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ABSTRACT
As more and more query processing work can be done in
main memory, memory access is becoming a significant cost
component of database operations. Recent database re-
search has shown that most of the memory stalls are due
to second-level cache data misses and first-level instruction
cache misses. While a lot of research has focused on re-
ducing the data cache misses, relatively little research has
been done on improving the instruction cache performance
of database systems.

We first answer the question “Why does a database system
incur so many instruction cache misses?” We demonstrate
that current demand-pull pipelined query execution engines
suffer from significant instruction cache thrashing between
different operators. We propose techniques to buffer database
operations during query execution to avoid instruction cache
thrashing. We implement a new light-weight “buffer” oper-
ator and study various factors which may affect the cache
performance. We also introduce a plan refinement algorithm
that considers the query plan and decides whether it is ben-
eficial to add additional “buffer” operators and where to put
them. The benefit is mainly from better instruction locality
and better hardware branch prediction. Our techniques can
be easily integrated into current database systems without
significant changes. Our experiments in a memory-resident
PostgreSQL database system show that buffering techniques
can reduce the number of instruction cache misses by up to
80% and improve query performance by up to 15%.

1. INTRODUCTION
As random access memory gets cheaper and new 64-bit CPUs
join the PC family, it becomes affordable and feasible to
build computers with large main memories. More and more
query processing work can be done in main memory. On
the other hand, recent advances in the speed of commod-
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ity CPUs have far outpaced advances in memory latency.
Main memory access is becoming a significant — if not
the major — cost component of database operations [3, 6].
Recent database research has demonstrated that the domi-
nant memory stalls are due to the data cache misses on the
second-level cache and the instruction cache misses on the
first-level instruction cache [3, 20, 22].

A flurry of recent research has focused on reducing the data
cache misses in database systems, such as designing new
cache-conscious algorithms [29, 6, 33], new cache-conscious
index structures [26, 27, 18, 8, 9] and new data storage
models [2]. However, relatively little research has been done
on improving the instruction cache performance.

As demonstrated in [3, 20, 17, 5], database workloads ex-
hibit instruction footprints that are much larger than the
first-level instruction cache. A conventional demand-pull
query execution engine generates a long pipeline of execu-
tion operators. In this model, an operator returns control
to its parent operator immediately after generating one tu-
ple. The instructions for this operator get evicted from the
cache to empty cache memory space for the parent oper-
ator. However, the evicted instructions are required when
generating the next tuple, and have to be loaded into the
cache again. The resulting instruction cache thrashing may
reduce the overall query performance significantly.

In this paper, we focus on improving the instruction cache
performance for conventional demand-pull database query
engines. We aim to achieve fast query execution through-
put. At the same time, we do not want to make substantial
modifications to the existing database implementations.

Given a query plan we add a special “buffer” operator in
certain places between a parent operator and a child oper-
ator. During query execution, each buffer operator stores a
large array of pointers to intermediate tuples generated by
the child operator. Rather than returning control to the par-
ent operator after one tuple, the buffer operator fills its ar-
ray with intermediate results by repeatedly calling the child
operator. Control returns to the parent operator once the
buffer’s array is filled (or when there are no more tuples).
When the parent operator requests additional tuples, they
are returned from the buffer’s array without executing any
code from the child operator.

The net effect of this approach is that parent and child oper-



PCPCPCPCPCPCPCPCPCPCP. . . PCCCCCPPPPPCCCCCPPPPP. . .
(a) Original (b) Buffered

Figure 1: Operator Execution Sequence

ators are no longer interleaved. The child operator is called
repeatedly, until the buffer is full, then the parent operator
is called repeatedly, until the buffer is empty. This change
is illustrated in Figure 1 with a buffer size of 5 tuples. A P

denotes an execution of the parent operator code, while a C

denotes an execution of the child operator code.

The interleaving of the parent and child operators causes
instruction-cache interference, and instruction cache thrash-
ing when the combined size of the two operators exceeds the
size of the smallest, fastest cache unit. By changing the exe-
cution pattern to that of Figure 1(b), we can ensure that at
least four out of every five executions of an operator find the
operator’s code cache resident, assuming that the operator
fits within the smallest, fastest cache unit. In the event that
multiple consecutive operators in the pipeline can fit in the
cache, we buffer once above the group of operators, rather
than above each operator in the group.

While there is extra handling for the new buffer operators,
we expect to benefit from improved instruction spatial and
temporal locality, and thus to incur a smaller number of
instruction cache misses. We demonstrate experimentally
that in some situations there is a net benefit to buffering.

Buffering query execution is not always beneficial. The deci-
sion is based on the interaction between consecutive opera-
tors and depends on the properties of related operators (such
as cardinality estimates from the optimizer, etc.). We intro-
duce a plan refinement algorithm that infers the instruction
footprints and decides whether query execution needs to be
buffered and where to buffer. We study various factors that
affect cache performance and provide architecture-sensitive
guidelines for choosing buffering parameters.

We built an experimental prototype on top of the Post-
greSQL database system [31]. PostgreSQL implements a
large variety of database operations. During execution, the
executor processes a tree of “plan nodes”. The plan tree
is essentially a demand-driven pipeline of tuple processing
operations. Each node, when called, will produce the next
tuple in its output sequence, or NULL if no more tuples are
available. If the node is not a primitive relation-scanning
node, it will have child node(s) that it calls in turn to ob-
tain input tuples.

