under consideration. So we desire a condition on the program,
more general than stratification, that ensures that the well-founded semantics is two-valued.
Recently Przymusinska and Przymusinski [21] have isolated the class of weakly stratified
programs as such a class. Weakly stratified programs allow a predicate to depend negatively
on itself as long as no ground atom depends negatively on itself once all instantiated rules
that have subgoals that are known to be false or heads that are known to be true are removed.

However, weakly stratified programs cannot, in general, be evaluated in a subgoal-at-
a-time fashion. When evaluated left-to-right, say, a subgoal may go into an infinite loop
through negation even though some later subgoal fails. Since subgoal-at-a-time computation
is important for efficient evaluation or possible parallelization, we would like to identify a
class of weakly stratified programs that can be evaluated one subgoal at a time.

In this paper we propose such a class, which we term the class of modularly stratified
programs. Every modularly stratified program is weakly stratified, but the converse is
false. For weakly stratified programs (and hence for modularly stratified programs) the
well-founded semantics is total (i.e., makes every ground literal either true or false). The well-
founded semantics and the stable model semantics coincide for weakly stratified programs, a
consequence of the fact that the well-founded model is total. Modularly stratified programs
also allow subgoal-at-a-time evaluation.

A program is modularly stratified if and only if its mutually recursive components are
locally stratified once all instantiated rules with a false subgoal that is defined in a “lower”
component are removed.

Breaking a program up into its components provides a modular framework for defining
program semantics; predicates appearing in rule heads in a given component should be
well-defined for all values of lower level predicates (considered as inputs) satisfying certain
intuitive constraints.

Kemp and Topor, and Seki and Itoh have proposed (similar) extensions of the QSQR/SLD

top-down query evaluation procedure of Vieille [36, 37] from Horn programs to the class
of stratified programs [15, 32]. We further generalize their methods, called QSQR/SLS-
resolution in [15], to the class of modularly stratified programs.

In the absence of negation, bottom-up computation may be made at least as efficient as
a top-down method without memoing by the use of magic sets [33]. Several authors have
considered the problem of extending the magic sets method to stratified programs.

The approach of [1, 2] is to relabel predicates in a stratified program in such a way that
the magic transformation results in a stratified program. This method does not work for
all stratified programs, though. More recently, these authors have considered a “structured”
bottom-up method that uses control information in order to sequence rule execution [3].

The approach of [7] is similar in nature to this structured bottom-up method. The
authors perform the magic rewriting, which may result in an unstratified program, and then
impose constraints on the order of evaluation of rules, in the form of regular expressions.
These constraints ensure that a subgoal is “fully evaluated” before a predicate depending
negatively on that subgoal is considered.

Kerisit and Pugin also consider extending magic sets to programs with stratified negation
[16]. They define a property called weak stratification’ and demonstrate that the magic
rewriting of a stratified program must be weakly stratified. Weakly stratified programs are
evaluated using a nested fixpoint technique that computes the fixpoint of rules from lower
strata after each application of a rule from a higher stratum.

In [10], Bry outlines a magic sets method for what he calls constructively consistent
programs. Unfortunately, the section on magic sets in that paper is very brief, and at the
present time, no full version is available. Only after the present paper was written did
we become aware of the details of Bry’s work [9]. Although the class of constructively
consistent programs is incomparable with the class of modularly stratified programs, it does
also generalize the class of stratified programs, and constructively consistent programs have a
two-valued semantics. Bry’s method handles negative dependencies by storing revised rules
rather than atoms. Rules are unfolded, leaving negative literals in the bodies, and these
unfolded rules effectively control the order of rule execution.

Our approach is similar in nature to these proposals, although it is not, strictly speaking,
a generalization of them. Rather than using control information or regular expressions to
enforce ordering constraints, we incorporate information about negative dependencies into
the bottom-up evaluation in the form of a depends meta-predicate. This formalism allows
us to handle the class of modularly stratified programs. The levels of a stratified program
are used at compile-time by the previous proposals to control the order of rule firing. By
maintaining dependence information within the evaluation at run-time we can handle a larger
class of programs.

We present a magic sets transformation for modularly stratified programs that enables
efficient computation bottom-up. In fact, we demonstrate a one-to-one correspondence
between steps of our extension of QSQR,/SLS-resolution and our magic-sets method. See [34]
for a discussion of why bottom-up methods are likely to be preferable to top-down methods.

L This concept is different from Przymusinska and Przymusinski’s definition of weak stratification, and
was proposed independently. Kerisit and Pugin define weak stratification by removing from the conditions
on stratified programs the restriction that positive literals in the body have level no higher than the level of
the head.

2 Terminology

We consider normal logic programs without function symbols? [18], also known as “Datalog”
programs with negation.

Definition 2.1: A term is either a variable or a constant symbol. If p is an n-ary predicate
symbol and ty,---,t, are terms then p(¢y,---,%,) is an atom. A literal is either an atom or
a negated atom. When we write an atom p(X') it is understood that X is a vector of terms,
not necessarily variables.

A rule is a sentence of the form

A(—Ll,...,Ln

where A is an atom, and L, ..., L, are literals. We refer to A as the head of the rule and
Ly,..., L, as the body of the rule. Each L; is a subgoal of the rule. All variables are assumed
to be universally quantified at the front of the rule, and the commas in the body denote
conjunction. If the body of a rule is empty then we may refer to the rule as a fact, and omit
the “” symbol.

A program is a finite set of rules. O

Logical variables begin with a capital letter; constants, functions, and predicates begin
with a lowercase letter. The word ground is used as a synonym for “variable-free.”

If a predicate is defined only by facts, then we say that the predicate is an extensional
database (EDB) predicate; otherwise the predicate is an intensional database (IDB) predicate.

A query or goal is a conjunction of literals. We may sometimes write a query as 7-@)
where () is a conjunction of literals. When we perform resolution of a rule head with an
atom appearing in a goal, we will assume the goal has been negated so that the polarity of
the two literals being resolved is complementary.

We place an ordering on the rules in a program, for example the top-to-bottom ordering
of the rules as written. Thus we number the rules rq, ..., r, where there are n rules in total.

We shall also make the assumption that programs are range restricted, i.e., every variable
occurring in the head of a rule or in a negative literal in the body also occurs in a positive
literal in the body. Such programs have also been called allowed or safe.

We do allow one piece of syntactic sugar in subgoals, namely the “don’t care” variable.
For example, the rule

p(X) < q(X,)

is a shorthand for
p(X) « ¢(X,Y, Z).

We assume that finite universe U is given. U should contain all constant symbols that can
appear in all possible programs and EDB relations. In particular, i/ will include the Herbrand
universe of any program/EDB pair. I will function as the domain under consideration, with
terms interpreted freely. When we talk about “instantiated” atoms and rules, we mean
that values from U are substituted for all variables in the atom or rule. The choice of U

2The definition of modular stratification in Section 3 does not depend on the assumption of function-
freeness, although both our QSQR/SLS procedure of Section 4.3 and the magic sets method presented in
Section 5.3 may not terminate for programs with function symbols.

can be problematic, in that in some cases it can affect the semantics of the program under
consideration. Such issues are beyond the scope of this paper, and the reader is referred
to [35] and the references therein for further discussion. For range restricted programs, the
choice of U does not affect what is true according to their well-founded semantics.

If P is a program, then we define Bp to be the set of atoms whose predicates appear in
P and whose arguments (the number of which matches the arity of the predicate) are in U.

A program is stratified if there is an assignment of ordinal levels to predicates such that
whenever a predicate appears negatively in the body of a rule, the predicate in the head of
that rule is of strictly higher level, and whenever a predicate appears positively in the body
of a rule, the predicate in the head has at least that level.

A program is locally stratified if there is an assignment of ordinal levels to ground atoms
such that whenever a ground atom appears negatively in the body of an instantiated rule, the
head of that rule is of strictly higher level, and whenever a ground atom appears positively
in the body of an instantiated rule, the atom in the head has at least that level.

2.1 The Well-Founded Semantics

We now give a brief presentation of the well-founded semantics; for a more complete presen-
tation with examples see [35].

Definition 2.2: Let P be a program and let H be the set of ground instances of predicates
from P with respect to U. Let I be a consistent set of ground literals whose atoms are in
H. We say A C H is an unfounded set of P with respect to I if each atom p € A satisfies the
following condition: For each instantiated rule r of P whose head is p, at least one of the
following holds:

1. The complement of some literal in the body of r is in I.

2. Some positive literal in the body of r is in A. O

Definition 2.3: The greatest unfounded set of P with respect to I, denoted by Up([), is the
union of all sets that are unfounded with respect to I. (The “greatest unfounded set” is
easily seen to be an unfounded set.) O

Definition 2.4: Transformations 7», Up and Wp from sets of literals to sets of literals are
defined as follows.

e p € Tp(I) if and only if there is some instantiated rule r of P such that r has head p
and each literal in the body of r is in 1.

e Up(I) is the greatest unfounded set of P with respect to I, as in Definition 2.3.
® WP(I):TP(I)U_!UP(I) O

It is straightforward to show that Wp is monotonic, and so has a least fixpoint. We call
this least fixpoint the well-founded (partial) model of P.> Note that the well-founded model
is, in general, a “three-valued model.” A ground atom A may appear positively, negatively
or not at all in the well-founded model.

3For a justification that it is a partial model see [35].

2.2 Weak Stratification

We now present the concept of weak stratification from [21]. In the definitions below, the
program P is assumed to be ground. In order to apply these definitions to a program with
variables, one must first take the instantiation of the program with respect to the universe
Uu.

Definition 2.5: (Dependency graph) Let P be a ground program. The vertices of the
dependency graph Gp are the atoms appearing (possibly negated) in P. The edges of Gp
are directed and labelled either positive or negative or both. For every rule

H<_Bla"'aBn

in P, there are n edges in Gp. Fori =1, .. n, if B; is an atom then there is a positive edge
from B; to H in Gp; if B; is a negated atom, say —C;, then there is a negative edge from C}
to H in Gp.

We write B <p A if there is a directed path from B to A in Gp. We write B <p A if
there is a directed path from B to A in G p passing through a negative edge. O

Definition 2.6: Let ~p be the equivalence relation between ground atoms defined as fol-

lows:
A~pB ifandonlyif (A=B)V(A<p BAB<pA)

We shall refer to the equivalence classes induced by ~p simply as “classes.” (In [21] they

are called components.) We say a class is trivial if it consists of one element, say A, and
A<£p A.
Let C; and Cy be classes. We define

Ci <p Cy if and only if C4 75 C5 and there exist A; € Cy and A, € Cy such that 41 <p A,.

A class C is minimal if there is no class C’ such that C' <p C. Define S(P) to be the
union of all minimal classes with respect to <p. Define L(P) to be the set of rules from P
whose heads belong to S(P). O

The relation ~p denotes either equality or mutual negative dependence. That <p is a partial
order is shown in [21].

Definition 2.7: Let M be a partial interpretation for P, i.e., a consistent set of literals
whose atoms are in Bp. The reduction of P modulo M is a new program P’ obtained from
P by performing the following operations:

1. Delete from P all rules which contain a subgoal whose complement is in M.
2. Delete from P all rules whose head belongs to M.
3. Remove from all the remaining rules those subgoals that are members of M.

4. From the program resulting from the above operations, delete all rules with nonempty
bodies whose heads appear as unit facts. O

Definition 2.8: (Weak Stratification) Let P be a program, let Py = P, and let My = {.
Suppose that o > 0 is a countable ordinal such that programs P; and partial interpretations
M; have been already defined for all § < a. Let

No= U M;

0<é<a

and let P, = the reduction of P with respect to N,.

e If the program P, is empty, then the construction stops and the program is weakly
stratified. IV, is a two-valued* model of P.

e Otherwise, if the bottom stratum S(P,) of P, is empty or if it contains a nontrivial
class, then the construction stops: P is not weakly stratified.

e Otherwise, the partial interpretation M, is defined as the least model (restricted to
literals whose atoms are in S(P,)) of the “bottom layer rules” L(P,) of P, and the
construction continues. O

In [21] it is shown that if a program is weakly stratified, then the model N, given in the
construction above is the 2-valued well-founded model.

Example 2.1: Consider the following program:

p(X

) A t(X7K Z)a _'p(Y)a _'p(Z)
t(a,b

Q
SN—r

Suppose that our universe U consists only of the symbols a and b; let P be the instantiation
of this program with respect to &. Then N; = (), and P; is the reduction of P with respect
to (), namely

p(a) — t(a’ a, LL), _'p(a)a _'p(a)
p(a) < t(a,a,b), —p(a), 7p(b)
p(a) < t(a,b,a), —p(b), -p(a)
p(a) + t(a,b,b),=p(b), ~p(b)

t(a,b,a)

t(a, a,b)

p(b)

Py contains no rules with head p(b), since p(b) appears as a unit fact. The dependency graph
for P; is given in Figure 1. The ¢ atoms in the graph and p(b) each form a minimal class,
and so S(P;) is the union of these t atoms with p(b). L(P;) consists of the three unit rules
{t(a,b,a),t(a,a,b),p(b)}, whose least model M is

{t(a,b,a),t(a,a,b),p),t(a,a,a),t(a,b,b)}.

The reduction of P with respect to Ny = M; is empty. The two valued model thus
constructed is {t(a,b,a), t(a,b,b), p(b)}.

4Any ground atom that appears neither positively nor negatively in NN, is assumed false.

7

t(aaa) t(aab) t(ab,a) t(a,b,b)

\\ .

(a) <—p(b)

Dependency Graph for P

Figure 1: Dependency graph for Example 2.1.

Note that, were we to delete the fact p(b), the program would not be weakly stratified.
We would eventually be left with the program

p(a) + —p(a)

which has no nontrivial classes. O

3 Modularly Stratified Programs

Example 3.1: Consider the program P consisting of the rule
w(X) « m(X,Y),~w(Y)

together with some facts about m. P is a game-playing program [17] in which a position X
is “winning” [w(X)] if there is a move from X to a position Y [m(X,Y)] and Y is a losing
position [-w(Y)].

P is not stratified or even locally stratified. In fact Kolaitis [17] has shown that no
stratified function-free program can express the intended semantics of P. The intuition
behind this expressiveness result is that stratified programs have a fixed number of strata
through which one can recurse through negation. However, we would like to determine
whether positions in an arbitrary game (given by a move relation m) are winning or losing.
In particular, to answer queries for a game with game-tree depth d we need to recurse through
negation d times. Since d can be arbitrarily large, we shall not be able to use a stratified
program to answer this type of query.

This lack of expressive power is the main motivation for generalizing the class of stratified
programs. As will be shown later, P is modularly stratified when m is acyclic, i.e., when the
game cannot have repeated positions. O

Definition 3.1: We say a predicate p depends upon a predicate q if there is a sequence of
rules ry, ..., r, 1 with predicates pg,...,p, 1 in the head, respectively, such that

1. p=py and q = p,, and

2. fori =1,...,n, p; appears (positively or negatively) in the body of r; ;.

