
Realizing Parallelism in Database Operations:
Insights from a Massively Multithreaded Architecture

John Cieslewicz∗

Columbia University

johnc@cs.columbia.edu

Jonathan Berry†

Sandia National Laboratories

jberry@sandia.gov

Bruce Hendrickson†

Sandia National Laboratories

bahendr@sandia.gov

Kenneth A. Ross‡

Columbia University

kar@cs.columbia.edu

ABSTRACT
A new trend in processor design is increased on-chip support
for multithreading in the form of both chip multiprocessors
and simultaneous multithreading. Recent research in data-
base systems has begun to explore increased thread-level
parallelism made possible by these new multicore and mul-
tithreaded processors. The question of how best to use this
new technology remains open, particularly as the number of
cores per chip and threads per core increase. In this paper
we use an existing massively multithreaded architecture, the
Cray MTA-2, to explore the implications that a larger de-
gree of on-chip multithreading may have for parallelism in
database operations. We find that parallelism in database
operations is easy to achieve on the MTA-2 and that, with
little effort, parallelism can be made to scale linearly with
the number of available processor cores.

1. INTRODUCTION
Increased hardware support for multiple threads, in the

form of chip multiprocessors and simultaneous multithread-
ing, has emerged as a new trend in hardware design. The
question for database researchers is this: How best can we
use this increasing multithreading capability to improve data-
base performance in a manner that scales well with machine
size? Though the current state of the art in commodity pro-
cessor design is only a handful of processor cores on a chip,
each supporting a few thread contexts at most, this paper
looks forward and targets an extreme case: database design
on a system with hardware support for thousands of thread
contexts. We conduct our experiments on existing hardware,
the Cray MTA-2 [8]. We find that the large amount of multi-

∗
Funding provided by a U.S. Department of Homeland Security

Fellowship administered by Oak Ridge Institute for Science and
Education.
†
Sandia is a multiprogram laboratory operated by Sandia Corpo-

ration, a Lockheed-Martin Company, for US DOE under contract
DE-AC-94AL85000.
‡
Supported by NSF Grant IIS-0534389.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Second International Workshop on Data Management on
New Hardware (DaMoN 2006), June 25, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-466-9/06/25 ...$5.00.

threading offered by the MTA-2 alleviates the struggle that
developers now face in overcoming the memory bottleneck
present in most systems.

In recent years, the performance bottleneck challenging
database researchers has shifted from disk access to mem-
ory access [2]. Steadily falling memory prices coupled with
the arrival of 64-bit processors have resulted in commodity
database systems where most operations can be done “in-
memory,” thus avoiding I/O bottlenecks, but increasing the
relative cost of memory access. In this paper we will fo-
cus on these in-memory database operations with respect to
decision support operations.

Database workloads are data intensive, rather than com-
putationally intensive. Therefore, they do not benefit from
faster chip clock rates as much as scientific workloads be-
cause the frequent memory accesses cause the processor to
stall [2]. To combat this inefficiency, much recent research
has focussed on cache-conscious data structures and algo-
rithms for database operations (e.g., [16, 18, 19, 22]). This
research has improved instruction level parallelism through
intelligent access patterns that employ nonblocking memory
accesses to overlap computation with memory operations
without stalling the processor.

The hardware trend toward multithreading for improved
performance, including multicore and multithreaded chip
designs [1, 11, 13, 17, 21, 23, 24] may provide the means of
mitigating the weaknesses of the memory hierarchy for mem-
ory intensive workloads. The ease with which multithread-
ing techniques scale as the amount of on-chip threading in-
creases will be of paramount importance to all applications,
including databases. Today a dual-core chip is typical, but
chips featuring many cores, some with simultaneous mul-
tithreading in each core, are entering the market [13, 24].
As the amount of on-chip, shared-memory multithreading
hardware support increases, it is up to researchers in ap-
plications such as databases to develop effective techniques
to take advantage of more thread contexts and realize the
performance benefit that this trend has to offer.