Our results show that conventional demand-pull pipelined
query execution has a high instruction cache miss rate. By
simply adding additional buffer operators, we can reduce
the number of instruction cache misses by up to 80%. As a
side effect, buffering also improves the accuracy of hardware
branch prediction and decreases the number of branch mis-
predictions. Overall, our techniques improve the query per-
formance by up to 15% over a memory-resident database.

The rest of this paper is organized as follows. We discuss
related work in Section 2. We briefly discuss hierarchical
memory systems in Section 3. We describe the conven-
tional demand-driven pipelined query execution engine and

demonstrate why it is suboptimal for instruction cache per-
formance in Section 4. In Section 5, we present a new buffer
operator and the detailed data structures. We derive guide-
lines for when and where to place buffer operators in Sec-
tion 6. In Section 7, we present detailed experiments and
validate our algorithms. We conclude in Section 8.

2. RELATED WORK
Compilers may contain schemes to improve instruction cache
performance. A code layout algorithm is proposed in [23],
which uses profile guided feedback information to contigu-
ously layout the sequence of basic blocks that lie on the most
commonly occurring control flow path. Gloy et al. extend
the algorithm to consider the temporal relationship between
procedures in addition to the target cache information and
the size of each procedure [10]. A cache line coloring algo-
rithm inspired by the register coloring technique is proposed
in [13] to reduce the number of conflict misses in the instruc-
tion cache. Similar code layout techniques are used for both
decision support and OLTP workloads in [24, 25] to improve
instruction fetch bandwidth.

Several techniques for non-sequential instruction prefetch-
ing are proposed in [30, 7, 19]. Prefetch instructions are
inserted by the compiler to prefetch branch targets. Previ-
ous work [4] presented a hardware mechanism to implement
call graph prefetching. This scheme analyzes the call graph
of a database system and prefetches instructions from the
function that is deemed likely to be called next.

Although the list of references presented here is not exhaus-
tive, it is representative of techniques proposed to improve
instruction cache performance at the compiler level. For
database systems, however, these techniques do not solve
the fundamental problem: large instruction footprints dur-
ing database query execution, leading to a large number of
instruction cache misses. The challenge is to reduce the ef-
fective size of the query execution footprints without sacrific-
ing performance. Since the programming-language compiler
is not invoked for each new query, one must try to resolve
the issue at the “query compiler” level, i.e., during query
optimization.

A block oriented processing technique for aggregation, ex-
pression evaluation and sorting operations is proposed in [21].
Each operation is performed on a block of records using a
vector style processing strategy to achieve better instruction
pipelining and minimize instruction count and function calls.
The impact of instruction cache performance is not stud-
ied. Function calls are cheap if the instructions are found
already in the first-level cache, compared with instruction
cache misses. Further, their techniques require a complete
redesign of database operations so that all operations return
blocks of tuples. Finally, the techniques of [21] do not con-
sider the operator footprint size when deciding whether to
process data in blocks. As a result, it is possible that “too
much” block-oriented processing takes place.

Zhou and Ross use a similar buffer strategy to batch accesses
to a tree-based index [33]. The performance benefits of such
buffering are due primarily to improved data cache hit rates.
The impact of buffering on instruction-cache behavior is not
described.



3. MEMORY HIERARCHY
Modern computer architectures have a hierarchical memory
system, where access by the CPU to main memory is accel-
erated by various levels of cache memories. Cache memories
are designed based on the principles of spatial and tempo-
ral locality. A cache hit happens when the requested data
(or instructions) are found in the cache. Otherwise, the
CPU loads data (or instructions) from a lower-level cache
or memory, and incurs a cache miss. There are typically
two or three cache levels. The first level (L1) cache and the
second level (L2) cache are often integrated on the CPU’s
die. Instruction and data caches are usually separated in
the first level and are shared in the second level. Caches are
characterized by three major parameters: capacity, cache-
line size, and associativity. Latency is the time span that
passes after issuing a data access until the requested data is
available in the CPU. In hierarchical memory systems, the
latency increases with the distance from the CPU. Figure 2
shows cache memory systems for Pentium 4.

In this paper, we will be looking to minimize L1 instruction
cache misses. While L2 cache sizes are expected to increase
with future generations of machines, the L1 cache sizes will
probably not increase at nearly the same rate. Larger L1
caches are slower than smaller L1 caches, and may slow down
the processor clock [3].

Branch Prediction

2nd  Level Unified Cache

System Bus

1st  Level
Data Cache

Fetch/
Decode

Trace Cache Execution Retirement

Memory

Figure 2: Pentium 4 Cache Memories

To decode instructions faster, modern processors (like the
Pentium 4) implement a Trace Cache [14, 16], instead of a
conventional L1 instruction cache. The Trace Cache stores
decoded micro-operations and delivers them to the out-of-
order execution logic. Most instructions in a program are
fetched and executed from the Trace Cache. Upon a trace
cache miss, the instruction address is submitted to the in-
struction translation lookaside buffer (ITLB), which trans-
lates the address into a physical memory address before the
cache lookup is performed. An ITLB miss requires mem-
ory accesses to the OS page directory and tables in order to
translate the address. Given the physical memory address,
the architecture fetches and decodes the instruction from the
L2 cache. Unlike data cache miss latency, instruction cache
miss latency is difficult to overlap, because L1 instruction
cache misses cause a serial bottleneck in the pipeline.