We say p depends on ¢ through & negations if exactly k& of the appearances of pi,ps, ..., Pn
in rg, ..., , 1, respectively, are negative. We say p depends negatively on ¢ if p depends on
g through at least one negation. A predicate p is mutually recursive with a predicate ¢ if p
depends upon ¢ and ¢ depends upon p. O

Definition 3.2: Let F' be a component (i.e., a subset of the rules) of a logic program P.
We say F'is a complete component if for every predicate p appearing in the head of a rule
in F,

e all rules in P with head p are in F', and
e if p is mutually recursive with a predicate ¢, then all rules in P with head ¢ are in F.

If the predicate p appears in the head of a rule in F' then we say p belongs to F. If the
predicate ¢ appears in the body of a rule in F', but does not belong to F', then we say ¢ is
used by F. If an atom A has predicate p, and p belongs to F', then we may say that A also
belongs to F. O

If we say that predicates are mutually recursive with themselves, then mutual recursive-
ness is an equivalence relation between predicates. Every predicate has a unique minimal
complete component to which it belongs. A program may be broken up into complete
components according to the equivalence classes (called strongly connected components in
[34]) induced on the predicates.

The minimal complete components have a natural relation associated with them: F; T F5
if some predicate belonging to F; is used by F». [must be an acyclic relation, since if
FC K C---C F, C F for some n, then none of F},...,F, would be complete. We refer
to <, the transitive closure of C, as the dependency relation between components. < is a
partial order, with the property that a predicate belonging to a component F' is defined in
terms of predicates that either belong to F', or belong to a component F' where F' < F.

In what follows, when we refer to a component of a program, we mean a minimal complete
component unless otherwise noted. Within this framework, a program is stratified if and
only if none of its components contains a predicate that depends negatively on itself.

We must now consider what conditions must be placed on those components containing
predicates depending negatively upon themselves. We want the well-founded semantics to
be total, i.e., to make every ground literal either true or false. Weak stratifiability is such a
condition, and as we shall see, all modularly stratified programs are weakly stratified.

3.1 Subgoal-at-a-Time Evaluation

There is another important issue, apart from having a 2-valued semantics, namely the
ordering of literals in the body of rules. As observed in [30] any top-down implementation
of the well-founded semantics needs to expand negative literals in parallel so that we don’t
loop infinitely through negation when another subgoal fails.

Example 3.2: Consider the program

p(X) A t(XaKZ):_'p(Y)a_'p(Z)
t(a,b,a)
t(a,a,b)

from Example 2.1 whose well-founded semantics is total, the (2-valued) well-founded model
being {p(b), t(a,b,a),t(a,a,b)}. In fact, as shown in Example 2.1, this program is weakly
stratified.

Suppose we try to answer the query ? — p(a) top-down using a subgoal-at-a-time method
such as SLDNF-resolution [18]. We assume left to right evaluation. We expand the first
rule, using the first ¢ rule for the first subgoal, yielding —p(b) as the second subgoal. p(b)
succeeds, and hence —p(b) fails, so we backtrack to the second rule for t. This gives —p(a) as
the second subgoal. We then try to expand p(a) and fall into an infinite loop. Expanding the
third subgoal before the second throughout won’t help, since the second and third subgoals
are symmetric. O

Expanding negative literals in parallel may generate unnecessary work, since if one of
these subgoals fails the others are irrelevant.

We consider a left-to-right ordering of subgoals.> In order to prevent the exploration
of unnecessary parts of the search tree, we expand a subgoal only after we know that all
subgoals appearing to its left have succeeded. (The programmer or database optimizer places
the “easier” subgoals to the left of the “harder” ones.) Example 3.2 demonstrates that there
are weakly stratified programs for which any consistent sequential subgoal ordering will be
impossible.

Following the arguments above, we want freedom from negative loops, and also subgoal-
at-a-time evaluability. We will allow a component in which a predicate depends negatively
on itself only if it satisfies the condition formalized below.

Definition 3.3: (Reduction of a component) Let F be a program component, and let S be
the set of predicates used by F. Let M be a two-valued interpretation over the universe U
for the predicates in S.

Form I;(F), the instantiation of F' with respect to U, by substituting terms from U for
all variables in the rules of F' in every possible way. Delete from I,(F') all rules having a
subgoal) whose predicate in S, but for which @ is false in M. From the remaining rules,
delete all (both positive and negative) subgoals having predicates in S (these subgoals must
be true in M) to leave a set of instantiated rules Ry, (F). We call Ry (F) the reduction of
F modulo M. O

Example 3.3: Let F' be the component

p(X,Y) « t(X,Y, Z), ~r(X),~q(Y, Z)
9(X,Y) < v(a, X,Y),p(YY)
p(X,Y) = r(X),q(Y, X)

5See the end of Section 3.2 for a discussion of other sideways information passing strategies.

10

and let M be the interpretation {t(a,d,e),t(b,c, f),7(b),v(a,b,c)}. Then Ry (F) is

p(a, d) — _'q(da 6)
q(b,c) + p(c, ¢)

together with all possible instantiations of the rule
p(b,Y) < q(Y,b)
with respect to the universe U. O

This definition of reduction is similar to the definition of reduction in Section 2.2 used
to define weak stratifiability. There are two differences:

1. We restrict M to only those predicates used by F'.

2. We do not delete instantiated rules whose heads appear elsewhere in the program as
unit facts.

The significance of the second restriction is that we do not consider it sufficient that an
atom p have a successful derivation if some other attempted derivation for p leads to infinite
recursion through negation. We require that all derivations for p yield finite recursion
through negation. This restriction is necessary to ensure subgoal-at-a-time evaluation.

In what follows we shall be referring to the notion of reduction from Definition 3.3 and
not that of Section 2.2. We are now in a position to describe the class of programs we allow.

Definition 3.4: (Modular Stratification) Let < be the dependency relation between com-
ponents. We say the program P is modularly stratified if, for every component F' of P,

1. There is a total well-founded model M for the union of all components F’' < F', and
2. The reduction of F' modulo M is locally stratified. O

Example 3.4: Let P be the program consisting of the component F' from Example 3.3,
together with some facts for the EDB predicates ¢, r, and v. Suppose that the given model
M is the well-founded model for the EDB predicates. Then Ry, (F), as given in Example 3.3 is
locally stratified, and so P is modularly stratified. Note that P itself is not locally stratified.
O

Our definition of reduction also bears some similarity to the stability transformation of
Gelfond and Lifschitz [14]. If the well-founded model for a component is total, then that
model is also its unique stable model. The stability transformation effectively performs our
iterated reduction in parallel, for all components at once. (This correspondence indepen-
dently demonstrates part of Corollary 3.2 below.) However, not all programs with unique
stable models are modularly stratified.

The definition of modular stratification is relative, in the sense that whether the reduction
of a component is locally stratified depends on the truth values of the predicates defined at
lower levels. For example, the game program from Example 3.1 above is modularly stratified
if and only if m is acyclic. This property is unlike stratification, for example, where checking
that a program is stratified can be done syntactically. We now show that modularly stratified
programs are also weakly stratified [21].

11

Theorem 3.1: Every modularly stratified program is weakly stratified.
Proof: Tt is not difficult to show that a program P is weakly stratified if and only if, for
every component F' of P,

1. There is a total well-founded model M for the union of all components F’ < F', and
2. The reduction of F modulo M is weakly stratified.

Since all locally stratified programs are weakly stratified [21], we can show by induction on
the level of components that modularly stratified programs are weakly stratified. |

The converse of Theorem 3.1 is false, as illustrated by Example 3.2. Also, every stratified
program is modularly stratified, as is every locally stratified program.

Corollary 3.2: Every modularly stratified program has a total well-founded model that is
its unique stable model.
Proof: Since this property holds for weakly stratified programs [21]. 1

To see how the well-founded model of a program may be composed from those of its
components, recall that a locally stratified program has a unique perfect model [22] and hence
a total well-founded model that coincides with the perfect model. The “lowest” components
must be locally stratified; compute their perfect model M. The next lowest components
are locally stratified when reduced modulo M; compute the perfect model of the reduced
components and take the union with M. We can proceed in this way up the dependency
relation between components until we have the well-founded model for the whole program.

When we look at a whole program, rather than at components, it may not be clear
whether the program is modularly stratified. In general, for each new tuple added to a
relation we would have to test all higher components for modular stratifiability. Having to
perform this test every time there is a change to the database is clearly undesirable. An
alternative is to place constraints on the predicates used by a component. For example, the
constraint for the game program of Example 3.1 would be simply that m is acyclic. Such a
constraint would guarantee that the program is modularly stratified. When changes to m
occur, we have to check only that acyclicity is not violated.

In fact, acyclicity is the typical example of a semantic constraint guaranteeing modular
stratifiability. Such constraints are similar in nature to “monotonicity constraints” discussed
in [8], which were used in the context of testing the termination of Datalog programs
without negation. Placing constraints on components enables a modular approach to writing
programs. The semantics of the game program is total as long as m is acyclic, independent,
of what particular constants appear as tuples of m. It is not necessary to look at all rule
instantiations.

Example 3.5: Consider the following program component F', inspired by the events of
1890-1893; it is designed to identify even-numbered presidents of the United States.’ (A
president z is even-numbered if there have been an odd number of presidencies before z,
where a presidency may last several consecutive terms.)

even_president(X) < predecessor(X,Y), meven_president(Y)

6Note that this program is just a re-interpretation of the symbols in Example 3.1 above.

12

predecessor(X,Y) is an EDB relation which indicates that Y was in office immediately
before X (even if X’s presidency lasted several terms). Let M be the least model of the
facts defining predecessor. Then assuming predecessor is acyclic we can show that Ry, (F')
is locally stratified, since we can define a well-ordering <z on ground atoms such that
even_president(Y) <p even_president(X) precisely when Y was a president some time before
X. In this case the program is modularly stratified, and the well-founded semantics gives
the desired results.

However, in 1893 Grover Cleveland was re-elected, having been previously defeated. Some
problems then arise. R/ (F') is no longer locally stratified, as even_president(cleveland)
depends negatively on itself in Ry (F). Further, depending on the timing of Cleveland’s
presidencies, the well-founded semantics may give unintended results.

If his first and second presidencies were even-numbered, then the well-founded semantics
gives the expected results.” (Despite the loop, even_president(cleveland) is independently
derivable.) However, if Cleveland’s first presidency were odd-numbered, then the well-
founded semantics would make the atom even_president(cleveland) undefined, and would
similarly make even_president undefined for all subsequent presidents. Finally, if Cleveland’s
first presidency was even and the second odd, then even_president(cleveland) would be true
according to the well-founded semantics. Effectively, Cleveland’s second presidency would
be ignored and the parity of all subsequent presidents would be switched.

So how can we deal with this possibility? One solution is to associate with each president
the period of office, so that two non-consecutive terms by a single president could be
distinguished. The modified program would be

even_president(X, P) < predecessor(X, P,Y, Q), ~even_president(Y, Q)

where predecessor(X, P,Y, Q) now means that X served during the interval beginning on
date P, which was immediately after Y’s presidency, which started on date (). Let M be the
least model of the rules for the new relation predecessor. We may now redefine the ordering
even_president(Y, Q) <p even_president(X, P) to be true when P is temporally after Q.
Since there have been only finitely many presidencies, the temporal order is a well-ordering.
Hence our modified component F'is such that Ry, (F) is locally stratified. O

Example 3.6: This example concerns the operation of a complex mechanism that is con-
structed from a number of components, each of which may itself have smaller components.
We adopt the convention that a mechanism is not a component of itself — we are only
interested in smaller, simpler components. The mechanism is known to be working either
if it has been (successfully) tested, or if all its components (assuming it has at least one
component) are known to be working. We may express this in the following component F':

working(X) < tested(X)
working(X) < part(X,Y'), ~has_suspect_part(X)
has_suspect_part(X) < part(X,Y), ~working(Y")

Let M be the least model of the rules for part and tested. Ry (F) is locally stratified if
and only if part is acyclic. Acyclicity is a natural constraint, since a mechanism that was

"In fact, this was the case; he was both the 22nd and 24th presidents.

13

a sub-part of itself would presumably indicate a design error. Assuming part is acyclic, we
may demonstrate that Ry (F) is locally stratified according to any ordering <z satisfying

working(X) <p has_suspect_part(X)

for all X, and
has_suspect_part(X) <g working(Y")

when part(X,Y’) holds. O

3.2 Modular Stratification from Left to Right

In a range restricted program, a variable appearing in a negative literal must appear some-
where in the body in a positive literal. Since the evaluation mechanism we propose operates
left-to-right, we need some positive occurrence to occur to the left of the negative occurrence.
Clearly any range restricted program can be transformed into a semantically equivalent one
satisfying this condition simply by placing some positive literal involving the variable X to
the left of all negative literals involving X.

However, this is not enough to guarantee freedom from infinite loops through negation.
We must examine the positioning of predicates used by the component relative to those
belonging to the component. The predicates used by a component F' give certain bindings
for variables used elsewhere in the rule. If we intend to evaluate the rule from left to right, we
must make sure that only the bindings (for predicates in the lower level model M) that “make
Ry (F) locally stratifiable” are passed to the negative subgoals whose predicates belong to
F.

To see what can go wrong, consider the game program from Example 3.1 rewritten as
follows with an additional unary predicate p that is true for any position.

w(X) — p(Y), _'w(Y)a m(Xa Y)

When evaluated by a non-memoing top-down method from left to right, the program will
loop infinitely through negation. However, the semantically equivalent program

w(X) — p(Y), m(Xa Y)’ _'w(Y)

“behaves” when evaluated left to right.
The solution is to apply the notion of local stratifiability to the reduction of the prefizes
of the rules, to take account of the left-to-right order of evaluation.

Definition 3.5: A rule prefiz is formed from a rule with n subgoals in the body by deleting
the rightmost m subgoals, where 0 < m <n. O

Definition 3.6: (Modular stratification from left to right) Let < be the dependency relation
between components. We say the program P is modularly stratified from left to right if, for
every component F' of P,

1. There is a total well-founded model M for the union of all components F’ < F', and

2. The reduction of the set of all prefixes of rules in ¥ modulo M is locally stratified. O

14

Example 3.7: Let P be the game program from above, containing the rule
w(X) — p(Y), _'w(Y)a m(Xa Y)

together with facts for p and m such that m is nonempty and acyclic, and p is true for
all constants appearing as arguments of m. This program is modularly stratified, but not
modularly stratified from left to right. The rule prefix

w(X) < p(Y), ~w(Y)

will yield a violation of local stratifiability when X and Y are bound to the same value. On
the other hand, if the rule for w was rearranged to give

w(X) p(¥), m(X,Y), ~w(Y)
then the program would be modularly stratified from left to right. O

Every program that is modularly stratified from left to right is also modularly stratified,
and every modularly stratified program may be rearranged in such a way that it is modularly
stratified from left to right, as shown below.

Lemma 3.3: Let P be a modularly stratified program. Then there is a re-ordering of the
subgoals in the bodies of the rules in P such that the resulting program is modularly stratified
from left to right.

Proof: For every rule r of the component F' of P re-arrange the subgoals of r so that all
subgoals whose predicates are used by F' appear to the left of those subgoals whose predicates
belong to F'. Call the resulting program P’.