We use the MTA-2 to gain insight into executing data-
base operations on a system with many threads. Though the
MTA-2 is not multicore, its high degree of shared-memory
multithreading is a good proxy for a multicore architecture
with many thread contexts per core. The MTA-2 has no
cache. Instead, it uses parallelism to tolerate memory la-
tency. The MTA-2 has been shown to be effective at mitigat-
ing the effects of high latency memory operations in several
domains [3, 4]. Such a system design and its accompany-
ing programming model also provide numerous advantages

CPU speed 220 MHz
Maximum system size 256 processors
Threads per processor 128
Context switch cost 1 cycle
Maximum memory size 1 TB (4 GB/P)
Network topology Modified Cayley
Network injection rate 220 MW/P

Table 1: MTA-2 System characteristics

to database management system implementers, including a
familiar high-level programming model, and simpler mem-
ory and thread management. In the subsequent sections, we
will describe the implementation of core database operators
on the MTA-2, provide an experimental evaluation of these
operators, and discuss design factors important to scalable
multithreaded database operations.

2. THE CRAY MTA-2
This section provides a high level description of the MTA-

2 system and some of the implications these system char-
acteristics have on database operator design. For a more
detailed treatment of the MTA-2 system see [7, 8].

The MTA-2 processor uses multithreading to overlap com-
putation with high latency memory operations. Each pro-
cessor has 128 thread contexts and the cost of switching
between threads is one cycle. In fact, the 21-stage MTA-2
pipeline is designed so that a context switch must occur each
cycle because only one instruction from a particular thread
may be in the pipeline at a time. The obvious implication
is that serial code will execute very slowly; therefore, multi-
threaded programming is required whenever possible. Every
cycle, the processor examines the 128 thread contexts and
chooses a thread to issue from in a fair manner. If no thread
has an instruction that can begin execution, the processor
must issue a “phantom” or “nop” instuction. The new Sun
T1 processors use a similar multithreading technique in each
core, switching among four threads on each clock cycle to
hide the latency of L1 cache accesses [24]. Though the MTA-
2’s design targets higher latency main memory accesses, the
emphasis on parallelism is similar. Each MTA-2 processor is
capable of issuing a memory reference every clock cycle, and
the memory system is similarly capable of satisfying a mem-
ory request from each processor in each cycle. A key trait of
the MTA-2 is lightweight, fine-grained synchronization that
enables parallelism by allowing the efficient locking of single
words of memory as well as atomic, in-memory increment
operations.

Table 1 shows characteristics of the MTA-2 [8]. Because
there is no cache, all memory is distant and accessing that
memory is a high latency operation. Rather than combat-
ting the long latency, the MTA-2 memory system is designed
to have a high bandwidth. Though each memory operation
takes many clock cycles to complete, many of them can be
in flight at the same time and the high degree of on-chip
multithreading overlaps computation with this latency.

Because the Cray MTA-2 uses multithreading instead of
a cache to overcome memory latency, programmers can fo-
cus on parallelism, rather than cache-conscious algorithms
and data structures such as CSS-Trees, CSB+-Trees, and
column-wise or decomposed storage models [15, 16, 18, 19,
22]. Though the MTA-2 hashes the physical address space
to distribute memory references among the memory units,

the important characteristic is that its multithreaded de-
sign makes shared memory parallelism scale well. The ex-
plicit partitioning and message passing required by shared-
nothing parallel machines is avoided.