CPU Pentium 4 1.8 GHz
OS Redhat 7.3 (Linux 2.4.18)

Main-memory size 1 GB RDRAM
Trace Cache 12 K micro-ops

ITLB 128 entries
L1 data cache size 16 KB

L1 data cacheline size 64 bytes
L2 cache size 256 KB

L2 cacheline size 128 bytes
Trace Cache miss latency > 27 cycles

L1 data miss latency 18 cycles
L2 miss latency 276 cycles

Branch misprediction latency > 20 cycles
Hardware prefetch Yes

C Compiler GNU’s gcc 3.2

Table 1: System Specifications

In modern processors, data memory latency can be hidden
by correctly prefetching data into the cache. On some ar-
chitectures, such as the Pentium 4, common access patterns
like sequential access are recognized by the hardware, and
hardware prefetch instructions are automatically executed
ahead of the current data references, without any explicit
instructions required from the software.

Conditional branch instructions present another significant
problem for modern pipelined CPUs because the CPUs do
not know in advance which of the two possible outcomes
of the comparison will happen. CPUs try to predict the
outcome of branches, and have special hardware for main-
taining the branching history of many branch instructions.
For Pentium 4 processors, the trace cache integrates branch
prediction into the instruction cache by storing traces of in-
structions that have previously been executed in sequence,
including branches. The same cache line can include both
a branch and its target, with a zero penalty for executing
the branch along the predicted direction. The pipeline for a
Pentium 4 is 20 stages deep, and the minimal branch mis-
prediction penalty is at least 20 cycles [14].

Table 1 lists the specifications of our experimental system.1

The 12K µops Trace Cache has a similar hit rate to an 8K
to 16K byte conventional instruction cache [14]. We are
unable to measure the trace cache miss latency directly. Be-
sides loading the instruction from the L2 cache, we assume
that at least one extra cycle is spent on decoding the instruc-
tion, two cycles are spent for each of the two queues before
instruction decoding and the trace cache, and another four
cycles are needed to reinitialize the pipeline [14]. We add up
these costs to obtain the lower bound for trace cache miss
latency. In our experimental results that measure the rela-
tive importance of branch misprediction effects, we assume
that a branch misprediction incurs a 20 cycle delay. Even
though the latencies are approximate, they can give us a
sense of the relative contribution of different kinds of stalls.

4. PIPELINED QUERY EXECUTION
A demand-driven pipelined query execution model is used
by most commercial systems and by research projects such
as System R [28], Starburst [12] and Volcano [11]. A thor-

1We use LMbench [1] to measure the L1 and L2 latency.



ough survey can be found in [11]. In this method, each op-
erator supports an open-next-close iterator interface. The
open() function initializes the state of the iterator by allo-
cating buffers for its inputs and output, and is also used to
pass in arguments such as selection predicates that modify
the behavior of the operator. The next() function calls the
next() function on each input node recursively and processes
the input tuples until one output tuple is generated. The
state of the operator is updated to keep track of how much
input has been consumed. When all output tuples have been
produced through repeated calls to the next() function, the
close() function deallocates the state information and per-
forms final housekeeping.

The iterator interface supports pipelining of results natu-
rally. The decision to pipeline or materialize input tuples
is encapsulated in the operator-specific code that processes
input tuples. Pipelining requires much less space for inter-
mediate results during execution. As pointed out in [11],
demand-pull pipelined query execution model can be ex-
ecuted by a single process or thread. This approach has
several advantages such as avoiding inter-process communi-
cation between operators, avoiding process synchronization
and scheduling, minimizing data copies, keeping only the
current data items in memory, and performing lazy opera-
tor evaluation.

However, as for the instruction cache performance, demand-
driven pipelined query plans exhibit poor instruction locality
and have bad instruction cache behavior. For a query plan
with a pipeline of operators, all the operators’ instructions
on the pipeline must be executed at least once to gener-
ate one output tuple. Most database operators have fairly
complex implementations. Therefore, the query execution
shows large instruction footprints, as confirmed in [3, 20].
If the instruction cache is smaller than the total instruction
footprint, every operator finds that some of its instructions
are not in the cache. By loading its own instructions into
the instruction cache, capacity cache misses occur to evict
instructions for other operators from the cache. However,
the evicted instructions are required by subsequent requests
to the operators, and have to be loaded again in the future.
This happens for every output tuple and for every operator
in the pipeline. The resulting instruction cache thrashing
can have a severe impact on the overall performance.

A less obvious deficiency of the current query execution
model is a large number of branch mispredictions. Each
operator checks for nullability, datatypes, comparison, over-
flow, underflow, error conditions, etc. per record. Correct
branch predictions are based on the previous branch his-
tory. If the pipeline is long, the CPU must keep track of
histories of a large number of branches. If the total number
of branches exceeds the capacity of the hardware (usually
between 512 and 4K branch instructions) then the branch-
history unit may thrash. Additionally, different database
operators often share common functions. These functions
may have different branching patterns when called by dif-
ferent operators. Executing the whole pipeline of operators
together mixes different branch patterns and reduces branch
prediction accuracy.