P' is modularly stratified, since P is modularly stratified. Suppose P’ were not modularly
stratified from left to right. Let F' be a lowest component of P’ whose set of rule prefixes
is not locally stratified when reduced modulo M, where M is the well-founded model of the
union of all components F' < F. (Such an M must exist since P’ is modularly stratified.)
Let Fp be the component F' in P, before the subgoals were re-arranged.

Since all lower-component subgoals appear on the left in F', the rule prefixes r that have
been reduced will satisfy the following property: The body of r is a subset of the body of a
rule from the reduction of Fp modulo M (possibly re-arranged). Since Fp is locally stratified
when reduced modulo M, we conclude that F' is also locally stratified, contradicting our
assumption. Hence P’ is modularly stratified from left to right. |

Note that it is often possible to guarantee modular stratifiability from left to right without
placing all lower-component subgoals at the left as in the proof of Lemma 3.3. On the other
hand, rearranging the subgoals as above may cause a left-to-right evaluation method to try
to evaluate a negative subgoal containing unbound variables. An evaluation method is said
to flounder if it selects for expansion a negative literal with one or more unbound variables.
There are several semantic difficulties associated with floundering; the interested reader is
referred to [18] for further discussion.

Example 3.8: Consider the program

t(a,a)
p(X) + ¢(X, X), ~q(X)
q(X) « (X, Y), (Y, Z),p(Z)

15

which is modularly stratified from left to right. A left-to-right expansion of the last rule will
flounder due to the unbound variable Z in the subgoal #(Y, Z). Placing the subgoal p(Z) to
the left of ¢(Y, Z) would solve the floundering problem, but result in a program that is no
longer modularly stratified from left to right. O

Unfortunately, we will not be able to handle programs that flounder when evaluated from
left to right. We will restrict ourselves to “permissible” programs, as defined below.

Definition 3.7: A program P is permissible if it is range-restricted, modularly stratified
from left to right, and every variable appearing in a negative literal in the body of a rule in
P also appears further to the left in a positive literal. O

At the expense of efficiency one could add an extra predicate that binds its argument to
successive constants in the (finite) universe. By placing this predicate to the left of each
floundering subgoal, one can prevent floundering without losing any expressive power. An
alternative approach, which merits further research, would be to incorporate constructive
negation [11, 24] into the evaluation mechanisms proposed in this paper. Nevertheless, the
author believes that programs that cannot be rearranged into permissible versions will be
rare in practice.

Passing bindings from left to right is one of many possible “sideways information passing
strategies” (sips) that could be used [6]. Alternative strategies can be put into our framework
by applying Definition 3.6 with a refined notion of a rule prefix. For a subgoal S appearing
in a rule 7, the prefix of r corresponding to S is the sequence of subgoals (not necessarily to
the left of S) from which bindings for S are generated, followed by S itself. Modifying the
top-down and bottom-up methods, described in later sections, for arbitrary sips is beyond
the scope of this paper.

4 Top-Down Evaluation

4.1 Global SLS-Resolution

In this section we present a variant of the top-down method called “global SLS-resolution”
from [30]. A similar method was independently proposed in [23]. The version presented here
is slightly different from the one appearing in [30]. In this paper we will restrict ourselves
to a left-to-right computation rule, so that the leftmost subgoal is always selected. This will
allow us to compare bottom-up and top-down methods using the same order of evaluation.
Although such a computation rule may not yield completeness in general, it will be sufficient
in the context of permissible programs.

Recall that a negative subgoal flounders if it is selected and has an unbound variable
appearing in it. In what follows we restrict ourselves to programs that do not flounder.
Hence, for simplicity, we omit the case of floundered subgoals. In any case, global SLS-
resolution is complete with respect to the well-founded semantics only for non-floundering
programs.

Because we will be dealing with programs having no infinite recursion through negation,
we may also simplify the construction by eliminating the global tree in favor of a simpler
“negation tree.” Negation trees are more convenient in our context where we can expand
negative literals ahead of positive ones.

16

Definition 4.1: (SLP-trees) Let P be a nonfloundering program, and let G be a goal. We
define the SLP-tree T for G. The root node of T is G. If the goal) is any node of Tg
then its children are obtained as follows:

o If () is empty, then we call it a successful leaf.

e Suppose that the leftmost literal L in @) is positive. Let Up be the set of rules whose
heads unify with L. The children of @) are obtained by resolving @) with (a variant of)
each of the rules in Uy, over the literal L using most general unifiers. If Uy, is empty,
then () has no children, and is a failed leaf.

e Suppose the leftmost literal L in @ is negative, say —A. (By our assumption about the

absence of floundering, L must be ground.) Recursively construct the SLP-tree T4 for
A.

— If T4 is successful, then @) is a failed leaf.
— If T4 is failed, then () has a single child that is formed by deleting L from ().

— Otherwise, @) is an indeterminate leaf.

If T; has a successful leaf, then T is successful. If every leaf of T is failed, then 1§ is failed.
Otherwise, T is indeterminate.

A branch of T is an acyclic path from the root of T;. We associate with each successful
leaf V' an answer substitution, which is the composition of the most general unifiers used
along the branch to V. O

Note that the definition of an SLP-tree itself is top-down, but that the status of the
nodes as successful, failed or indeterminate is defined bottom-up. “Global SLS-resolution”
is the process of determining whether a goal is successful, failed, or indeterminate, and if
successful returning all answer substitutions.

Example 4.1: Consider the game program from Example 3.1 together with some move
tuples, i.e.,

w(X) + m(X,Y),~w(Y)

m(a, b)

m(b, c)

The SLP-tree for w(a) is

—w(b)

The SLP-tree for w(b) is recursively constructed, and is

The SLP-tree for w(c) is recursively constructed, and is
w(c)
|
m(c,Y), ~w(Y)

The leaf of the SLP-tree for w(c) is failed, since there are no rule heads that unify with
m(c,Y’). Hence Ty is failed, Ty is successful, and Ty is failed. O

Definition 4.2: We define the negation tree N for a goal G. The nodes of Ny are goals,
and the root of Ng is G. Let H be any node of Ng. For every atom A for which T is
recursively constructed in constructing Ty (step 3 of Definition 4.1), A is a child of H. O

Example 4.2: For the program in Example 4.1, N () is
a)
b)

c)

g

g

(
|
(
|
(

g

Note that every node except possibly the root of a negation tree is a ground atom. If
the ground atom A is a child of H in a negation tree, there must be some branch in 7y to a
node that has - A as the leftmost literal. We now define a restricted version of Global SLS-
resolution from [30]. We shall show that for the class of programs that we are considering
in this paper, this simplified version is both sound and complete.®

Definition 4.3: (Global SLS-resolution) Global SLS-resolution is the top-down process of
finding all answer substitutions for a goal G by constructing the SLP-tree for G as in
Definition 4.1. O

We will be particularly careful that the negation tree for every possible goal has finite
depth. If every negation tree has finite depth then we know that every atom will either
be successful or failed, and we will obtain a sound and complete implementation of the
well-founded semantics. On the other hand, the program

D<= D, q

has an infinite negation tree N,. According to the definitions above, the SLP-tree for ?-p is
indeterminate, even though p is false with respect to the well-founded semantics. The method
presented above will loop infinitely through negation, clearly an undesirable situation. The
rearranged version

p<gq,7p

has a finite negation tree for 7-p. Hence, the left-to-right ordering of subgoals will be crucial.

8By “complete” we mean what some authors call “partially complete;” we do not require termination. A
formulation of a top-down method that is guaranteed to terminate is presented in Section 4.3.

18

Theorem 4.1: Global SLS-resolution (as defined in Definition 4.3) is both sound and com-
plete for non-floundering programs with finite-depth negation trees.
Proof: The proof follows from the corresponding results in [30]. Since the negation tree is

finite, there is no infinite recursion through negation, and so every goal is either successful
or failed. 1

To get soundness and completeness in general, one must use the more general method
of [30], and avoid a purely left-to-right computation rule. In this paper we will look for
sufficient conditions for negation trees to have finite depth, so that we do not need to consider
indeterminate derivations. Permissibility is one such condition, as illustrated by the following
theorem.

Theorem 4.2: If P is permissible then for every goal G, the negation tree N (with respect
to P) will be of finite depth.

Proof: If P is permissible then it will not flounder, and so the method of Definition 4.3 is
well-defined.

Consider an arbitrary branch B of the negation tree Ng. All nodes of the negation tree
(with the possible exception of the root) along this branch are ground atoms, say Gy, Gy, . ..
with Gy = G. B is infinite if and only if there is some distinct pair of positions o and
containing the same atom, i.e., G, = Gg for o > > 0. (Note that N cannot have infinitely
many finite branches of unbounded length, since any branch longer than the number of atoms
in the finite Herbrand base of the program must be infinite.)

We prove the contrapositive of the theorem as stated. The proof is by induction on the
components of P. Suppose the claim is true for the union U of all components F’ of P such
that F' < F. We show that the claim holds also for U U F.

Suppose that for some atom A belonging to U U F, N4 has an infinite branch. If A
belongs to U, then by the induction hypothesis U is not modularly stratified from left to
right, so neither is U U F'. Suppose that there is no such atom belonging to U. Then there
must be such an A belonging to F'. Since N4 has an infinite branch, say B, there must be
some ground atom A’ that repeats on B. A’ must belong to F'.

Since all subgoals from U succeed precisely when they are true with respect to the well-
founded semantics, by the induction hypothesis and Theorem 4.1, it follows that there is some
cycle through negations in the prefixes of the rules in F' reduced modulo the well-founded
model for U. This cycle through negations implies that F' is not modularly stratified from
left to right. 1

Theorem 4.2 does not hold for programs having function symbols, as illustrated by the
program
p(s(X)) < ¢(X), 7p(X)
£(0)
t(s(X)) «+ t(X)

for the goal p(X).
Permissibility is not necessary to get finite negation trees, as illustrated by the program

P&p,p

for which the goal 7-p has an infinite branch in its SLP-tree, but a trivial negation tree.

19

Note that infinite positive derivations are considered failed under our approach. The
status of an SLP-tree as successful, failed or indeterminate depends only upon the leaves
of the tree. A branch without leaves will not affect this status. In order for global SLS-
resolution to find all answer substitutions, and not get “lost” down an infinite (positive)
branch of an SLP-tree, an appropriate method for searching SLP-trees is needed. A way of
pruning infinite branches is discussed in the next section.

4.2 Towards Termination

We now show how one can modify Global SLS-resolution to ensure termination for permis-
sible programs. This modification preserves soundness and completeness, and motivates the
memoing method to be introduced in Section 4.3.
Suppose that for all possible atoms, we have simultaneously constructed their SLP-trees
as in Section 4.1. There are finitely many such trees if we disallow variants of the same atom.
Suppose that the goal G' given by

LlaLZa"'aLn

is a child of the root node R in one of these SLP-trees. Suppose that L, is positive. It
seems that the SLP-tree for L; is replicated within the SLP-tree for R, with appropriate
instantiations of Ls,---, L, appended to all such goals. (This follows because it is always
the leftmost literal that is selected.)

Rather than repeating the expansion of L, let us consult the SLP-tree for L, to find all
answer substitutions, and use those substitutions directly, so that the children of G will have
various instances of Ls,---, L, as children. If L, is positive, then we may do the same for
those instances of Ls, and so on, thus minimizing repeated computation.

To be precise, once we perform the modifications outlined above, we are no longer talking
about “SLP-trees.” In Section 4.3 we shall define the modified trees more precisely as
“derivation trees.” For now we ignore this distinction and refer to the transformed trees also
as SLP-trees.

Lemma 4.3: For permissible programs, the transformation of SLP-trees outlined above
yields a method that remains sound and complete with respect to the well-founded semantics.
Proof: The main observation is that for permissible programs, success and failure are the
only possible results for a derivation; indeterminate derivations do not exist. The proof is
by induction. We say an SLP- tree is correct if and only if the answer substitutions subsume
exactly those that are correct with respect to the well-founded semantics. Our induction
hypothesis states that after n transformations, all SLP-trees are correct.

The base case follows from Theorem 4.1.

We inductively replace a redundant copy of an SLP-tree for the leftmost literal Ly (if
positive) within a larger SLP-tree T by a simple lookup of the answer substitutions in the
separate tree for L;. The separate SLP-tree for L, is correct by the induction hypothesis.
(The “separate” copy may be T itself if the tree contains itself as a subtree.) Since we
have obtained exactly those substitutions for L; that are correct with respect to the well-
founded semantics, and since all substitutions not subsumed by these yield failed branches,
the resulting SLP-tree remains correct. |

20

The first benefit of performing this rudimentary form of memoing is that SLP-trees are
now finite. Infinite positive derivations do not occur, since there is at most one expansion
for each positive literal. For example, if the subgoal p(X) appears leftmost in a node of
the SLP-tree for (a variant of) the same goal, say p(X'), then the subgoal p(X) is not
recursively expanded; substitutions for X' generated by other branches of the tree may be
used as bindings for X and the derivation may proceed.

Given these observations, there are several ways that we could make such a procedure
more efficient:

1. Construct trees only when needed.
2. Omit any tree whose root is an instance of a previously constructed tree.

3. Expand nodes of the tree incrementally, using either newly generated answer substitu-
tions, or newly generated nodes of a tree.

These optimizations are included in the algorithm of Section 4.3 below.

In the discussion above we assumed that all SLP-trees had been simultaneously con-
structed. When computing the corresponding derivation trees, we must be careful to main-
tain negative dependencies properly.

Suppose that, at some intermediate stage of the computation when all trees have not
yet been fully constructed, we select a negative literal L;. We look at the SLP-tree for the
complement of Ly, let us say L. If L succeeds, i.e., the tree for L has a successful leaf, then
G has no children. However, we can conclude that L fails (and hence L; succeeds) only if
both

e The SLP-tree for L has no success leaves, and
e The SLP-tree for L, and all subsidiary SLP-trees have been fully expanded.

The second condition above is needed because it may be possible that a partially expanded
SLP-tree may develop a successful leaf at a later stage of the computation. By subsidiary
SLP-trees, we mean both the recursively constructed trees for negative subgoals, and the
SLP-trees examined as above for positive subgoals.

An SLP-tree for a goal R is “fully expanded” when

e All possible resolution steps for positive subgoals have been performed, and
e All children of R in the negation tree for R are themselves fully expanded.

The concept of the negation tree is the same as before. Since we have memoed parts of the
expansion, we may have to trace through several trees, rather than looking at branches of a
single SLP-tree, in order to identify the structure of the negation tree. These conditions are
analogous to the part of Definition 4.1 where we recursively construct the SLP-tree for the
complement of a leftmost negative literal. This recursive construction must be complete in
order to apply the definition.

21

4.3 Top-Down with Memoing

Global SLS-resolution may get lost down an infinite positive branch and hence not terminate.
Several authors [13, 36, 37] have considered this problem in the context of Horn programs,
and have proposed a form of memoing in which a positive literal is not “admissible” for
selection if it is an instance of one of its ancestors.