Database operations are inherently parallel, that is, pro-
cessing an individual tuple rarely directly involves other tu-
ples from the relation. This observation is not novel and
existing parallel database systems take advantage of par-
allelism in database operations at different levels of gran-
ularity. Parallelism on the MTA-2, however, is different.
Whereas the aforementioned parallel systems are usually
shared-nothing, which means that each processor has its own
memory and data is explicitly partitioned among the nodes,
the MTA-2 is an example of a shared-everything system since
each processor can directly access all of the memory in the
system. DeWitt and Gray [9] argue that shared-nothing
parallel systems work best for database workloads. With
the advent of the chip multiprocessor, it is important to
revisit the shared-everything architecture and identify pro-
gramming models and techniques which will result in the
best performance when even a single chip supports a high
degree of multithreading.

3. EXPERIMENTAL WORKLOAD
We conducted experiments involving a number of typi-

cal database operations to investigate their performance on
the MTA-2. For the data layout we used a Decomposed
Storage Model (DSM), also known as column-wise record
storage [16, 22]. Record layout for the MTA-2 should be
irrelevant since it has a uniform memory access cost and
no cache. For completeness, we repeated a few experiments
with row-based storage and found the results to be similar.

3.1 Select
We explored the scaling properties of a selection operation

on the MTA-2. These results are briefly discussed in Sec-
tion 4.1, but are also described in [7] as a primer on MTA-2
parallelism.

3.2 Join
The join operator combines two relations based on some

comparison of attributes. There are many techniques for
performing a join; the two algorithms we explored on the
MTA-2 are the index join and the hash join.

The index join employs an index structure, such as a B+-
Tree, to perform the join. The “inner” relation is indexed
and then probed by the “outer” relation.

The pointer following required to traverse an index struc-
ture such as a B+-Tree performs badly on conventional pro-
cessors because there is little spatial locality, assuming that
either the index is larger than the cache or other work com-
petes for cache resources. Also, loading the next node in an
index traversal is dependent on the outcome of loading ear-
lier tree nodes. Therefore, single-threaded execution stalls
often during an index probe. We expect an index join using
a B+-Tree data structure to exhibit good processor utiliza-
tion on the MTA-2 because the the MTA-2 will not stall
during these data dependent loads.

The hash join builds a hash table on the inner relation
as opposed to using a pre-existing index, as in the index
join. The outer table then probes the hash table to com-
pute the join. Examining a location in the hash table is a
random access to memory that is unlikely to benefit from

SELECT(Tuple* in, Tuple* out,

int n, int test, int k){
int indexes[k];

Tuple *outs[k];

for(int i = 0; i < k; i++){
indexes[i] = 0;

outs[i] = out + i*n/k;

}

#pragma mta assert parallel

for(int i = 0; i < n; i ++)

if(predicate(in[i].value, test)){
int outIndex = i % k;

int tupIndex =

int fetch add(&indexes[outIndex], 1);

outs[outindex][tupIndex] = in[i];

}
}

Figure 1: A simplified implementation of select with
implicitly partitioned output. The first loop initial-
izes the k output indexes, while the second loop per-
forms the select.

a cache. Following a chain of items that hash to the same
location can require data dependent loads. Partitioned join
algorithms improve the performance of the hash join, but
with the MTA-2 we aim to avoid this partitioning step.

4. EXPERIMENTAL RESULTS
DeWitt and Gray identify two metrics by which to judge a

parallel system: (1) speedup and (2) scaleup [9]. The goal of
a parallel system is to speedup and scaleup linearly, that is,
doubling the amount of hardware reduces the execution time
by a factor of two, and doubling the hardware and problem
size results in an unchanged execution time, respectively.
We find that the MTA-2 exhibits both linear scaleup and
speedup on database workloads.

For all of our experiments we used a 40 processor Cray
MTA-2 with the same system specifications shown in Ta-
ble 1. All experiments were implemented in C++ and com-
piled using Cray’s MTA-2 compiler version 1.6.5.