We illustrate instruction cache thrashing by executing a sim-

SELECT SUM(l_extendedprice *

(1 - l_discount) *

(1 + l_tax)) as sum_charge,

AVG(l_quantity) as avg_qty,

COUNT(*) as count_order

FROM lineitem

WHERE l_shipdate <= date ’1998-11-01’;

Figure 3: Query 1

ple example query based on the TPC-H schema [32]. The
SQL query is shown in Figure 3. This pricing summary re-
port query provides a summary pricing report for all lineit-
ems shipped on a given date. The query lists totals for dis-
counted extended price plus tax and average quantity. The
Postgres query execution plan contains an “Aggregation”
operator above a “TableScan” operator over the “lineitem”
table. This kind of plan would be typical of most database
systems. Within the “TableScan” operator, the predicate on
shipdate is evaluated and projection is performed on satis-
fied tuples. The query is executed on a TPC-H benchmark
database with factor 0.2 in Postgres. We exclude effects
from the I/O system by using a large buffer pool and by
keeping the table “lineitem” in memory.
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Figure 4: Instruction Cache Thrashing Impact

Figure 4 shows the breakdown results for the simple exam-
ple query. Modern machines have hardware performance
counters to measure such statistics without any loss in per-
formance.2 We explicitly measure the number of L1 instruc-
tion cache (trace cache) misses and L2 unified cache misses
during the execution. Most of the L2 cache misses are data
cache misses. The impact of L1 data cache misses are rather
small and we don’t report them in this paper. In the graph
we show the “cache miss penalty” as the total time taken
if each cache miss takes exactly the measured cache miss
latency. This is an approximation for the data cache miss
penalty because some computation may be happening dur-
ing the data cache miss wait time, and so the “L2 data cache
miss penalty” bar on the graph may also hide some concur-
rent computation. The L1 instruction cache miss penalty
is also an approximation (an underestimate) because we use
the lower bound of its latency in Section 3. We also explicitly
measure the number of mispredicted branches and calculate
the penalty. Despite these caveats, the performance graph

2We use the Intel VTune Performance Tool [15] to measure
hardware counters in this paper.



will give us a sense of the contribution of cache-related la-
tency to the overall response time, and thus the opportunity
for improvement by processing query in batches.

For this simple query, the first-level instruction cache miss
penalty represents a fair proportion of the total time. By
reducing the instruction cache misses, we expect to reduce
ITLB misses and possibly improve hardware branch pre-
dictions. There is thus an opportunity for improving the
instruction cache behavior.

5. A NEW BUFFER OPERATOR
To avoid the instruction cache thrashing problem, we pro-
pose implementing a new light-weight buffer operator using
the conventional iterator interface. A buffer operator simply
batches the intermediate results of the operator(s) below it.
We do not require modifications to the implementations of
any existing operators.

Given a query execution plan, we first organize the tree of
operators into execution groups. Execution groups are can-
didate units of buffering (batching). We explicitly add a
new buffer operator above each execution group if buffering
is necessary. An execution group may be a single operator,
or may contain several consecutive operators in the pipeline.
Larger execution groups correspond to doing less buffering.
For now, we assume that the mapping from a query plan to
a tree of execution groups is given, and defer the discussion
of how to choose execution groups until Section 6.

Agg
sum, avg, count

TableScan
lineitem

Agg
sum, avg, count

Buffer

TableScan
lineitem

(a) Original Plan (b) Buffered Plan

Figure 5: Query Execution Plan

Figure 5(a) shows the original query plan of the example
query in Section 4. Both “Aggregation” and “TableScan”
operators represent an execution group individually. Fig-
ure 5(b) shows the buffered plan formed by adding a buffer
operator between the two execution groups. There is no
need to put another buffer operator above the top opera-
tor because the output tuples are sent to the client directly.
Note that we don’t change the original operators.

GetNext()
1 if empty and !end of tuples
2 then while !full
3 do child. GetNext()
4 if end of tuples
5 then break
6 else store the pointer to the tuple
7 return the next pointed tuple

Figure 6: Pseudocode for Buffer Operator

The new buffer operator supports the open-next-close inter-
face. Both open() and close() functions are simple. They al-
locate/deallocate an array of tuple pointers and local buffer-
ing state information. Figure 6 show the pseudocode of the
GetNext() function for buffer operators. A buffer operator
maintains two states: whether end-of-tuples is received from
the child operator and whether its buffered tuples have been
consumed. Like other operators, when the GetNext() func-
tion of a buffer operator is called for the first time, it begins
to retrieve a tuple from the child operator. However, instead
of returning the tuple immediately, a buffer operator saves
the pointer to the previous tuple and continues to retrieve
another tuple. A buffer operator won’t return any tuple un-
til either end-of-tuples is received from the child operator or
it collects a full array of tuples. Subsequent requests will be
filled directly from its buffered array until all the buffered
tuples have been consumed and the operator begins to re-
trieve another array of tuples.

Parent
Operator

Buffer
Operator

Child
Operator

GetNext()

Buffer
Pool

Figure 7: Buffer Operator

Figure 7 shows a buffer operator with size 8. The operator
maintains a buffer array which stores pointers to previous
intermediate tuples from the child operator. Tuples stay in
the child operator’s memory space.3 Subsequent requests to
the GetNext() function can be answered by returning the
tuple pointed to by the top pointer in the array.