Kemp and Topor [15] and, independently, Seki and Itoh [32] have generalized these
proposals to the class of stratified programs. Our method applies to a larger class of
programs, namely those programs that have finite negation trees, and still retains soundness,
completeness and termination properties. In particular, our method applies to permissible
programs.

Kemp and Topor called their method the “QSQR/SLS-procedure.” We now present our
extension, which we also call the QSQR/SLS-procedure. While our method is similar to [15],
there are several differences that we shall explain after giving the definitions. Our version
of the QSQR/SLS procedure, given in Algorithm 4.1, is presented in such a way that the
comparison with bottom-up evaluation will be clearer later on.

Our method is motivated my the memoing technique of Section 4.2. In the query
evaluation procedure described below we will “memo” those facts that we have already
derived so that we can re-use them in other parts of the computation. We memo all IDB
predicates; in the terminology of [15], the set of “r-predicates” is the set of all IDB predicates.
Following [15], we shall refer to literals that have been derived at an intermediate stage of
the computation as lemmas.

The state of the query answering procedure will be given by a set of lemmas together
with a set of derivation-trees, i.e., a “derivation-forest.” As the procedure proceeds, the set
of lemmas will get larger, the trees will grow extra nodes, and new trees may be added to
the forest.

Before we define the concept of derivation trees, we introduce the concept of a restriction
of a substitution.

Definition 4.4: Let r; be a rule, and let ¢ be the number (counting from left to right) of a
subgoal in the body of r;. Let § be a substitution. We say ¢ is the restriction of 0 to r; at
subgoal © when ¢ is the subset of variable assignments in € for variables in either the head of
74, or in both a subgoal prior to the ith in r; and a subgoal in r; that is 7th or later. O

We restrict substitutions so that differences in “irrelevant” variables do not prevent us from
detecting that one goal subsumes another. The idea of restricting substitutions is similar
to the way arguments of supplementary predicates are chosen for the magic sets method
discussed later in the paper. For example, consider the program

p(X) A Q(Xa Y)a T(Xa Z)
q(c,a)
q(c,b)

In a corresponding derivation tree there will be two branches leading to the subgoal r(X, Z),
one with {X|c, Y|a} and the other with {X|c, Y[b}. We would prefer to expand only one
of these branches, since it seems that otherwise work would be repeated. To ensure that
we notice the similarity of the two branches above, we project the computed substitution
onto the set of relevant variables. Since Y appears neither in the head, nor in the subgoal

22

r(X, Z), it is not relevant. Once the substitutions are projected onto the variable X, the
similarity of the two branches above becomes apparent.

Definition 4.5: A derivation tree is a tree whose nodes are goals. The root node of a
derivation tree contains a single atom, and has an associated polarity, either positive or
negative.

Each non-root goal has an associated substitution and an associated rule. The children of
the root node, which we call level-one nodes, are formed by resolving the root node with the
head of a rule r from the program; that rule becomes the associated rule for the corresponding
level-one node. Descendants of level-one nodes have the same associated rule as their level-
one ancestor. The associated substitution of a level-one node G is the restriction to r at
subgoal 1 of the most general unifier used in resolving the root with the corresponding rule.

Non-root goals G contain (partially instantiated) subgoals from the rule r associated with
G. Children G’ of a non-root goal G are formed by resolving the leftmost literal in G with
lemmas, yielding child goals (with one less literal) that have been instantiated according to
the most general unifier # used in the corresponding resolution. Suppose that the leftmost
literal in G' was originally the ith subgoal in 7. If G has associated substitution ¢, then the
associated substitution at G’ is the restriction of ¢ to r at subgoal i.

A derivation forest is a collection of derivation trees. O

In a derivation tree it is not necessary for all children of a node to have been constructed.
Thus a derivation tree corresponds to a possibly partial expansion according to the rules
above. Also, Definition 4.5 depends on the set of lemmas. In our context, the set of lemmas
will be increasing as Algorithm 4.1 below proceeds, and so the set of legal derivation trees
will grow.

We now define the “depends positively,” “depends negatively” and “settled” relation-
ships. Conceptually, these relationships model whether the proof of a certain atom depends
(positively or negatively) on the proof of another. For global SLS-resolution we would say
that the atom P depends positively on the atom @) if the SLP-tree for P has a descendant
with leftmost literal (). We would say that the atom P depends negatively on the atom () if
the negation tree for P had a child). The intuition behind these concepts is that a proof
of =P cannot be completed until everything that P depends negatively upon has been fully
computed as true or false.

In the context of our top-down method with memoing, we modify the definition some-
what. Firstly, since we are only interested in proving —P when the root has negative polarity,
we shall restrict our “depends” relationships to have their first arguments appearing in roots
of negative polarity. Secondly, since our memoing method eliminates duplicate derivations,
it is possible that certain branches of a tree with a root of negative polarity have not been
expanded because those branches were expanded in a tree with the same root but having
opposite polarity. For example, if p(a) and —p(a) are subgoals, and p(a) is reached before
—p(a), then the root of positive polarity will have all the children, and the root of negative
polarity will have none. While this property does not affect correctness and eliminates
duplicated effort, it also requires us to be careful in how we define the corresponding
“depends” relationships. It may happen that an atom P depends (positively or negatively)
on an atom () even if () is not in the derivation tree with root P, since the root of the
derivation tree with () may be an atom that is more general than P.

23

Definition 4.6: Let P, @, P, R, S, R’ and S’ be atoms, and let P and () be ground. Let
F" be a derivation forest. We say P depends positively on R in F' if either

e There is a tree in F' with root P having negative polarity, and there is some goal GG in
F with associated rule r;, leftmost literal R, associated substitution §, and P = P'0,
where P’ is the head of r;; or

e For some S, P depends positively on S, there is some goal G in F' with associated rule
r;, leftmost literal R', associated substitution #, S and S'0 unify with most general
unifier ¢, and R = R'¢, where S’ is the head of r;.

We say P depends negatively on @) in F' if either

e There is a tree in F' with root P having negative polarity, and there is some goal G in
F with associated rule r;, that has leftmost literal =), associated substitution ¢, and
P = P'0, where P’ is the head of r;; or

e For some S, P depends positively on S, there is some goal G in F' with associated rule
r;, that has leftmost literal =@, associated substitution ¢, and S and S’ are unifiable,
where S’ is the head of ;.

We say P is settled if some atom depends negatively on P, and either P or its complement
is known, i.e., present as a lemma. O

We shall use the concept of depending negatively in order to determine when all “subsidiary”
negative subgoals have been completed. Later, we shall define “depends negatively” in the
context of bottom-up evaluation, and demonstrate an equivalence between that definition
and Definition 4.6.

We now define the QSQR/SLS procedure.

Algorithm 4.1: The algorithm of Figures 2 and 3 constitutes the QSQR/SLS procedure for
the query 7-H where H is a literal, for a program P. If H is positive, let H' = H, otherwise
let “H' = H. Note that if the program is range-restricted then all lemmas generated will
be ground. We initialize the set of lemmas to contain those tuples in the EDB relations.
When negative subgoals involving EDB predicates arise, rather than checking for the negative
lemma explicitly, we shall simply check for the absence of the complement of the subgoal from
the positive lemmas. A goal, lemma or root atom is new at a given step of the computation if
it did not exist when that step was last executed. (Everything is new on the first iteration.)
C},; denotes the set of goals that have associated rule r;, and whose leftmost literal is (an
instance of) the sth subgoal of r;. O

Example 4.3: Let P be the program

p(X) « b(X)
p(X) A G(X,K Z)a ﬁp(Z),p(Y)

together with a set of facts for the EDB predicates b and e. To make the example more
concrete, think of X, Y and Z as integers from some range 1,...,n, where e(X,Y, Z) is
true precisely when Y and Z are proper factors of X, i.e., YZ = X and both Y < X and

24

0: Initialize the set of lemmas A to the set of tuples in EDB relations, and the initial forest 7
to contain the single goal H', of polarity equal to the sign of H.

repeat {
repeat {
Perform inner loop steps 1 to 5
} until no changes occur

6: For each root R of negative polarity such that R is not present as a lemma, and such that
every ground atom () that R depends negatively upon is known to be settled, add =R as
a lemma (unless it is already present).

} until no changes occur

7: If H is positive then output all lemmas for H, or “no” if there are none. If H is negative
then output H if H is a lemma and “no” otherwise.

Figure 2: Algorithm 4.1: The QSQR/SLS procedure’s outer loop.

Z < X. (The reduction of this program component is locally stratified since e(X,Y, 7)
implies Y < X and Z < X; hence the program is modularly stratified for this e.)

Suppose b(X) is true precisely when X is prime. Then it is not difficult to verify that
p(X) is true (according to the well-founded semantics) when X is the product of an odd
number of primes, and false otherwise.

Consider how QSQR/SLS-resolution would answer the query ?—p(18). The forest con-
structed by the QSQR/SLS method is given in Figure 4. The IDB lemmas inferred would be
p(2), p(3), p(18), —p(6) and —p(9). Note that the trees with roots p(3) and p(2) of positive
polarity are not expanded because the expansion has been done in the corresponding trees
of negative polarity (this check occurs in step la). The e symbol indicates an empty goal
node. O

The main difference between SLP-trees and derivation-trees generated by the QSQR/SLS
procedure is the resolution with lemmas. Any atom that is an instance of an atom that has
appeared previously can only be resolved with lemmas and not rules. This effectively prunes
infinite branches.

Steps 1 to 4 of the inner loop correspond directly to an incremental expansion of derivation
trees in a way analogous to the expansion of SLP-trees.

While we have not specified exactly how new “depends positively,” “depends negatively,”
and “settled” relationships are inferred at step 5, these relationships can be computed using
techniques similar to those in step 4. We omit the details here.

The “depends negatively” relationship of Algorithm 4.1 represents a partial expansion of
the negation tree for the query. A depends negatively on B at some stage of the computation
only if B is a child of A in the negation tree for the query, and the status of B is unresolved
at that point.

Consider the state of Algorithm 4.1 after it terminates. (We shall prove termination
in Section 4.4.) At that point an atom A may depend negatively on another B only if B
is a child of A in the negation tree for A. If the negation tree is finite, the atoms at the
leaves of the negation tree must be settled, since they do not depend negatively on anything.
Hence the parents of the leaves must also be settled. We may proceed inductively up the

25

la:

1b:

4a;:

4b:

4c:

For each new root atom R do {

Let S be the collection of all rules whose heads unify with R. For each rule r; in S
resolve R with r; in place to get a collection of goals G; for each r; € S. Insert each
G as a child of R, as long as the associated substitution at G; would not be subsumed
by a substitution at any other node previously in C; . }

For each rule r; do the following: Among those goals in C,; that were just generated in
step la, delete all but a set with most general associated substitutions.

M:=0 /* M is the set of new positive lemmas */
For each new empty goal G do {

Let 0 be the associated substitution of G. Suppose the associated rule of G is r;, with
head . Add the lemma Q6 to M, renaming any variables in Q0 to new variables. }

Let M’ be a set of most general lemmas in M. Add to A all members of M’ that are not
already subsumed by lemmas in A.

N:=0 /* N is the set of literals for new root nodes */
For each new nonempty non-root goal G do {

Let L be the leftmost literal in G. If L involves an IDB predicate then add L to N. }

Let N' be a set of most general literals in N. Delete from N’ any literal L whose atom
is an instance of a root node already in 7 of polarity equal to the sign of L. For each L
in N' add the atom from L as a new root to the forest, with polarity equal to the sign of
L, and with variables renamed to new variables.

For each new nonempty non-root goal G do {

Let L be the leftmost literal in G. Suppose that L was originally the ith subgoal of
rj, where r; is the associated rule of G. Let {Li,...,L,} be the lemmas that unify
with L. Resolve L against each L, to get a set of new goals Gy. Add as children of G
those goals G whose associated substitution would not be subsumed by a substitution
at any other node previously in Cj;. }

For each new lemma L do {

Let {Gi,...,G,} be nonempty non-root goals with respective selected literals
{L1,..., Ly} such that each Ly unifies with L. Suppose that each Gy has associated
rule 7;,, and that L, was originally the i;th subgoal of 7;,. Resolve each Lj against
L to get new goals G,...,G), respectively. Insert each G}, as a child of Gy if the
associated substitution at G} would not be subsumed by a substitution at any other
node previously in Cj, ;.- }

For each rule r; and for i = 1,...,s; do the following: Among those goals in C}; that were

just generated in 4a and 4b, delete all but a set with most general associated substitutions.

Infer new “depends positively,” “depends negatively” and “settled” relationships.

Figure 3: Algorithm 4.1: The QSQR/SLS procedure’s inner loop.

26

p(18)"
b(18) &(18,Y,2),7p(Z), p(Y)
- p2),p9 " pQ3), p(6) 2 p(6), p(3) 2p(9), p(2)
\ | 2"
p(3) p(2)
) o

p(2)~ p(3)~

b|(2) &2,Y,Z), 2p(Z), p(Y) b(3) &(3,Y,2),~p(2), p(Y)
|
® °

p(6)~ p(9)~

b(6) &6,Y,2), 7p(2), p(Y) b(9) e(9,Y,2),7p(2), p(Y)
2 p(2), p(3) 2 p3), p(2) 2 p@3), p(3)

Figure 4: Forest generated in Example 4.3.

negation-tree for the (atom of) the initial query, showing that all such atoms are settled,
and hence either true or false. Thus there are no “depends negatively” facts remaining after
Algorithm 4.1 is run on a program with finite negation trees.

We now explain the major differences between Algorithm 4.1 and the algorithms pre-
sented in [15] and [32].

The first difference is in how the lemmas are established. In [15], “proof segments” of
SLD-type trees are employed rather than derivation trees. In [32] they are called “sub-
refutations.” The definition of proof segments is complicated by the fact that subsidiary
information about other subgoals is embedded in the trees. In our case, every derivation
tree contains only information relevant to the subgoal at the root of the tree. When a
subgoal is first encountered by Algorithm 4.1 in a nonroot node of some derivation tree, a
new derivation tree is created with that subgoal as root. The original derivation tree proceeds
only by using the lemmas generated by the new tree. While this difference is inessential in
as far as what is computed, having a new tree for each atom that is memoed makes the
procedure easier to understand, and also provides an easy mechanism by which subsumption
of root nodes can be checked.

Kemp and Topor consider two “admissibility tests” for deciding when to create a sub-
sidiary tree for the leftmost atom in a goal. The less redundant of the two compares the
selected atom with all previously visited atoms in the current tree only. This test can
lead to significant redundant computation in subsidiary trees. However, Kemp and Topor
do suggest ways of improving the admissibility test by memoing negative subgoals, and
subgoals expanded at lower levels. Our notion of admissibility incorporates these extensions.
While we do not mention admissibility explicitly, our admissibility test is built-in to step 3
of Algorithm 4.1.

Another difference is the way subsidiary trees are expanded. By maintaining information
about which predicates depend negatively on others, we can wait until all subsidiary goals
have been completed before completing the current goal. Kemp and Topor achieve the same
effect by suspending the local computation and making a recursive call to expand a lower
level subgoal, and continuing only when that call has terminated. Our dynamic approach
has the advantage that only those subgoals that do depend negatively on lower-level subgoals
are suspended, while other subgoals can be expanded during that time.