4.1 Parallelizing Database Operations
Here we present an overview of parallelism on the MTA-

2 (for more details see [7]). With a few hints from the
programmer, the MTA-2 compiler automates the creation
of parallel code for loops with no loop-carried dependen-
cies, first-order linear recurrences, and reductions. A loop-
carried dependency is a variable assignment that depends
upon other iterations of the loop. For example, if every it-
eration can be executed correctly in isolation, then the loop
is easily made parallel. A recurrence is a special type of a
loop-carried dependency that exists if values computed in
one loop iteration are used by a subsequent iteration. If the
recurrence is not complicated the compiler can still create a
parallel loop. A reduction is similar to an aggregation and
involves a loop-carried dependency that reduces many val-
ues to one value. For example, if a sum is being calculated,
the dependency is in the variable accumulating the sum. If
the compiler recognizes this pattern, it provides each thread
with its own accumulation variable and then combines the
results after the parallel processing is complete. To accom-
plish parallelism in database operations we will use implicit

Figure 2: A comparison of selection throughput on
the MTA-2 with (denoted k-select) and without im-
plicit output partitioning. k is the number of output
partitions. Note that the partitioning enables better
scaling.

parallelism and eliminate loop-carried dependencies. An im-
plicitly parallel loop must meet three criteria:

1. The loop must have only one entrance and one exit.
2. The loop must be controlled by a single variable that

is incremented or decremented by an invariant amount
on each iteration.

3. The loop exit condition must involve only the afore-
mentioned variable and a loop invariant.

A for loop will generally meet all three criteria, provided
there are no means of breaking out of the loop. Within the
loop we apply the predicate in the case of a select or we probe
the B+-Tree or hash table in the case of an index or hash
join, respectively. The for loop control variable indexes the
probe table, whose tuples can be processed in parallel. At
run time, the for loop iterations will be partitioned among
many threads on the available processors, thus implicitly
partitioning the input as well.

There are two common and related challenges facing the
implementor: (1) coordinating the output of the operation
and (2) avoiding memory hotspots. An index variable rep-
resenting the next output location is a loop-carried depen-
dency because the output location of the current result de-
pends on the previous tuples processed. This dependency
can be eliminated by using an int fetch add instruction,
which is provided by the MTA-2 and performs the increment
atomically in memory. We found that although loop-carried
dependencies were eliminated and parallelism enabled, the
scaling of the database operations was poor. This was be-
cause the output index created a hotspot, a location in mem-
ory that is accessed so frequently that it creates a bottleneck
too severe for even a high degree of multithreading to over-
come. Our solution to the hotspot problem was to implic-
itly partition the output into k partitions, each with its own
output index that is incremented using int fetch add. The
output partition and index to use is chosen by input index

mod k, thus distributing the memory accesses among the k

output index variables.
Figure 1 shows a simplified version of the parallel select

operator with implicit output partitioning and Figure 2 dis-
plays the throughput performance of the selection operation
on the MTA-2. These figures show that the use of implicit
partitioning enables good scaling, but also introduces some
overhead, in the form of additional instructions per loop it-
eration. This overhead is very pronounced in the selection

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Number of Processors

Speedup

Standard k=1 k=2 k=4 k=8 Ideal

0

20

40

60

80

100

120

140

0 10 20 30 40 50

Number of Processors

Throughput

(MTuples / Second)

Standard k=1 k=2 k=4 k=8

(a) Speedup (b) Throughput

Figure 3: Hash Join on the MTA-2. k is the number of output partitions.

operation because selection is relatively simple and has few
instructions per loop iteration, whereas the overhead is neg-
ligible for more complex operations such as the hash join
(Figure 3b).

The output partitioning relieves the hotspot and allows
for good scaling, but results in two new problems: (1) how
to choose k and (2) what to do with partitioned output.
Luckily the answers are easy. The value of k depends on the
number of processors available in the system because more
processors mean more threads potentially accessing the same
output index variable. We found that overestimating k did
not significantly affect performance, so a good rule would
be to use a value of k assuming all processors in the system
are available at runtime. In terms of partitioned output,
operators can be designed to take partitioned input, or the
output partitions can be merged together in parallel. We
found that both options scale well.