The point of buffering is that it increases temporal and spa-
tial instruction locality below the buffer operator. When the
child operator is executed, its instructions are loaded into
the L1 instruction cache. Instead of being used to gener-
ate one tuple, these instructions are used to generate many
tuples. As a result, the memory overhead for bringing the
instructions into the cache and the CPU overhead of decod-
ing the instructions is smaller, amortized over many tuples.
Since this memory latency is a noticeable component of the

3In Postgres, an operator generates a tuple in a heap within
the operator’s memory space. The responsibility for deal-
locating this tuple when it is no longer needed is delegated
to the parent (or an ancestor) operator. In principle, no
matter where the tuples stay, the buffer operator only main-
tains tuple pointers and requires the buffered tuples not to
be deallocated until consumed by the parent operator. If a
query engine was implemented in such a way that operators
could store only one intermediate tuple at a time, then our
buffer structure would have to copy the tuple, rather than
a pointer to the tuple, and incur some additional overhead.



total cost, buffering can improve the query throughput, i.e.,
the rate at which the result is processed.

Another possible benefit of buffering is better hardware branch
prediction. By repeatedly executing the child operator, the
pattern of branching for a shared piece of code displays more
temporal predictability. Hence, the hardware branch predic-
tion accuracy is improved.

An important aspect of a buffer operator is that it does not
copy tuples from the child operator, as shown in Figure 7.
The overhead of copying would reduce the benefit of buffer-
ing instructions. The space overhead for a buffer operator
is low, but it requires more space from the child operator to
store the intermediate tuples. As we shall see in Section 7,
the overhead of implementing a buffer operator is small.

The choice of buffer size can be important. As the buffer
size increases, fewer instruction cache misses occur, due to
the improved instruction locality. On the other hand, larger
buffers require more memory to store the intermediate tuples
and could incur more L2 data cache misses. We investigate
this issue experimentally in Section 7.4.

6. BUFFERING STRATEGIES
We now address the question of where to add buffer opera-
tors. Every buffer operator incurs the cost of maintaining
operator state and pointers to tuples during execution. If
this cost is significant compared with the performance gain
from better instruction locality, then there is a potential
for “too much” buffering. On the other hand, if the total
footprint of an execution group is larger than the L1 instruc-
tion cache, then repeatedly generating tuples may incur a
large number of instruction cache misses. Thus there is also
a potential for “too little” buffering. (The original query
execution plan for Query 1 in Figure 3 can be seen as an
example of “too little” buffering.)

Operators with small cardinality estimates are unlikely to
benefit from putting new buffer operators above them. For
example, in a foreign-key index-nested-loop join, the inner
index scan operator is executed only once for each outer tu-
ple. The costs of buffering probably outweigh the benefits
in such a case. We thus exclude operators with small cardi-
nality estimates from being part of any execution group.

The cardinality threshold at which the benefits outweigh the
costs can be determined using a calibration experiment on
the target architecture. This threshold can be determined
once, in advance, by the database system. The calibration
experiment would consist of running a single query with and
without buffering at various cardinalities. Query 1 would be
a good choice of calibration query because the child oper-
ator and the parent operator each fit in the L1 instruction
cache, while the combination of the two exceeds the L1 in-
struction cache. The cardinality at which the buffered plan
begins to beat the unbuffered plan would be the cardinality
threshold for buffering. We empirically investigate the effect
of cardinality in detail in Section 7.3.

While buffering is useful for an operator pipeline, there are
some operators, such as sorting and hash-table building,
that break the pipeline. A complete execution of the child

operator is needed before the parent operator can progress.
In essence, these operators already buffer query executions
below them. There is no need to put blocking operators
within any execution groups.

Ideally, one would like to come up with a cost-based way
of estimating the expense of adding additional buffer oper-
ators to a query pipeline. We illustrate such an approach
based on the L1 instruction cache size in Section 6.1. In
Section 6.2 we introduce a plan refinement algorithm that
refines query plans produced by the optimizer so as to add
buffer operators as necessary.

6.1 Instruction Footprint Analysis
The basic strategy is to break a pipeline of operators into
execution groups so that the instruction footprint of each ex-
ecution group combined with the footprint of a new buffer
operator is less than the L1 instruction cache size. By do-
ing so, we expect to eliminate instruction cache thrashing
within an execution group. Therefore, we need to be able to
accurately estimate the effective footprint of query operators
and execution groups.

The naive way to estimate footprint size is to statically study
the source code to generate static call graphs. The binary
sizes of database functions can be computed after compila-
tion. Then, for each module, we could sum up the sizes of
all the functions that are possibly called within this module
as its instruction footprint. However, this method is inaccu-
rate (it gives an overestimate of the size) because not all the
branches in the source code are taken, and some functions
in static call graphs are never called.

An ideal footprint estimate can only be measured when ac-
tually running the query, in an environment typical of the
query being posed. However, it would be too expensive to
run the whole query first just for estimating footprint sizes.

We observe empirically that in Postgres, the execution path
is usually data independent. No matter which data is used,
the same set of functions are almost always executed for
each module. Thus, we can calibrate the core database sys-
tem once by running a small query set that covers all kinds
of operators. By studying the dynamic call graphs for dif-
ferent modules, we can compute their combined instruction
footprints. The results can be reused for other queries.

We also observe empirically that different modules share a
fair number of functions. Therefore, to compute the foot-
prints for execution groups with more than one operator,
we do not simply add up the footprints for the individual
operators. When combining the footprints, we make sure to
count common functions only once.

6.2 Overall Algorithm
We first calibrate the database system by running a small
set of simple queries which cover all the operator types, and
measure the instruction footprint for each operator.