Unlike [15] and [32], our method distinguishes between EDB subgoals and IDB subgoals,
using simple look-ups for EDB subgoals rather than performing resolution on them.

A more technical difference occurs in step 3 of our algorithm. In [15] and other similar
work on top-down methods with memoing [31, 32| it is possible to generate a subquery at
a certain point, and at a later point in the same round generate a more general subquery,
in which computation is repeated. For example, suppose we encounter the selected atom
p(X, X). At a later point on the same round we encounter p(X,Y), which subsumes p(X, X).
Previous approaches would create a tree for p(X, X) and then create a second root for
p(X,Y). They would keep the less general goal if it happened to be considered before the
more general goal. Our algorithm eliminates this redundancy since only the most general
new subgoals are expanded into trees.

It may appear that there is another difference in the way we establish lemmas, by inferring
instances of the head atom from a rule rather than instances of the root atom in a tree. This
apparent difference is inconsequential: since the root and the head are unified, we may
infer instances of either. However, our method restricts substitutions so that irrelevant

28

intermediate variables do not have to be carried around. This restriction has benefits for
discovering redundant derivations in step 4, and requires that we infer instances of the atom
in the rule head rather than instances of the root atom since the root atom may contain
some irrelevant variables.

4.4 Correctness of the Memoing Method

Lemma 4.4: For all (nonfloundering) function-free programs, Algorithm 4.1 terminates.
Proof: Since there are finitely many possible distinct lemmas, rules and roots of derivation
trees. 1

Lemma 4.5: For Datalog programs without negation, Algorithm 4.1 is correct with respect
to the well-founded semantics.
Proof: See the proof of Theorem 4.6 below. |

Lemma 4.5 is a special case of a result of Vieille [37]. Vieille shows that top-down with
memoing (with a restricted, but not necessarily left-to-right order of expansion of subgoals)
is correct with respect to the least Herbrand model. For programs without negation, the
least Herbrand model is the two-valued well-founded model [35].

Theorem 4.6: (Correctness) Let P be a range-restricted nonfloundering program having
finite negation trees. Let L be a literal, (ground if negative), and let the query be ?-L. Then
Algorithm 4.1 terminates such that for every ground substitution 6 for L:

L6 belongs to the (total) well-founded model for P if and only if L is output.

Proof: By analogy with Global SLS-resolution, using Lemma 4.3. The lemmas computed
are exactly the answer substitutions applied to the root atom in the corresponding trees.
Algorithm 4.1 performs the following optimizations in addition to the rudimentary memoing
technique of Section 4.2:

1. If there are different branches leading to the same substitution for relevant variables,
then only one of them is further expanded.

2. A derivation tree whose root is an instance of a previously constructed tree is omitted.

3. Nodes of the tree are generated incrementally, using either newly generated answer
substitutions (lemmas), or newly generated nodes of a tree.

We claim that these transformations preserve correctness. Item 1 preserves correctness since
this step just removes branches that are effectively duplicates.

Item 2 preserves correctness, since if an atom A has a derivation tree 7', then any atom
more general than A will have a derivation tree that includes (a more general version of) T,
and hence all answer substitutions for A will be subsumed by answer substitutions in the
more general tree.

Item 3 states that we restrict steps of the computation in such a way that they operate
on at least one item of data that was not seen on the previous iteration of that step. If no
data items are new, then nothing is lost by omitting the step since the step must have been
performed on a previous iteration. |

29

4.5 Comparison with SLDNF-Resolution

SLDNF-resolution is a top-down resolution-based method that does not perform any mem-
oing [18]. Hence it will be informative to compare our memoing method with SLDNF-
resolution.

In Example 4.3 we have seen how QSQR/SLS-resolution would answer the query ?—p(18),
i.e., “Is 18 the product of an odd number of primes?” The final derivation trees are given in
Figure 4. SLDNF-resolution would still give the correct answer, but would repeat a lot of
computation. In particular, the subgoal p(3) would be expanded four times and the subgoal
p(2) three times, assuming that all branches are searched. By comparison, QSQR/SLS-
resolution expands each of these atoms once.

There are (stratified) programs for which SLDNF-resolution is not complete with respect
to the well-founded semantics. Such programs usually involve infinite positive recursion, as in
the complement of the transitive closure of a relation with cycles, for example. QSQR/SLS-
resolution is sound and complete with respect to the well-founded semantics for all permis-
sible programs.

SLDNF-resolution is not guaranteed to terminate. In particular, it may get into an
infinite loop with recursive programs. QSQR/SLS-resolution always terminates for function-
free programs.

There are some situations where SLDNF-resolution is more efficient than QSQR/SLS-
resolution. The following example is taken from [29].

Example 4.4: Let P be

t(m)
SLDNF-resolution would construct the following tree for the query ?-p(1, X).

p(l,‘X)
e(1,Y),p(Y, X)

p(2,‘X)
|
p(ni X)
t(X)
/ | \
(X =1} - (X =m}

30

To find all the answers the amount of work is ©(m+n). By contrast, QSQR/SLS-resolution
would memo all the intermediate subgoals p(i, X) for i = 2,...n, computing m lemmas for
each. Hence QSQR/SLS-resolution computes ©(mn) tuples, and is less efficient to SLDNF-
resolution on this example. O

In [29], improvements to the magic sets method are given that make magic-sets competitive
on examples like this. As we shall see later, there is a very close relationship between
QSQR/SLS-resolution and magic sets, and improvements corresponding to those suggested
in [29] could be applied to QSQR/SLS-resolution.

5 Bottom-Up Evaluation

It is desirable to have a bottom-up alternative to global SLS-resolution, which is top-down.
Bottom-up methods have the potential to work in a relation-at-a-time fashion, using efficient
methods to compute large joins. See [34] for further discussion on the relative merits of top-
down versus bottom-up methods.

5.1 Naive and Semi-Naive Evaluation

“Naive” and “semi-naive” bottom-up evaluation of rules for programs without negation
are now standard concepts in deductive databases [34]. While we shall rely on semi-naive
evaluation, there is one subtlety that arises due to the presence of variables. When tuples
can have variables in them we must perform something more sophisticated than duplicate
elimination. (While our answers will always be ground since the program is assumed to
be range restricted, some of the intermediate predicates we shall use may have nonground
tuples.)

Suppose we have a set of (possibly nonground) tuples S, and wish to add some tuples
from a set 1" to S. Our duplicate elimination strategy, which we call the “regional” approach
is to discard all but the most general elements of 7', and then add to S all those members
of T that are not subsumed by members of S. The result of regional duplicate elimination
does not depend on the order of adding elements from 7" to S. In contrast, the result of
“incremental” duplicate elimination, i.e., successively adding elements of 7" to S as long as
they are not subsumed by the current set of tuples, may depend on the order in which tuples
are taken from 7.

Finally, since the particular names of variables in nonground tuples should not matter,
we shall assume that all variables in nonground tuples are renamed so that none are shared
by more than one tuple. By renaming we avoid problems like using the tuples p(X) and
¢(X) with the rule

r(Y,Z) < p(Y),q(2)

to generate (X, X) rather than the more general r(S,T).

5.2 Bottom-Up with Negation

A naive implementation of the bottom-up computation of the original program will result in
many irrelevant tuples being computed. Top-down evaluation can beat bottom-up evaluation
of the original program because it can restrict the computation to only those tuples relevant

31

to the query. This problem is now well-understood for programs without negation, and
several techniques have been proposed [5]. One of these is magic sets [4, 6, 25], which
rewrites the program in such a way that the binding information that would have been
passed down by a top-down method is incorporated into the bottom-up evaluation. In fact,
for Datalog programs without negation, semi-naive bottom-up evaluation of the rewritten
program performs at least as well as a straightforward top-down method [33].

In Section 5.3 we describe a magic set method for evaluating modularly stratified pro-
grams bottom-up. In particular, this method also works for stratified programs. Our method
extends the magic templates method of [25] rather than the original magic sets proposals.

Before we introduce the magic set transformation, we describe a transformation of the
program whose bottom-up evaluation is sound and complete with respect to the well-founded
semantics for nonfloundering programs with finite negation trees, and in particular, for
permissible programs. This transformation results in a program that is not Datalog. Several
new constructs are necessary in order to be able to tell when we know “everything we need
about p” so that instances of —p can be correctly inferred.

The essence of this transformation is having the ability to identify when an atom depends
negatively on another. If an atom a depends negatively on an atom b, then we must be sure
that b is fully evaluated before we can say anything about a (unless a is independently
provable). On the other hand, if @ does not depend negatively on anything, and if a has not
been derived when the iteration reaches a fixpoint, then it is safe to infer —a.

Note that inferring —a may allow other rules to fire, and so another round of iteration
may be required. When we reach a fixpoint at which no new negative information is inferred,
we can terminate the iteration. We may call this end result the final fixpoint, and the other
fixpoints intermediate; where the distinction is not crucial we will just use the term fizpoint.

The new constructs are as follows:

1. Meta-variables, usually denoted by () and R, that may unify with any atom.

2. The depends predicate (which we abbreviate to d), that maintains a record of which
atoms depend negatively on which other atoms.

3. The un-depends predicate (which we abbreviate to d'), that maintains a record of those
dependencies that have been finished with. For example, if d(p, ¢) holds, and we find
q is true, then d(p, ¢) is no longer relevant and we assert d'(p, q).

4. The currently-depends predicate (which we abbreviate to dd), which is precisely the
relation defined by the difference d — d'.

5. An extra modal operator 0. Op(a) holds if and only if, at the most recent fixpoint,
neither p(a) nor any atom of the form dd(p(a), X') had been deduced.

Definition 5.1: (Negation Replacement) Let 7 be a rule. The negation replacement of r is
formed from r as follows:

e Replace every negative IDB subgoal ﬂq(X:) by the subgoal Dq(X").

e Replace every negative EDB subgoal —¢(X) by the subgoal ~ ¢(X).

32

Informally, O means that, at the most recent fixpoint,) did not depend negatively on
anything, and () had not been computed. ~ () holds when () is not true at the present time;
since the extension of EDB predicates does not change throughout the computation we can
use the simpler form of negation for them.

Definition 5.2: (Well Founded Rewriting) Let P be a Datalog program. We construct the
well-founded rewriting of P (denoted WFR(P)) as follows:

1. For every rule r of P the negation replacement of r is in WFR(P).
2. For every rule p(X) < ¢1(X1),...,q.(X,) of P, and for each i from 1 to n,

e if g ()2,) is negative, say —nfi()?i), then the negation replacement of the rule

—

d(p(X), (X)) — q1(X1), - -, gir (Xisy)
is in WFR(P).

—

o if ¢;(X;) is positive, and ¢; is an IDB predicate then the negation replacement of
the rule

—

dp(X),Q) « a(X), g 1(Ki), dd(a(X:), Q)
is in WFR(P).
3. The following two rules are in WFR(P):

e &(Q,R) + dd(Q,R), R
e d(Q,R) « dd(Q,R),OR

4. Nothing else is in WFR(P). O
We present an example, and then discuss the correctness of this transformation.

Example 5.1: Consider the program from Example 4.3 for which p(X) is true when X is
the product of an odd number of primes.
The well-founded rewriting of P consists of the rules

d(Q, R) + dd(Q, R), R
d'(Q,R) + dd(Q,R),0OR

p(X) « e(X,Y, Z),0p(Z),p(Y) (1)
p(X) + b(X) (2)
d(p(X),p(2)) « e(X,Y, Z) (3)
d(p(X),Q) < e(X,Y,Z),0p(Z),dd(p(Y), Q) (4)
(5)
(6)

together with the original e and b facts.

Consider the behavior of the rewritten program under bottom-up evaluation. The first,
fourth and sixth rules above will not contribute until after the first fixpoint is reached, since
the operator O appears in their bodies.

33

p(X) Op(X) d(p(X),p(2)) | d'(p(X),p(Z))
X prime Z divides X | Z prime and Z divides X
X product of an odd | X product of Z product of an odd number of
number of primes two primes primes, or of two primes, and
Z divides X
X product of Z product of four primes and
four primes Z divides X
X product of Z product of six primes and Z
six primes divides X

Figure 5: Order of inference. Each horizontal line corresponds to a fixpoint.

The second rule adds the primes to p, while the third rule will derive d(p(X),p(Z)) (and
hence also dd(p(X),p(Z))) precisely when Z is a proper divisor of X. The fifth rule will add
d'(p(X),p(Z)) (and hence delete dd(p(X),p(Z)) from dd) when Z is prime (whence p(Z)
holds).

At this point, no further rules can fire, and so we reach a fixpoint. Now, the rules with
O in their bodies may fire. The first rule fires when Z has only prime proper factors (i.e., is
the product of two primes) and when Y is prime, deducing p(X) for values of X that are the
product of three primes. These new values may be fed back into the first rule to get p(X)
for X being the product of five primes, and so on.

The second and third rules can’t add anything new, and the fourth rule repeats values
that were generated before the previous fixpoint. The fifth rule adds d'(p(X),p(Z)) for all
Z that are the product of an odd number of primes. The sixth rule adds d'(p(X), p(Z)) for
all Z that are the product of two primes. At this point, the second intermediate fixpoint is
reached.

At successive fixpoints, d'(p(X), p(Z)) will be added by the sixth rule for Z being products
of successive even numbers of primes. The final fixpoint occurs once d’ catches up to d. This
information is summarized in Figure 5. O

There are two possible objections to using a bottom-up evaluation of WFR(P) as a
mechanism for evaluating queries. First is the observation that many irrelevant tuples are
generated. In Section 5.3 we present a magic-set modification of WFR(P) that prevents the
generation of irrelevant information. The second objection is that there may be substantial
overhead involved in maintaining the d and d’ predicates. We will discuss this in Section 5.3.

Note that WFR(P) may itself be not range restricted (although it must be non-floundering).
For example, if P contains the rule

p(X,Y, Z) + t(X,Y),u(Y, Z)

34

then WFR(P) contains the rule
d(p(X,Y, 2),Q) + d(t(X,Y), Q)

in which Z does not appear in the body. However, such violations of range restrictedness

occur only in the first argument of the predicate d (and hence also dd and d'). If dd(p(X), Q)
holds, and X is more general that @, then we say that dd(p(@), @) also holds.

Lemma 5.1: (Confluence) Let I be any fixpoint during the bottom-up evaluation of WFR(P).
Then the extension of dd at I is independent of the order in which rules are fired.

Proof: If no d' tuples are generated in the computation between the previous fixpoint and
1, then dd grows monotonically, and hence the order of firing is unimportant. Suppose that
d(a,b) holds, and that d'(a,b) is generated between the previous fixpoint and 7. The only
way that the evaluation of WFR(P) could depend on the order of evaluation could be if
for some such a and b, dd(a,b) caused a tuple to be generated that would not be present if
dd(a, b) did not hold. However, by the construction of WFR(P), all tuples generated by rules
having dd(a, b) as a subgoal will be of the form dd(@,b). Since the reason for generating
d'(a,b) must be dependent only upon b, all such d'(Q, b) will be subsequently generated, and
so at I, dd will be independent of the order of firing of the rules. |

Corollary 5.2: The extent of all predicates in every fixpoint is independent of the order in
which rules are fired. |

We prove the correctness of the bottom-up evaluation of WFR(P) with respect to the
well-founded semantics for nonfloundering programs with finite negation trees. In particular,
the correctness theorem below applies to all permissible programs.