The parallelism outlined above does not preserve tuple
order. This is an important observation because the ordering
characteristic is a valuable feature used by query optimizers.
If the output of any operator needs to be ordered, the sorting
of the intermediate result can also be done in parallel.

4.2 Hash Join
We implemented the Radix Hash Join algorithm used in

MonetDB [16], which has been shown to have good cache
performance on conventional processors. Because the MTA-
2 does not use a cache, we eliminated the radix clustering
portion of the algorithm that organizes the data in a more
cache-conscious way. The execution time of this algorithm
accounts for the hash table build phase as well as the probe
phase of execution, both of which are implemented as par-
allel algorithms. We used the technique described in Sec-
tion 4.1 to implement the probe phase of the hash join in
parallel. Building the hash table in parallel is described be-
low in Section 4.2.1.

The workload consists of two DSM relations with the
schema: <id, value>, both integers. Each relation consists
of eight million tuples. The relations were designed such that
each tuple from the outer relation joined only once with the
inner relation. The tuples were uniformally distributed.

Figure 3a shows speedup of the hash join as the number of
available processors increases and Figure 3b shows the hash
join throughput. The unoptimized implementation scales
linearly through about ten processors. The barrier to scal-

Figure 4: Hash join utilization of a system with 40
MTA-2 processors. The red points represent avail-
able system capacity and the blue points are the
utilization of that capacity. This data was collected
using Cray’s traceview program.

ing is that incrementing the output index creates a hotspot.
Implicitly partitioning the output results in linear scaling
when k is large enough to sufficiently distribute the incre-
ment operations.

Figure 4 shows the system utilization during the probe
phase of the hash join with k = 8 on a 40 processor system.
The overall processor utilization during the probe phase av-
erages well over 80%. The drop off in utilization near the
end of the hash join can be explained by the fact that the
amount of work per loop iteration can vary slightly on each
probe. Some of the implicitly created parallel partitions will
complete sooner, which results in fewer instruction streams
to fully occupy the system resources.

4.2.1 Building the hash table
As with the probe phase of the hash join, building the

hash table in parallel also requires few modifications, but
illustrates the importance of the lightweight, fine-grained
synchronization.

Figure 5 shows the hash table build portion of the radix
hash join without the use of the radix bits [16], since the
MTA-2 will not require the radix clustering. The barrier
to parallelism here is the need to synchronize the accesses
to bucket[idx]. Unlike the case of coordinating the output,
where we needed to synchronize a counter, the int fetch add

instruction cannot be used in this case because the write
is an assignment rather than an increment. Each word of
memory on the MTA-2 has an auxiliary bit called the full
and empty bit. This bit allows lightweight test and set type
operations on individual words in memory. To accomplish

for(int i=0; i<inner size; i++){
int idx = HASH(inner table[i].value) & M;

next[i] = bucket[idx];

bucket[idx] = i;

}

Figure 5: Building the hash table serially. Those fa-
miliar with the radix hash join will note that refer-
ences to the number of radix bits has been omitted.
M is a bit mask to transform the hash value into a
valid bucket index. Overflow is handled by storing
the index of the next tuple in the next array.

the necessary synchronization we read the bucket[idx] full-
empty using the readfe function, which means that the read
will not occur until the full and empty bit is set and the op-
eration will leave the bit unset. When we write the variable
with the new value, we write empty-full using the writeef

function that will again set the full and empty bit. Figure 6
shows the changes required to parallellize the hash table
build phase.

4.3 B+-Tree Index Join
We also implemented a parallel index nested loop join

using a B+-Tree. The workload was identical to the hash
join experiments. The index was pre-computed, so the join
performance reflects only the cost of performing the join.