Our plan refinement algorithm accepts a query plan tree
from the optimizer as input. It produces as output an equiv-
alent enhanced plan tree with buffer operators added. Our
algorithm for choosing where to buffer proceeds as follows:



1. Consider only nonblocking operators with output car-
dinalities exceeding the calibration threshold.

2. A bottom-up pass is made of the query plan. Each leaf
operator is initially an execution group. Try to enlarge
each execution group by including parent operators or
merging adjacent execution groups until any further
action leads to a combined footprint larger than the L1
instruction cache. When that happens, finish with the
current execution group and label the parent operator
as a new execution group, and continue the bottom-up
traversal.

3. Add a buffer operator above each execution group and
return the new plan.

The plan refinement algorithm improves the absolute perfor-
mance of a query plan by adding buffers where appropriate.
The relative improvement generated depends on the con-
tribution of instruction cache misses to the overall query
latency. The relative improvement will be highest when
operators are simple, and instructions are executed only a
few times per output tuple. Conversely, an operator that
is compute-intensive (but still smaller than the L1 cache)
will spend more CPU cycles on computation, decreasing the
relative impact of a reduction in instruction cache misses.

7. EXPERIMENTAL VALIDATION
We validate our techniques using an experimental proto-
type built on PostgreSQL 7.3.4. (Commercial systems prob-
ably have even larger instruction footprints.) We imple-
ment a new buffer operator as described in Section 5, with-
out changing the implementation of other operators. The
database is written in C and is compiled by GNU’s gcc com-
piler with the highest optimization level. We are running
queries on a Pentium 4 system with the specifications listed
in Table 1. We also ran the experiments on a Sun UltraSparc
and an AMD Athlon machine, and obtained improvements
in performance. We report the detailed performance just
for the Pentium 4, since it is a widely-used commodity pro-
cessor, and since tools for measuring detailed performance
statistics are available.

All of the queries are executed on a TPC-H benchmark
database with scale factor 0.2. We allocate a large buffer
pool so that all tables can be memory-resident. We also al-
locate enough memory for sorting and hashing operations
so that all queries can be answered within memory without
I/O interference.

We also implement the post-optimization plan refinement
algorithm described in Section 6.2 which decides where to
place buffers. The overhead of this algorithm is very small.
In the experiments, we exclude the query optimization time
and only report the query execution time.

We first analyze footprints for the Postgres database system
in Section 7.1. We validate our buffering strategies based on
the instruction footprint analysis in Section 7.2. We study
the effects of the execution group output cardinality and
buffer size in Section 7.3 and Section 7.4. More complex
queries are studied in Section 7.5. Finally, we report the
results for TPC-H queries in Section 7.6

Instruction
Footprints (bytes)

TableScan
without predicates 9K

with predicates 13K
IndexScan 14K

Sort 14K
NestLoop
Join

(inner) TableScan 11K
(inner) IndexScan 11K

Merge Join 12K

Hash Join
build 10K
probe 12K

Aggregation

base 10K
COUNT < 1K
MAX 1.6K
MIN 1.6K
SUM 2.7K
AVG 6.3K

Buffer < 1K

Table 2: Postgres Instruction Footprints

7.1 Postgres Footprint Analysis
As described in Section 6, we calibrate the Postgres database
system by running a small set of simple queries which scan
tables, select aggregate values, perform index lookups or
join two tables. The execution plans of those queries cover
all kinds of database operators. We analyze footprints by
module. A module can be a function or part of a function.
For example, a “TableScan” operator is a module, and we
treat build and probe phases of a “HashJoin” operator as
two separate modules.

We generate runtime call graphs for each module using In-
tel VTune [15]. A runtime call graph shows the runtime
function caller/callee relationships and provides a group of
functions that are invoked within the module. We add up
the binary sizes of these functions as the total instruction
footprint for this module. (The binary size of each function
can be retrieved after compilation.) By doing so, we avoid
including some rare-case functions into the module’s foot-
print. Still, we may overestimate the instruction footprint
size because even if a function is called, not all the instruc-
tions of the function are actually executed. In Postgres,
we observe that most functions are smaller than 1K bytes.
Therefore, even if some instructions are not executed, there
is a good chance that the cachelines containing these in-
structions get loaded anyway when nearby instructions in
the same cachelines are executed.

Table 2 lists the footprints for all the major modules in Post-
gres. Most modules have instruction footprints larger than
10K bytes. The instruction footprint for an “Aggregation”
operator includes the base footprint of 10K bytes, plus foot-
prints for additional aggregate functions. The footprint for
a buffer operator is very small. Note there may be a fair
amount of functions shared between different modules. The
footprint computation for combined modules should take
this into account.

The Pentium 4 uses a trace cache instead of a conventional
L1 instruction cache. The size of the trace cache is measured
in micro-operations (µops) rather than in bytes of instruc-



tion code. Because X86 instructions are variable-sized, we
are unable to map the function binary size directly into the
number of distinct µops used by the function. Instead, we
use the estimate of [14], which states that a 12K µops trace
cache is equivalent to an 8KB to 16KB L1 instruction cache.
Since our footprint analysis is conservative, and may slightly
overestimate the instruction footprint size, we use the up-
per estimate of 16KB in our experiments. We refer to this
estimate as the “L1 instruction cache size” in the following
discussion.

7.2 Validating Buffer Strategies
We now validate our buffering strategies based on instruc-
tion footprints. The query shown in Figure 8 counts the
number of records in the table “lineitem” whose shipdate is
less than a particular date.