Theorem 5.3: If P is a nonfloundering program having a finite negation tree, then the
bottom-up evaluation of WFR(P) generates exactly the true atoms in the (two-valued) well-
founded model of P.

Proof: See Appendix A. |

To see where this method breaks down when the program does not have a finite negation
tree, consider the weakly stratified program from Example 3.2. The first rule yields the
rewritten rules

p(X) «t(X,Y, Z),0p(Y), Op(Z)
d(p(X),p(Y)) < U(X,Y, Z)
d(p(X),p(2)) « t(X,Y, Z),0p(Y)

from which it is possible to derive d(p(a),p(a)) given the relation for ¢. p(a) will never be
derived, since (as can easily be shown) the method is sound with respect to the well-founded
semantics for all programs. Hence d'(p(a),p(a)) will never be derived, since p(a) can’t be
derived, and Op(a) requires dd(p(a),) to be false. Thus Op(a) will never be derived, and
the method is incomplete.

The same problem occurs for programs that, while modularly stratified, are not modularly
stratified from left to right, as in Example 3.7. While the program of Example 3.7 can have
its subgoals rearranged so that it becomes modularly stratified from left to right, there is no
way to perform a similar rearrangement for Example 3.2.

35

5.3 Magic Sets

Recall how QSQR/SLS-resolution answered the query ?—p(18) from Example 4.3. Bindings
for the variables are passed down from parent node to child node, thus restricting the search
process to only those numbers that are factors of 18.

By comparison, a direct bottom-up evaluation of the program as in the previous section
would be relatively inefficient for deciding whether p(18) was true or false. It will decide
whether p or —p holds for all numbers in the range 1,...,n.

We shall present a magic set rewriting that significantly reduces the amount of work
that needs to be done. Using magic predicates in the body restricts the tuples generated
during the bottom-up computation to those that are relevant. We use a version of the magic
templates method [25] that is also described in [34].

The magic set method presented in the preliminary version of this paper [28] is not quite
the best possible one in the sense that the depends relations can be unnecessarily large. Also,
effort can be saved by using supplementary relations.

In this section we introduce a magic sets method that uses supplementary predicates. It
also uses a new construct that we call iterate. This will allow us more control in the order of
rule evaluation. We will iterate the rules generating positive information first, followed by
those generating the negative information. This process will itself be iterated until a fixpoint
is reached.

In the definition below we will use several meta-predicates:

e It will be convenient to have a meta-predicate “magic” rather than a separate predicate
name for each IDB predicate in the program. magic has two arguments: the first is the
atom concerned, and the second is an indicator as to whether the binding appeared
due to a positive or negative occurrence of the predicate in a rule. The symbol “+”
will denote a positive occurrence, while “—” will denote a negative occurrence. Since
negative subgoals will be ground when they are reached, all tuples magic(P, —) will be
ground, while tuples of the form magic(P, +) may contain variables.

e We will have two types of dependence predicates:

— dp(P, @), which means that P depends positively on Q.
— dn(P,®), which means that P depends negatively on Q.

dn has a complementary version dn'; dn'(Q)) will indicate that all tuples of the form
dn(P, Q) are no longer useful, since the status of @ is known. All arguments of tuples
of dn and dn’ will be ground. The first argument of dp tuples will be ground, while
the second may contain variables.

13

e We will need a new, simpler form of negation “~”. For ground atoms P, ~ P holds
precisely when P is not currently true. Because this negation looks only at the present
tuples and does not need to recursively evaluate its argument, it is much easier to
implement than well-founded negation.

e [Iis no longer an abbreviation for an expression involving a fixpoint. One may consider
O as a unary meta-predicate such that Op(X) (eventually) holds when —p(X) is true
with respect to the well-founded semantics of the original program; the intuition behind
O is the same. The argument of O will always be a ground atom.

36

Instances of the meta-predicates described above may be thought of as atoms in the logic
called HiLog [12].

If rule r; of the program P has k subgoals, then we create k£ + 1 new supplementary
predicates sup;;, for i = 0,..., k. sup;; will have one argument position for each variable
that appears either in the rule head, or in both the ith or subsequent subgoals and a subgoal
to the left of the ith subgoal.

We now define the supplementary magic rewriting of a program. We base our presentation
on [34].

Definition 5.3: (Supplementary magic rewriting) Let P be a program. The supplementary
magic rewriting of P, denoted SMR(P), contains three sets of rules, denoted Py, P, and P,.
The order of rules within each P; is unimportant, although we shall present them in an order
for which the correspondence with the QSQR/SLS procedure of Section 4.3 is clearer. The
numbering scheme below is intended to facilitate this correspondence.

The following is included in Py:

0. If the initial query is ?-p(cy,...,a,), where each a; may be either a constant or a
variable, and p is an IDB predicate, then include the rule

magic(p(ala R Cln), +)

If the initial query is ?-—p(ay, ..., a,), where each «; must be a constant, and p is an
IDB predicate then include the rule

magic(p(al, SRR an)a _)'

The following are included in P;:

1. If the head of r; is p(X), and p is an IDB predicate, then include the rule
sup; o(Y) < magic(p(X),).
Note that the second argument of magic is an underscore (_), and not a minus sign
(=)
2. Suppose rule 7; has k subgoals. Let ¢(Z) be the head of r;. Include the rule
Q(Z) A SUpj.k(?)-

—

3. Let p be an IDB predicate. Suppose p(X) appears as the ith subgoal of rule r;. If the
arguments of the supplementary predicate sup;,_, are }7, then include the rule

—

magic(p(X), +) « sup;;_1(Y).

Suppose that ﬁp()_f) appears as the i¢th subgoal of rule r;. If the arguments of the
supplementary predicate sup;; ; are Y, then include the rule

magic(p(X), —) Supj.i—l(?)'

37

4. Suppose rule r; has k subgoals. If the ith subgoal is positive, say p()z), and 7 < k,
then we include the rule

—

sup;i(Z) + supj_1 (V) p(X).
If the ith subgoal is negative, say ﬁp()z), and ¢ < k, then we include the rule
sup;(7) supj;_1 (V), Op(X)
if p is an IDB predicate, and if p is and EDB predicate then we include the rule

sup;(Z) < sup; ;1 (V),~ p(X).

5a. For each positive subgoal p(ff) in r;, such that p is an IDB predicate, include the rules

dp(q(Y), _27()?) magig(Q(Y”), -), Su_?j.i—l(z)
dp(P,p(X)) < dp(P,q(Y)), sup;;_1(Z)

where ¢(Y) is the head of r; and p(X) is the ith subgoal in T

5b. For each negative subgoal ﬁp()?) in rj, such that p is an IDB predicate, include the
rules
dn(q(Y), p(X)) < magic(q(Y), =), sup;;_1(Z)
dn(P,p(X)) + dp(P,q(Y)), Supj.i—l(Z)

where ¢(Y) is the head of r; and —p(X) is the ith subgoal in r;.

5c. Include the rules

dn'(Q) + magic(@, —), Q@
dn'(Q) « magic(Q, —), 0Q

The following rule is included in Ps:
6. OP < magic(P,—),VQ(dn(P, Q) = dn'(Q)),~ P.
O

Strictly-speaking, the formula YQ(dn(P,Q) = dn/(Q)) is not a literal, and hence is not a
subgoal in our language. Nevertheless, we do admit this subgoal here. The symbol = is
embedded implication: the formula holds for P if whenever P depends negatively on (), the
truth value of) has been settled. There is no semantic difficulty in evaluating this formula
in our context, and so the only objection to using universal quantification would be on the
basis of complexity. We shall describe suitable data structures for evaluating this subgoal
below.

If one is uncomfortable with variables as atoms, then the rules from item 5¢ in P; and the
rule in P, may be replaced by a sequence of rules in which @ (respectively, P) is instantiated
to (most general versions of) all atoms involving IDB predicates that appear negatively in
the program.

38

Algorithm 5.1: (Evaluation of SMR(P).) The rules from Definition 5.3 above are evaluated
according to the following procedure:

Fy;
iterate { iterate{ P; };
Py; }

Iteration is performed until there are no additional tuples generated. O

One may think of iterating P; as corresponding to the partial construction of the SLP-
tree (and recursive SLP-trees) for the given query. P, infers negative facts =P once no
dependences of P upon anything else remain and P has not itself been derived. Note that
P, must be evaluated after P; has reached a fixpoint; otherwise the absence of a negative
dependence may cause a negative fact to be inferred even though the negative dependence
would be derived in a subsequent step.

dp represents the path relation between the root of each recursively called SLP-tree, and
all (leftmost) atoms in nodes of its tree. dn represents the path relation between the root
and all (leftmost) negative literals in the tree.

Example 5.2: We rewrite the program of Example 4.3 using the supplementary magic
rewriting as follows.

P, contains
magic(p(18), +)

P, contains
sup1.o(X) « magic(p(X), -)
sups.o(X) « magic(p(X), -)

p(X) < sup;1(X)
p(X) < supas(X)

magic(p(Z), =) < sup2.1(X,Y, Z)
magic(p(Y), +) < supa2(X,Y)

supy 1(X) « supyo(X), b(X)

SupQ.l(Xa K Z) — SUPQ.O(X)a €(X, Y7 Z)

supaa(X,Y) « supe1(X,Y, Z), Op(Z)
(X

SUp2.3 ’) — 8Up2.2(X7 Y),p(Y
dp(p(X),p(Y)) < magic(p(X),—), supa2(X,Y)
dp(P,p(Y)) < dp(P, p(X)), sup,»(X,Y)

dn(p(X),p(Z)) + magic(p(X), =), sups1(X,Y, Z)
dn(P,p(Z)) < dp(P,p(X)), supe.1(X,Y, Z)

dn'(Q) < magic(Q, —), Q
dn'(Q) <+ magic(Q, —), 0Q
P, contains
OP <+ magic(P,—),YQ(dn(P, Q) = dn'(Q)),~ P.

39

Consider how Algorithm 5.1 would proceed. The rule in Py will give the tuple magic(p(18), +).
P, would then be evaluated to a fixpoint; omitting the supplementary relations, the tuples
generated at this stage would be

magic(p(g), _)’ magic(p(G), _)’ ma'gic((3)’ _)’ ma’gzc((2)) p(2), p(3)7
dn(p(9),p(3)), dn(p(6),p(3)), dn(p(6),p(2)), dn'(p(3)), dn'(p(2)).

Then P, will be executed, giving Op(9) and Op(6). P; will be executed once more, giving

magic(p(3), +), magic(p(2),+), p(18)

and nothing new will be generated after this step. O

The iteration of P, may be performed by standard semi-naive evaluation. On the first
entry into P, the “new” tuples are simply the magic facts from F,. On subsequent entry to
Py, we also consider negative facts just generated in P, as “new.” The only non-standard
constructs in P; are the meta-predicates. The meta-predicates are no problem for semi-naive
evaluation; their arguments may be thought of as containing function symbols.

We cannot rewrite P, as the sequence

temp(P) < dn(P,Q),~ dn'(Q)
OP < magic(P, —),~ temp(P),~ P

because temp needs to shrink as dn’ grows.

By using appropriate data structures, the relation dn' can be stored as a “marking” of dn.
dn' intuitively represents those tuples of dn that are no longer applicable, and can be thought
of as “deleted.” In order to know when to fire the rule in P, the data structure for dn should
maintain a count of the number of unmarked tuples with each first argument. When this
reaches zero by the insertion of a dn’ tuple, the second subgoal of the rule will become true
of the corresponding P. Using this data structure will allow us to avoid recomputing the
implication inside the universal quantifier every time P, is executed. Note that P, converges
in one step since it is not recursive.

As noted in [34], we can further optimize the rewriting in several ways. For example,
since there is only one rule for each sup,, and each such rule has only one subgoal, we could
substitute the body of the rule directly into every place that sup;g is used. This substitution
saves j extra temporary relations. A similar observation can be made about sup;; where
rule r; has k subgoals. While such optimizations would certainly be used in practice, they
are not necessary for the efficiency claims made in the next section.

Since using nonground tuples requires additional machinery to perform duplicate elim-
ination and rule firing, it would be desirable to specialize the rewriting above so that
nonground tuples do not arise if we can manage without them. Indeed, we can perform
such a specialization if we make the assumption that all predicates have a unique binding
pattern for the given query. To achieve such a program, occurrences of the same predicate
should be renamed apart if they have different binding patterns; also, subgoal rectification
is necessary for subgoals with repeated variables. See [34] for details of how renaming and
rectification are done.

With our assumption about unique binding patterns, we can specialize the magic, dp
and dn meta predicates so that their arguments contain only the bound variables from the

40

original rules. For example, if p(X,Y) had binding pattern bf, so that X was bound but
Y was free, then magic, dp and dn tuples would look like magic(p(x),+), dp(p(z),p(z')) or
dn(p(z),p(x")), where x and z’ are possible values for X. With the additional restriction that
supplementary predicates sup;; not contain arguments corresponding to free variables in the
head unless those variables have appeared to the left of the ith subgoal in the body, the
resulting rewriting method generates a range-restricted program. Hence nonground tuples
will not arise in the evaluation of such a program.

The penalty for ensuring no nonground tuples is that some of the rule reordering, subgoal
rectification and predicate renaming may have to be done at query-time, when the binding
pattern of the query becomes known. This overhead will not be significant if most queries
use one of a limited set of binding patterns. In general, whether this overhead is sufficiently
compensated for by not having to deal with nonground tuples is a matter for experimental
investigation.

The order of the rules in P; is of little importance as far as correctness is concerned, and
we have chosen an order that makes the comparison with the QSQR/SLS procedure simpler.
In practice, rule order can affect the number of rounds before the iteration converges. Such
issues are discussed in [26].

One may ask whether there is significant overhead involved in using the magic sets method
presented here rather than standard magic sets for programs without negation. One can
verify that for programs without negation, Algorithm 5.1 produces no tuples of the form
magic(P,—). As a result, there are rules (namely those for dp, dn’ and OP) that never
fire. If one was to delete those rules, the remaining rules constitute rules isomorphic to
the standard magic templates transformed rules [25]. Thus the overhead in Algorithm 5.1
consists entirely of repeatedly attempting to join an empty relation with another relation in
the body of the rules mentioned above. Ideally, a compiler would notice that a program does
not contain negation and would hence delete these redundant rules or, equivalently, use the
standard magic templates method.

We could demonstrate the correctness of Algorithm 5.1 by comparison with the methods
of the previous section. However we shall show a closer connection between Algorithm 5.1
and Algorithm 4.1 that identifies a one-to-one correspondence between steps of each method.
In addition to demonstrating the correctness of Algorithm 5.1, the correspondence also shows
that the top-down and bottom-up methods will have the same complexity.