The scaling of the B+-Tree index nested loop join is shown
in Figure 7. For this experiment the minimum number of
keys per index node was 64 and the maximum was 128. It
was not necessary to use the implicitly partitioned output
technique described in Section 4.1 in order to achieve good
scaling, because the traversal of the index required more
memory accesses and computation per probe tuple, thus re-
lieving the hotspot related to coordinating the writing of
output tuples. In the event more processors were available,
output partitioning might be required.

We ran the same B+-Tree index join experiments on an
Intel Pentium 4 running at 2.8 GHz. As with the MTA-2 ex-
periments, the data, including the B+-Tree index, is memory
resident when the experiments begin. We use the same B+-
Tree index structure with no modifications for better cache
performance. Here we will briefly compare performance in
terms of throughput and cycles per probe tuple processed
between the MTA-2 and the Pentium 4. More extensive
experiments can be found in [7]. Because each MTA-2 pro-
cessor runs at only 220 MHz, a single MTA-2 processor can
retire over ten times fewer instructions per second than the
Pentium. Table 2 shows the throughput and cycles per tu-
ple measures for three different MTA-2 system sizes and the
Pentium 4. At 13 processors, the MTA-2 will retire close to
the same number of instructions per second (2.86 billion) as
the Pentium 4 (2.8 billion), but while the Pentium 4 has only
one thread the MTA-2 has 1664 threads (128 per processor).
These results show that the high degree to multithreading
on the MTA-2 effectively overlaps high latency memory op-
erations with computation, while the Pentium 4 stalls for
memory accesses more often. This occurs because travers-
ing the B+-Tree index structure requires pointer following
to access the next level of the tree. This pointer following
represents a data dependency that performs poorly on single

#pragma mta assert parallel

for(int i=0; i<inner size; i++){
int idx = HASH(inner table[i].value) & M;

next[i] = readfe(&(bucket[idx]));

writeef(&(bucket[idx]), i);

}

Figure 6: Changes needed to build the hash table in
parallel are highlighted in blue.

threaded processors. 1

A significant result is that the implementation of the par-
allel join operator required little effort and resulted in code
that scales well regardless of the system’s runtime capacity
or load. In contrast, a cache-conscious design for a single-
threaded processor would require a more elaborate imple-
mentation and careful attention to many parameters and
may have difficulty adapting to runtime factors such as load,
resulting in competition for resources including memory and
the cache.

5. RELATED WORK
In addition to the cache sensitive algorithms and data

structures as well as previous work on parallel database sys-
tems briefly mentioned in Section 2, other techniques have
been developed to improve database performance on mod-
ern hardware. Please see [7] for more discussion of related
work.

Simultaneous multithreading technology (SMT) is cur-
rently available in a number of commodity processors [17,
21, 23]. Using hardware simulations, SMT has been shown
to be useful for database workloads [14]. Zhou et al. explore
various techniques for using SMT to improve database per-
formance and conduct experiments on real hardware [25].
This work shows that SMT benefits database operations
when multithreading is used to hide high latency memory
operations.

Like high latency memory operations, branch mispredic-
tions also affect database performance. Ross [20] proposes
techniques for improving branch prediction for selections,
and Zhou and Ross [26] describe techniques for using SIMD
instructions to reduce branch mispredictions. Since only
one instruction per thread is in the MTA-2 pipeline at a
time, branch conditions on the MTA-2 are evaluated be-
fore the branch is taken, thus eliminating the need to roll
back instructions that should not have been issued. Any de-
lay caused by a branch is absorbed by the system provided
that there are a sufficient number of other threads ready to
execute. This paragraph highlights an advantage of a multi-
threaded system that goes beyond mitigating the high cost
associated with memory operations.

Gold et al. demonstrate the advantages of using a network
processor for database workloads [10]. Their work also ob-
serves that using multithreading to hide the impact of high
latency memory operations can lead to a large performance

1The authors acknowledge that a direct comparison is dif-
ficult because the amount of work performed per cycle is
not equal. Also, a cache-conscious implementation of the
B+-Tree index will perform much better on the Pentium
4. Though a commodity system will beat the MTA-2 on
hardware cost, this comparison shows that a high degree
of multithreading allows good performance by focusing on
parallelism as opposed to data layout.