SELECT COUNT(*) as count_order

FROM lineitem

WHERE l_shipdate <= date ’1998-11-01’;

Figure 8: Query 2

0

0.5

1

1.5

2

2.5

Original Query Plan Buffered Query Plan

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Other Cost Branch Misprediction Penalty

L2 Cache Miss Penalty Trace Cache Miss Penalty

Figure 9: Execution Time Breakdown for Query 2

The original query plan is similar to Figure 5(a). The foot-
prints for both the operators “TableScan” and “Aggrega-
tion” are small for this query. The combined footprint is
around 15K bytes, slightly less than the size of the L1 in-
struction cache. This suggests that both operators should
be in the same execution group and that no buffer operator
is necessary between the two operators.

We compare the original query plan and a buffered query
plan with a buffer operator added between the two oper-
ators. The buffered query plan is similar to Figure 5(b).
Figure 9 shows the query execution time breakdown. There
is no dramatic decrease in trace cache misses for the buffered
plan, because the original plan already shows a small num-
ber of trace cache misses. The buffered plan incurs slightly
more L2 cache misses but slightly fewer branch mispredic-
tions. The net performance of the buffered plan is slightly
worse than the original plan. This result confirms (a) that
the overhead of buffering is small, and (b) that buffering
within a group of operators that already fit in the trace
cache does not improve instruction cache performance.

We reexamine Query 1 in Figure 3. Query 1 differs from
Query 2 in that it has more complex aggregation functions.

Both queries have similar query plans. The footprint anal-
ysis suggests the combined footprint is around 23K bytes,
larger than L1 instruction cache size. Therefore, the plan
refinement algorithm recommends adding a buffer operator
between the operators “TableScan” and “Aggregation”.
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Figure 10: Execution Time Breakdown for Query 1

Figure 10 shows approximate query execution time break-
down for both the original plan and the buffered plan. As
expected, the buffered plan reduces the number of trace
cache misses by 80%. By improving the instruction locality,
the buffered plan also improves the hardware branch pre-
dictions and reduces the number of branch mispredictions
by 21%. The overhead of extra buffering introduces slightly
more L2 cache misses, because the “TableScan” operator
needs more memory space to store the buffered intermediate
tuples. Though the impact is relatively small, the number
of ITLB misses is reduced by 86% as well. The net perfor-
mance of the buffered plan is 12% faster than the original
plan.

7.3 Cardinality Effects
There is extra handling for new buffer operators during
query execution. More initialization and housekeeping work
are involved. As discussed in Section 6, if an execution group
is executed only a few times, instruction cache thrashing
won’t be noticeable.
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Figure 11: Cardinality Effects

We use Query 1 as a query template to calibrate our system,
in order to determine a cardinality threshold for buffering.



Our experience indicates that the threshold is not very sen-
sitive to the choice of operator. By changing the predicate
selectivity in the operator “TableScan”, we can control the
cardinality of the output of the table scan operator, thus
controlling the number of times that the operator “TableS-
can” is invoked. Figure 11 shows the query performance of
both the original and buffered plans for different cardinali-
ties.

Buffered plans get faster than original plans when the cardi-
nalities are larger than 600. Thus, the cardinality threshold
discussed in Section 6 would be 600 on the system used for
the experiments.

In this example, the relative benefits of buffering are small
when the predicate is selective. The “TableScan” operator
consumes many input tuples to generate one output tuple,
and thus there is a relatively large amount of computation
(without instruction cache misses) per output tuple. As a
result, the contribution of instruction cache misses to the
overall cost is small. The benefits of buffering become more
obvious as the predicate becomes less selective. In the previ-
ous example of Query 1, we achieve a 12% overall improve-
ment when the selectivity is close to 1.

7.4 Buffer Size
Another buffering parameter is the size of array used to
buffer tuple pointers. The size is set during operator initial-
ization. The number of reduced trace cache misses is roughly
proportional to 1/buffersize. Once the buffer is of moderate
size, there is only a small incentive to make it bigger.

A bigger buffer size means that the child of the buffer oper-
ator requires more memory to store intermediate tuples (the
memory requirement for the buffer array itself is compara-
tively small), and thus incurs more L2 data cache misses. It
is tempting to conclude that these L2 misses may be impor-
tant for large buffer sizes, and to choose a buffer size so that
the total memory requirement is less than L2 cache size.
However, the intermediate tuples are stored (and retrieved)
only once, and that access is usually sequential. As a re-
sult, machines such as the Pentium 4, which prefetch ahead
of the current reference for sequential access patterns, can
hide the memory latency.
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Figure 12: Varied Buffer Sizes

Figure 12 shows buffered query performance as a function
of the buffer size for Query 1. When the buffer size is very
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Figure 13: Execution Time Breakdown for Varied
Buffer Sizes

small, the overhead of buffering is relatively high, and the
buffered plan performs slower. As the buffer size increases,
the buffered plan shows better performance with better in-
struction locality. Once the buffer size is larger than 1000,
no obvious benefit is shown for even larger buffer sizes.

Figure 13 shows the execution time breakdown for different
configurations. The trace cache miss penalty drops as the
buffer size increases. Buffer operators incur more L2 data
cache misses with large buffer sizes. However, since the data
is allocated (or accessed) sequentially, hardware prefetching
hides most of the L2 data cache miss latency. These results
how that we can achieve good query performance with a
moderate buffer size.