6 Comparing Top-Down and Bottom-Up

We now address the efficiency of this magic sets method. We will demonstrate a one-
to-one correspondence between steps of Algorithm 4.1 and the semi-naive evaluation of
Algorithm 5.1. We will thus be able to demonstrate that the two algorithms have the
same complexity.

Note that our claim is stronger than the more common claim that various methods infer
the same sets of tuples. Some authors have considered the issue of “sip-optimality” [25,
31]. Informally, a bottom-up method is sip-optimal if it infers no more facts about any
predicate from the original program that a top-down method would. While sip-optimality
is a desirable property, it does not necessarily mean that bottom-up evaluation would be
competitive since the same facts may be generated many times by an inefficient method.

41

We now provide a correspondence between events in the QSQR /SLS procedure and events
in the bottom-up evaluation of supplementary magic rewritten program. The correspondence
uses the idea of the stage of the computation.

Definition 6.1: The stage n is a triple (a, 3,7). In the QSQR/SLS procedure, « represents
the number of times the outer repeat loop has been executed, 3 represents the number of
times the inner repeat loop has been executed since the start of the most recent iteration
of the outer loop, and 7y represents the position of the “program counter” according to the
labels in Algorithm 4.1.

In the evaluation of Algorithm 5.1, o corresponds to the number of outermost iterations,
(B represents the number of iterations of the inner iterate construct since the start of
the most recent outermost iteration, and ~ represents the position of a “program counter”
according to the labels in Definition 5.3. Where these labels have subparts (such as 4a, 4b
and 4c) the stage (in this case, 4) represents the complete sequence of subparts.

We shall say either algorithm is “at stage n” if it has just completed the statement
corresponding to n. When no statements have been executed we denote the stage by €. The
predecessor of a stage n is the previous stage at which the statement corresponding to n was
executed. If n = (o, ,7) then the predecessor of n is (o, 3 —1,7) if 5> 1, 0r (a — 1,5, 7)
if 3=0and o > 1 (for some '), and € otherwise. O

Theorem 6.1: (Correspondence theorem) Let n = («, 3,7) be an arbitrary stage later that
€, and let m be the predecessor of n. For all predicates p and g, all goals G, and all rules 7r;
(having s; subgoals) the following correspondence holds at n:

QSQR/SLS Magic — Semi-naive

—

a) | The lemma p(X) is inferred. p()z) is inferred.

—

b) | The lemma —p(X) is inferred. Op(X) is inferred.

—

(
(
(¢) | A new root p(X) of positive polarity is constructed. magic(p()?), +) is inferred.
(
(

—

d) | A new root p(X) of negative polarity is constructed. | magic(p(X), —) is inferred.

e) | A child goal G’ is constructed from the root goal supj_o(?)e is inferred, where
G by resolving with rule r; yielding an associated | @ contains substitutions for
substitution 0 at G'. variables in Y only.

(f) | Let G be a non-root goal G with associated rule r; and supj_i(?)ﬁ is inferred, where
leftmost literal L that was originally sth in r;. A goal | 1 < ¢ < s;, and 6 contains
G' is constructed as a child of G by resolving L with a | substitutions for variables in
lemma L' of the same polarity, yielding an associated Y only.

substitution # at G'.

(g) | “p depends positively on ¢” is inferred. dp(p, q) is inferred.
(h) | “p depends negatively on ¢” is inferred. dn(p, q) is inferred.
(i) | “q is settled” is inferred. dn'(q) is inferred.

42

Proof: See Appendix A 1

Corollary 6.2: Algorithm 5.1 is correct with respect to the well-founded semantics for
range-restricted nonfloundering programs having finite negation trees.
Proof: By Theorem 6.1 and Theorem 4.6. |

In particular, Corollary 6.2 holds for all permissible programs.

Corollary 6.3: The semi-naive bottom-up computation of SMR(P) has the same time
complexity as QSQR/SLS. 1

Seki [31] demonstrates a similar correspondence to that of Theorem 6.1 in the context
of (not necessarily range-restricted) programs without negation. Ignoring our extension to
programs with negation, our procedures are slightly different from Seki’s: we use regional
duplicate elimination while Seki uses incremental duplicate elimination. Apart from gener-
ating fewer duplicate tuples, using regional evaluation has technical advantages for the proof
of Theorem 6.1, as we do not need to concern ourselves with the order in which tuples are
added. Also, Seki does not distinguish between IDB and EDB predicates.

Our algorithms work for programs that are not range restricted, as long as the program
has finite negation trees and does not flounder, and Theorem 6.1 holds in this case.

7 Generalizations

Much of the material presented here is not specific to negation. There are other operators,
such as set-grouping and aggregation, that have traditionally been stratified in order to
prevent semantic difficulties. The idea of modular stratification can be extended to these
operators too. For example, suppose we have a relation part(X,Y, N) that is true when X
has N copies of Y as an immediate subpart. (Again, we adopt the convention that we are
only interested in smaller, simpler subparts.) The “parts-explosion” problem is to determine,
for an arbitrary pair of parts z and y, how many y’s appear in z. For example, if a bicycle
has two wheels, and each wheel has forty-seven spokes, then we would like to infer that a
bicycle has ninety-four spokes. We can solve the parts-explosion problem using the following
program.

in(X, Y, null, N) < part(X,Y,N)

in(X,Y, Z,N) < part(X, Z, P), contains(Z,Y, M), N = P x M

contains(X,Y,N) < N=> P :in(X,Y,_, P)

(The sum in the third rule is grouped by X and Y; for each X and Y we sum all corresponding
P.) The sum operation here is not stratified. contains depends on itself through aggregation,
via the predicate in. However, assuming part is acyclic in its first two arguments, the
summation operates on successively lower arguments (i.e., smaller subparts), and so there is
no looping through summation. This is the aggregate analog of modular stratification.
Informally, one can argue that the parts explosion problem cannot be expressed naturally®
with only stratified aggregation. Recall the game program from Example 3.1, which was not
expressible by a stratified program because an unbounded number of recursions through

9We ignore here the possibility of using the integers, multiplication and summation to encode Turing
machines.

43

negation is required. The parts explosion problem cannot be expressed naturally by a
program stratified with respect to summation as we may need an unbounded number of
summations, depending upon the depth of the part tree.

The methods presented in this paper generalize to the class of programs with function
symbols. However, if function symbols are recursively applied, then termination cannot be
guaranteed.

With a slight change of syntax, the rewritten program of Algorithm 5.1 may be interpreted
as statements in the database programming language Glue [19, 20]. In fact, Algorithm 5.1
is the basis of a compiler that has been implemented by the author and others as part of the
NAIL! system at Stanford University. The class of modularly stratified programs has also
been adopted for use in the CORAL deductive database programming language [27].

Acknowledgements

I would like to thank Shuky Sagiv, Rodney Topor and Jeff Ullman for comments on earlier
versions of this paper. The anonymous referees made many helpful suggestions to improve
the presentation of this paper. Thanks also to Ashish Gupta for his contributions to the
compiler that was implemented as part of the NAIL! system, and to Geoff Phipps for his
help with Glue.

A Long Proofs

Proof of Theorem 5.3.

The proof will be by induction, comparing the evaluation of WFR(P) with an “implemen-
tation” of global SLS-resolution from Section 4.1.

Our implementation'® of global SLS-resolution is to repeat the following sequence of steps
for every ground atom A in the Herbrand base of P until nothing more can be done:

1. Let N be the set of trees that are not currently labelled failed, but whose leaves are all
failed. Label each member of N as failed. (The first time this statement is executed it
will have no effect.)

2. Construct the SLP-tree T4 according to Definition 4.1 as completely as possible, but
without labelling any trees as failed. If the status of Ts is needed to determine the
status of a node L, and the status of Tg is not yet known, then nothing is done with
L (until later, once the status of T is resolved).

Suppose that the procedure above is iterated n times before nothing new is generated. We
shall show that at the end of each iteration ¢ where 1 < ¢ < n, the following correspondence
holds between our implementation of global SLS-resolution and the bottom-up evaluation of
WFR(P) at the ith fixpoint. For all ground atoms A and B:

10While we call this procedure an implementation, we should point out that it is not, in general, effective.
In particular, infinite positive branches in SLP-trees may be constructed. However, the soundness and
(partial) completeness of global SLS-resolution will guarantee the soundness and (partial) completeness of
the evaluation of WFR(P). We shall make a separate argument for the termination of the latter.

44

Global SLS WFR(P)

(a) | T}y is successful A is inferred
(b) | T}y is failed OA holds

(c) | There is an atom B such that T is nei- | dd(A, B) holds
ther successful nor failed, and =B is the
leftmost atom in a node of T'4.

Base Case. After one iteration, no tree is labelled failed, but all positive resolutions
have been performed. Similarly OS5 holds for no S since there is no previous fixpoint.

(a)

If T4 is successful, then it has a successful branch D without any negative subgoals
occurring. By iterating the rules corresponding to those used on D, the bottom-up
computation will generate A. (Since the program is range-restricted, it won’t generate
something more general than A.) Conversely, suppose that A is inferred. Then the
rules used in the bottom-up evaluation are negation-free, and can be used in the top-
down resolution to generate a successful leaf in T'y4.

Trivial, since no tree is failed, and no tuples OS5 hold.

Suppose that there is an atom B such that Tp is neither successful nor failed, and
=B is the leftmost atom in a node M of T4. Denote the branch from A to M by D.
Let the sequence of rules used in the resolution to M be rq,...,r,,, and suppose =B
appears in the body of r; where 1 < j < m. Let C be the head of r;. Every subgoal
to the left of =B in r; must be positive.

By the construction of WFR(P) and by part (a) above, d(C, B)8 holds for # correspond-
ing to the composition of most general unifiers used on D from r;4; to r,. Suppose
that the literal C’, with which C was resolved using rule r;, was introduced in rule r;,
where j' < j. (If C' was the root A, then clearly d(A, B) holds.) Let the head of r;
be C". By the construction of WFR(P), d(C", B)f' holds, where #' is the composition
of most general unifiers used from 74, to r,. We can continue this process up the
branch until we eventually reach the root A, thus demonstrating that d(A, B) holds.
Since B is neither successful nor failed, neither B nor OB hold (the latter trivially),
and so d'(A, B) cannot have been inferred. Hence dd(A, B) holds at the first fixpoint.

Conversely, suppose dd(A, B) holds for some ground tuples A and B. Then d(A, B)
holds, but d'(A, B) does not. Because d'(4, B) does not hold, it follows that neither
B nor OB is true (the latter trivially), and so by part (a) Tg is neither successful nor
failed.

By tracing the rewritten rules used to derive d(A, B), we can construct a branch in
T4 of the corresponding original rules, yielding a node with leftmost literal =B. By
the construction of WFR(P), all rewritten rules used to derive d(A, B) cannot have
any subgoals of the form 0OS, and so we can use part (a) above to construct the
corresponding branch.

45

Induction Step. Suppose that the claim holds for iterations up to 7 — 1. We shall show
that the claim holds for 7.

(a) Similar to part (a) of the base case above, except that we use the induction hypothesis
for negative subgoals for the correspondence between trees T4 that are failed and tuples
OA.

(b) Suppose T4 is shown to be failed at stage . Then at some point during the previous
iteration the tree T4 became completely expanded, and all its leaves were failed at
the end of the 7 — 1st iteration. Since all its leaves were failed at this step, 74 is not
successful after iteration 1—1, and also there is no node in 7'y with a leftmost literal =B
such that the status of Tz as either successful or failed is unknown. By the induction
hypothesis OA holds.

Conversely, suppose OA is inferred at step . Then at step i — 1, dd(A, B) did not hold
for any B and A did not hold. By the induction hypothesis, T4 is not successful, and
there are no nodes in T4 with leftmost literal =B such that the status of Tg as either
successful or failed is unknown. By the definition of global SLS-resolution, T4 will be
labelled failed at the ith iteration.

(c) Similar to part (c) of the base case above, except that we use the induction hypothesis
for negative subgoals for the correspondence between trees T4 that are failed and tuples
OA.

In particular the correspondence holds at the final fixpoint, at which time all SLP-trees
are fully constructed, and the evaluation of WFR(P) is complete. Soundness and (partial)
completeness then follow from Theorem 4.1. Since only finitely many tuples can be generated
in the evaluation of WFR(P), it follows that this bottom-up evaluation terminates. |

Proof of Theorem 6.1.

The proof is by induction on the stage n = («, 3,77). We assume that given identical pairs of
terms to unify, both procedures produce the same most general unifier. We assume that both
procedures rename variables to new variables in the same way, so that we can demonstrate
the correspondences above without requiring further renaming of variables. When choosing
most general elements from a set of atoms, we assume that the same choice is made by
both QSQR/SLS and magic sets.!! We also assume that the bottom-up evaluation employs
regional duplicate elimination, as described in Section 5.1.

Base Case. Suppose the initial query is on the predicate p. At n = (0,0,0) the
QSQR/SLS procedure constructs a new root p()?) of polarity corresponding to that of
the query on p. At n = (0,0,0) in the evaluation of SMR(P) either magic(p(X),+) or
magic(p()?), —) is inferred, depending on the polarity of p in the query. Part (c¢) or part (d)
of the correspondence will thus hold, and the remainder of the parts above trivially hold at
stage (0,0,0).

Induction step. We divide this proof into several parts, corresponding to each step of
the method. We assume that the claim above is true for stages before n and prove that the

" These assumptions are not critical, but they make the proofs of our results slightly easier as we do not
have to worry about renaming variables.

46

claim is also true at stage n. We shall only consider those items from the correspondence
above that change during the particular step under consideration; the remaining correspon-
dences obviously hold by the induction hypothesis.

v = 1. Only correspondence (e) is affected. Suppose that p(Z) is the head of r;. Note that

the variables in Y are precisely the variables in Z.

(<)

Suppose supj_o(}_})H is inferred at stage n. Then the rewritten rule

—

supjo(Y) < magic(p(Z),)

must have fired due to the insertion of some tuple magic(p(W), sign) between m and n,
where 6 is the restriction of the most general unifier of Z and W restricted to variables
in Z , and sign is + or —. By the induction hypothesis, the root p(W) of polarity equal
to sign is constructed between m and n. Hence at stage n the root p(W) is resolved
with r; using most general unifier ¢ to yield a child goal G'. 6 is the restriction of ¢
to variables in Z, and is thus the associated substitution at G’. Since supj_o(l_})e was
not subsumed by a previous sup,, tuple, and is most general among those generated
at stage n, 0 is not subsumed by any substitution in C},, and is most general among
those generated at stage n.

Suppose that at stage n the root p(W) of polarity sign is resolved with r; to yield a
child goal G’ with associated substitution . Then the root p(W) of polarity equal
to sign must have been constructed between m and n. By the induction hypothesis,
magic(p(W), sign) must have been inferred between m and n. Thus the rewritten rule

SUpj.o(?) — magic(p(Z),)

fires at stage n yielding the tuple supjlo(?)ﬁ, since @ is the restriction of the most general

unifier of W and Z to variables in Z. Since 6 is not subsumed by any substitution
in Cj;, and is most general among those generated at stage n, sup;,(Y)0 was not
subsumed by a previous sup;, tuple, and is most general among those generated at
stage n.

v = 2. Only correspondence (a) is affected.