A disadvantage of large buffer sizes is for query plans which
use large data structures, such as an in-memory hash table,
index etc. In those cases, a large buffer competes with other
data structures for cache memory. Therefore, there is a po-
tential performance drop with an increasing buffer size. We
use a buffer size of 1000 in our experiments.

7.5 More Complex Queries
We use a two-table join query to demonstrate how buffer op-
erators can be used in more complex situations. Figure 14
shows a query that joins the tables “lineitem” and “order”
and lists the total price and the average discount. We explic-
itly force the optimizer to choose three different join meth-
ods. Different query plans have different buffering schemes.

SELECT sum(o_totalprice),

count(*),

avg(l_discount)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey

AND l_shipdate <= date ’1998-11-01’;

Figure 14: Query 3

The plans using nested loop joins are shown in Figure 15.
For the buffered plan, footprint analysis suggests two exe-
cution groups (marked with boxes). Note that there is no
buffer operator added above the “IndexScan” operator, even
though its footprint is larger than the L1 instruction cache.
This is because it is a foreign-key join and the optimizer
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Figure 15: NestLoop Joins

knows that at most one row that matches each outer tuple.
Therefore, no buffer operator is needed.

Figure 15(c) shows query execution time breakdown for both
the original plan and buffered plan. The buffered plan re-
duces the trace cache misses by 53% and the branch mispre-
dictions by 26%.

Figure 16 shows the plans using a hash join and the query ex-
ecution time breakdown. The “Hash” operator builds a hash
table for the “orders” table on orderkey. The “HashJoin”
operator implements the probe phase of the join. Both the
build and probe phases are complex enough that they should
be considered separately. The build operator, “Hash”, is
blocking and is not considered in any execution group. The
combined footprint of a “TableScan” and either phase is
larger than the L1 instruction cache. Therefore, a buffer op-
erator is added for each “TableScan” operator. The buffered
plan reduces the trace cache misses by 70% and the branch
mispredictions by 44%.

Figure 17 shows the plans using merge joins and query exe-
cution time breakdown. Since the “Sort” operator is block-
ing, there is no need to add a buffer operator above it. Un-
like the nested loop buffered plan in Figure 15(b), we do
add a buffer operator above the “IndexScan” operator. The
buffered plan reduces the trace cache misses by 79% and the
branch mispredictions by 30%.

Original Plan Buffered Plan Improvement
NestLoop 30.64 sec 26.1 sec 15%
Hash Join 12.65 sec 10.72 sec 15%
Merge Join 15.01 sec 13.21 sec 12%

Table 3: Overall Improvement

Original Plan Buffered Plan
NestLoop 2.01 1.71
Hash Join 1.39 1.18
Merge Join 1.31 1.16

Table 4: CPI Improvement

For all three join schemes, buffered plans lead to more L2
cache misses. But the overhead is much smaller than the

performance gain from the trace cache and branch predic-
tion. The number of ITLB misses is reduced by 60%, 86%,
86% for three join schemes respectively, although the impact
of ITLB misses on performance is relatively small. Table 3
shows the overall improvement for the three schemes.

Table 4 compares the Cost-Per-Instruction (CPI) for the
original and buffered plans. It shows that better instruction
cache performance leads to lower CPI. Both the original
and buffered plans have almost the same number (less than
1% difference) of instructions executed. This confirms that
buffer operators are light-weight.

7.6 TPC-H Queries
We examined all 22 TPC-H queries on Postgres. For most
queries, Postgres chooses to use subplans or to materialize
the intermediate result for subqueries, which diminishes the
benefit of explicit buffering. Also, some queries (such as
Query 1) have a very expensive sorting operator, which de-
creases the percentage gain. Further, for a buffer operator
to have noticeable effects, it requires a large output cardi-
nality for its child operator. However, most TPC-H queries
are relatively selective.

Original Plan Buffered Plan Improvement
Query 1 71.26 sec 66.28 sec 7%
Query 5 6.04 sec 5.75 sec 4%
Query 6 4.02 sec 3.62 sec 10%
Query 14 13.76 sec 12.06 sec 12%

Table 5: TPC-H Queries

Nevertheless, Table 5 shows a noticeable improvement for
some of the expensive TPC-H queries that do not involve
subqueries, and do not have very selective predicates.

8. CONCLUSION AND FUTURE WORK
The conventional demand-pull pipeline query execution model
suffers from instruction cache thrashing between complex
operators. We propose techniques to buffer query execution
of query plans to exploit instruction cache spatial and tem-
poral locality. We implement a new buffer operator over the
existing open-next-close interface. Our implementation does
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Figure 17: Merge Joins

not change the implementation of other operators. Buffer
operators are especially useful for complex queries which
have large instruction footprints and large output cardinali-
ties. Our plan refinement algorithm traverses the query plan
in a bottom-up fashion and makes buffering decisions based
on footprints and estimated cardinalities. The new buffered
plans can reduce instruction cache misses by up to 80% and
improve the query performance by up to 15%.

One direction for future work is to integrate buffering within
the plan generator of a query optimizer. With a suitable
detailed cost model, the optimizer can consider instruction
cache performance when choosing a optimal plan.

We have considered operators as units of buffering. For op-
erators that have very large footprints, it could be beneficial
to break the operator into several sub-operators and execute
them in stages.

Another direction for future work is to reschedule the execu-
tion so that operators that are of the same type are sched-
uled together for complex query plans. Even though we have
to materialize some of the intermediate results, we expect
to save instruction cache misses by sharing the instructions
between different instances of the same operators.
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