(<)

Suppose p(X') is inferred at stage n. Then for some j, the rewritten rule

— —

p(Z) A Supj.Sj (Y)

fires due to the insertion of some tuple SUP;.s; (?)(ﬁ between m and n, where ¢ contains

substitutions for variables in Y only. Suppose that p(Z) is the head of r;. Then
Z¢ = X, no tuple at stage m is more general than p()?), and p()z) is a most general
representative of the tuples generated at stage n. Hence there is a root node G with
atom p(V) having an empty descendent G’ constructed between m and n such that ¢
is the substitution associated with G, r; is the associated rule of G’, by the induction
hypothesis. Hence the lemma p(Z Yo = p()?) is inferred. Also, p()z) is not an instance

of a lemma at stage m, and p(X) is a most general representative of the lemmas inferred
at stage n.

47

(=)

—

Suppose that the lemma p(X) is inferred at stage n. Then there is a root node G with
atom p(V) having an empty descendent G’ constructed between m and n. Further, if
r; is the associated rule at G', having head p(Z), and ¢ is the substitution associated
with G, then Z¢ = X, p()?) is not an instance of a lemma at stage m, and p()?)
is a most general representative of the lemmas inferred at stage n. By the induction
hypothesis, sup; . (Y) is inferred between stages m and n. Hence the rewritten rule

p(Z) + sup;,, (V)
fires, giving the tuple p(Z)(b = p()z) at stage n. Also, p(X:) is not an instance of a

tuple at stage m, and p(X) is a most general representative of the tuples inferred at
stage n.

v = 3. Correspondences (c) and (d) are affected.

(<)

Assume that magic(p(X), sign) is inferred at stage n, where sign is either + or —. Then
for some rule r; the rewritten rule

magic(p(Z), sign) < sup;;_(¥).

fired due to the insertion of a new tuple supj_i,l(?)e between m and n, where p(Z)
(appearing negatively if sign is —) is the ith subgoal of r; and Z0 = X. Also
magz'c(p()?), sign) is not subsumed by any previous tuple, and is a most general rep-
resentative of the magic tuples inferred at stage n. By the induction hypothesis, some
non-root goal node is constructed between m and n with leftmost literal p(Z)8 = p(X)
(appearing negatively if sign is —). Since there are no previous magic tuples more
general than magic(p(X), sign), there are no previous root nodes of the same polarity
that subsume p(X). Further, p(X) is most general among those nodes not subsumed
by previous roots of polarity sign, and so a new root p()z) of polarity equal to sign is
constructed at stage n.

—

Suppose that a new root p(X) of polarity equal to sign is constructed at stage n. Then
there are no previous root nodes of the same polarity that subsume p()?). Further,
p()_(') is most general among those nodes of polarity sign not subsumed by previous
roots. Therefore some non-root goal node G must have been constructed between m

—

and n with leftmost literal p(X) (appearing negatively if sign is —). Let 6 be the
associated substitution at G, let r; be the associated rule at G, and suppose that p(Z2)
was the ith subgoal of r;, so that p(Z2)# = p(X). By the induction hypothesis, a new

tuple supj_i,l(Y)H was inferred between m and n. Hence, at stage n the rewritten rule
magic(p(Z), sign) < sup;; 1(Y).

fires, yielding the tuple magic(p(Z), sign)0 = magic(p(X), sign). Since p(X) is not
subsumed by any previous root of the same polarity, and is most general among the

new tuples of polarity sign, magic(p(X), sign) is not subsumed by any previous tuple,
and is a most general representative of the magic tuples inferred at stage n.

48

v = 4. Only correspondence (f) is affected. Let S(X) be the ith subgoal of r;, where S(X)

is of

—

the form either p(X) or —p(X). Let S'(X) be the “rewritten version” of S(X), namely

— — — — — —

p(X) if S(X) = p(X), Op(X) if S(X) = —p(X) and p is an IDB predicate, and ~ p(X) if

S(X

(<)

—

) = —p(X) and p is an EDB predicate.

Suppose supj_i(}_/')ﬁ is inferred at stage n, where 1 < ¢ <'s;. Then supj_i(}_/')ﬁ must have
been generated when the rewritten rule

sup;; (Z) < Sup;i (Y/); S'(X)

fired due to the insertion of a new sup;,; , or new S’ tuple (or both) between m and n
such that the join in the rule above is successful.

Case 1: Suppose that there is a new tuple supj_i_l(?)gb inserted between m and n
that participates in the join above. By the induction hypothesis there is a goal node
G’ with associated substitution ¢ whose leftmost literal is S(X)¢. Since the join is
successful, there must be an instance of S’ (X'), say S’ (X")¢9 that has been inferred
(or in the case of a negated EDB predicate, that is known to be true). By the induction
hypothesis, S (X')¢ is present as a lemma, and hence will be resolved with G’ at stage
n to give a new goal node G" with associated substitution being the restriction of ¢

to G”.

Case 2: Suppose that there is a tuple supjli_l(?)(b, and that between stages m and n

a new tuple, say S’ ()_(')# is inferred and participates in the join above. (Since this
S’ tuple is newly inferred, it cannot involve an EDB predicate.) By the induction
hypothesis, there is some goal node G’ with associated substitution ¢ whose leftmost
literal is S(X')¢. Also by the induction hypothesis S()Z')1 is inferred as a lemma
between m and n, and hence will be resolved with G’ to give a new goal node G” with

associated substitution being the restriction of ¢ to G".

In both cases we need to argue that § = ¢ restricted to G”. By the definition of join,
0 = ¢ restricted to the variables in Y. By the definition of restriction (Definition 4.4),
the variables Y of the supplementary predicate are exactly the variables that ¢ are
restricted to, and so # = ¢ restricted to G”.

Finally, since supj_i(?)ﬁ is not subsumed by any previous tuple, and is most general
among those inferred at stage n, it follows that € is not subsumed by any substitution
associated with a node previously in Cj;, and that it is most general among those
generated at stage n.

Suppose that the goal G’ is constructed from G at stage n by resolving the leftmost
literal S (X")¢ of G with a lemma L' of the same polarity, with most general unifier
1 yielding an associated substitution # at G'. G has associated substitution ¢, and
0 = ¢ restricted to G'. Then either G was constructed between m and n, or L' was
established as a lemma between m and n, or both.

Case 1: G was constructed between m and n. By the induction hypothesis, supj_i_l(?)gb
is inferred between m and n. Also by the induction hypothesis, there is a (rewritten)
tuple S’(X)¢t corresponding to the lemma L'.

49

’)/:

Case 2: L' was established between m and n. By the induction hypothesis, there is a
tuple supj_i_l(}_})qb corresponding to the goal G. Then the (rewritten) tuple S'(X)¢1)
corresponding to L' must have been constructed between m and n, by the induction
hypothesis.

In either case, the rewritten rule
sup;;(Z) « sup;,;_1(Y), S"(X)

fires at stage n of the semi naive evaluation, to yield supj_i(Z), since the most general
unifier of S¢ and S’ is ¥. By the definition of restriction, the restriction of ¢ to the
variables in Z is 6, so the tuple supj_i(Z)0 is generated at stage n. Finally, since 0 was
not subsumed by any previous member of Cj;, and is most general among the new

additions to Cj,, supj_i(Z)6 is not be subsumed by another sup,; tuple.

5. Correspondences (g), (h) and (i) are affected. With an appropriate mechanism for

evaluating new “depends positively,” “depends negatively” and “settled” relationships, as
per the comments after Algorithm 4.1, these correspondences follow by similar arguments to
the case v = 4 above.

’Y:

(<)

6. Correspondence (b) is affected. Let n' = («, 3, 5).

Suppose that the rule
OP « magic(P, —),VQ(dn(P, Q) = dn'(Q)),~ P

fires at stage n, yielding a tuple OP that was not inferred previously. Then at stage n/,
magic(P, —) holds, P does not hold, and dn'(Q) holds for every @ for which dn(P, Q)
holds. By the induction hypothesis, there is a root P of negative polarity at n’. Since
the tuple P is not inferred by n', it follows by the induction hypothesis that there is no
lemma for P at n’. Further, since VQ(dn(P, Q) = dn'(Q)) holds at n’, by the induction
hypothesis it follows that for every () that P depends negatively upon, @ is settled.
Hence =P will be inserted as a lemma at stage n, having not been inserted previously.

Suppose that =P is added as a lemma at stage n, but was not a lemma before n. Then
at stage n’, there was a root of negative polarity for P such that there is no lemma
for P, and every ground atom () that P depended negatively upon is settled. By the
induction hypothesis, magic(P, —), YQ(dn(P,Q) = dn/(Q)) and ~ P hold at n’, and
thus the rule

OP <+ magic(P, —),VQ(dn(P, Q) = dn'(Q)),~ P

fires at n. Since =P had not been inserted as a lemma previously, OP is inferred for
the first time at stage n. |

References

1]

BALBIN, I., MEENKASHI, K., AND RAMAMOHANARAO, K. An efficient labelling algorithm for

magic set computation on stratified databases. Tech. Rep. 88/1, Dept. of Computer Science,
University of Melbourne, 1988.

90

2]

3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BALBIN, 1., PORT, G. S., AND RAMAMOHANARAO, K. Magic set computation for on stratified
databases. Tech. Rep. 87/3, Dept. of Computer Science, University of Melbourne, 1987.

BALBIN, I., PORT, G. S., RAMAMOHANARAO, K., AND MEENKASHI, K. Efficient bottom-

up computation of queries on stratified databases. Journal of Logic Programming 11 (1991),
295-344.

BANCILHON, F., MAIER, D., SAGiv, Y., AND ULLMAN, J. D. Magic sets and other strange
ways to implement logic programs. In Proceedings of the Fifth ACM Symposium on Principles
of Database Systems (1986).

BANCILHON, F., AND RAMAKRISHNAN, R. An amateur’s introduction to recursive query
processing strategies. In 1986 ACM-SIGMOD Conf. on Management of Data (1986), pp. 16—
52.

BEERI, C., AND RAMAKRISHNAN, R. On the power of magic. Journal of Logic Programming
10 (1991), 255-300. Preliminary version appeared in the 6th ACM Symposium on Principles
of Database Systems, 1987.

BEERI, C., RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. Magic implementa-
tion of stratified logic programs. (manuscript), 1989.

BRODSKY, A., AND SAGIV, Y. Inference of monotonicity constraints in Datalog programs. In
Proceedings of the Eighth ACM Symposium on Principles of Database Systems (1989).

Bry, F., Dec. 1989. (personal communication).

Bry, F. Logic programming as constructivism: A formalization and its application to
databases. In Proceedings of the Fighth ACM Symposium on Principles of Database Systems
(1989).

CHAN, D. Constructive negation based on the completed database. In Proc. Fifth International
Conference and Symposium on Logic Programming (1988).

CHEN, W., KIFER, M., AND WARREN, D. S. HilLog: A first order semantics for higher-
order logic programming constructs. In Proc. North American Logic Programming Conference
(1989).

DIETRICH, S., AND WARREN, D. S. Dynamic programming strategies for the evaluation of
recursive queries. Tech. Rep. 85/31, Computer Science Department, State University of New
York at Stony Brook, 1985.

GELFOND, M., AND LirscHITZ, V. The stable model semantics for logic programming. In
Proc. Fifth International Conference and Symposium on Logic Programming (1988).

Kewmp, D. B., AND TOPOR, R. W. Completeness of a top down query evaluation procedure
for stratified databases. In Proc. Fifth International Conference and Symposium on Logic
Programming (1988).

KEerisiT, J. M., AND PuciN, J. M. Efficient query answering on stratified databases. In
Proceedings of the International Conference on Fifth Generation Computer Systems (1988).

KouralTis, P. G. The expressive power of stratified programs. Information and Computation
90 (1991), 50-66.

ol

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

LLovyp, J. W. Foundations of Logic Programming, 2nd ed. Springer-Verlag, New York, 1987.

Purpps, G. Glue: A deductive database programming language. Tech. Rep. TR-CS-90-
14, Kansas State University, 1990. Proceedings of the NACLP’90 Workshop on Deductive
Databases.

Purpps, G., DERR, M., AND Ross, K. A. Glue-Nail: A deductive database system. In
Proceedings of the ACM-SIGMOD International Conference on Management of Data (1991).

PrzyMUSINSKA, H., AND PrRZYMUSINSKI, T'. C. Weakly stratified logic programs. Funda-
menta Informaticae 18 (1990), 51-65. Preliminary version appeared in Proc. Fifth Interna-
tional Conference and Symposium on Logic Programming, 1988.

Przymusinski, T. C. On the declarative semantics of deductive databases and logic

programs. In Foundations of Deductive Databases and Logic Programming (Los Altos, CA,
1988), J. Minker, Ed., Morgan Kaufmann, pp. 193-216.

PrzyMUsSINSKI, T. C. Every logic program has a natural stratification and an iterated fixed
point model. In ACM Symposium on Principles of Database Systems (1989).

PrzymusiNski, T. C. On constructive negation in logic programming. In Proceedings, North
American Conference on Logic Programming (1989).

RAMAKRISHNAN, R. Magic templates: A spellbinding approach to logic programs. Journal of
Logic Programming 11 (1991), 189-216.

RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. Rule ordering in bottom-up
fixpoint evaluation of logic programs. In Proceedings of the International Conference on Very
Large Databases (1990).

RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. Coral: A deductive database

programming language. In Proc. 18th Int. Conf. on Very Large Databases (Vancouver, Canada,
Aug. 1992).

Ross, K. A. Modular stratification and magic sets for Datalog programs with negation. In
Proceedings of the Ninth ACM Symposium on Principles of Database Systems (1990).

Ross, K. A. Modular acyclicity and tail recursion in logic programs. In Proceedings of the
Tenth ACM Symposium on Principles of Database Systems (1991).

Ross, K. A. A procedural semantics for well-founded negation in logic programs. Journal
of Logic Programming 13, 1 (1992), 1-22. Preliminary version appeared in the Proceedings of
the Eighth ACM Symposium on Principles of Database Systems, 1989.

SEKI, H. On the power of alexander templates. In Proceedings of the Fighth ACM Symposium
on Principles of Database Systems (1989).

SEKI, H., AND ITOH, H. A query evaluation method for stratified programs under the extended
CWA. In Proc. Fifth International Conference and Symposium on Logic Programming (1988).

ULLMAN, J. D. Bottom-up beats top-down for datalog. In Proceedings of the Eighth ACM
Symposium on Principles of Database Systems (1989).

ULLMAN, J. D. Principles of Database and Knowledge Base Systems. Computer Science
Press, Rockville, MD, 1989. (Two volumes).

92

[35] VAN GELDER, A., Ross, K. A., AND ScHLIPF, J. S. Unfounded sets and well-founded
semantics for general logic programs. JACM 38, 3 (1991), 620-650.

[36] VIEILLE, L. Recursive axioms in deductive databases: The query-subquery approach. In Proc.
First International Conference on Ezpert Database Systems (1986).

[37] VIEILLE, L. A database-complete proof procedure based on SLD-resolution. In Proc. Fourth
International Conference on Logic Programming (1987).

93