Figure 7: B+-Tree Speedup vs. Ideal Speedup.

System Throughput (MTuples/Sec) Cycles/Tuple
MTA-2 (1P) 0.56 392
MTA-2 (13P) 6.78 421
MTA-2 (40P) 20.79 423
Pentium 4 0.80 3490

Table 2: B+-Tree Index Join Throughput

improvement. Explicit cache management afforded by the
network processor is useful because the programmer can ex-
plicitly control the cache and separate frequently accessed
data from data that will be scanned just once. The network
processor is nonpreemptive, thus requiring the programmer
to explicitly release control of the processor. These features
allow greater control over execution and data at the expense
of more complex code.

Observing that high latency memory operations adversely
affect many programs, modern processors often employ hard-
ware prefetching [12, 21]. Hardware prefetching identifies se-
quential access patterns at runtime and then loads the next
memory locations in the sequence into the cache before they
are requested by the application. Many applications also
exhibit random memory accesses that cannot benefit from
hardware prefetching. Software prefetching allows the pro-
grammer to request that certain memory locations be loaded
into the cache before they are actually required by the appli-
cation. Database researchers have used software prefetching
to improve the memory bottleneck in B+-Trees [5] and hash
join [6]. Software prefetch can be difficult to tune, and on
some architectures prefetch instructions can be dropped [12].
The MTA’s cacheless architecture does not rely on any type
of prefetching because memory latency is incurred when the
data is accessed, but that latency is hidden by overlapping
computation from other threads.

6. DISCUSSION AND CONCLUSION
Hardware and software cannot be developed in isolation.

In this section we reiterate the advantages and disadvan-
tages of the MTA-2 with respect to databases. We explore
the importance of this research given the recent advances
in on-chip parallelism. This section provides a high level
discussion of the challenges that exist in bridging the gap
between the degree of shared-memory parallelism demon-
strated in this paper, and that is currently available in com-
modity systems.

We found that the MTA-2’s cache-less, massively multi-
threaded architecture provided many benefits for core data-

base operations. The most important feature was the use
of multithreading to efficiently hide the cost of high latency
memory operations. Rather than requiring careful analy-
sis of data layout and memory access patterns, as would
typically be required of optimizing for cache performance,
achieving good performance on the MTA-2 required identi-
fying enough parallelism to ensure that some threads on the
processor remained busy. Another important feature was
the compiler which automatically generated the low level
details necessary for parallelism and also provided feedback
to the developer as to whether or not a loop could be made
parallel. Not having to deal with the low level details of cre-
ating parallel code or data layout left the developer free to
focus on high level aspects of efficiency and correctness. In
terms of performance, we found that the MTA-2 performed
well on database workloads, particularly operations involv-
ing significant pointer following or random memory accesses.
Workloads such as a hash join or B+-Tree index join exhibit
much more efficient use of processor resources on the MTA-2
than on commodity cache-based hardware.

The MTA-2 architecture also has a number of drawbacks;
chief among them is the very poor serial performance. Ad-
ditionally, the MTA-2 is not a commodity architecture, so
its benefits are not available for widespread use. That said,
current trends toward increased on-chip parallelism make
the lessons learned in this research about massive multi-
threading salient in guiding future developments of on-chip
parallelism and the applications that will take advantage of
that parallelism.

The trend in commodity architecture is toward more on-
chip parallelism. How this parallelism should be provided
and how applications should take advantage of it are open
research questions. This research on the MTA-2 is useful
because it allows insights into what a high degree of shared-
memory parallelism, currently unimaginable in a commodity
chip, has to offer. Perhaps our results could influence both
hardware architects and database researchers in at least two
ways. First, databases are an important workload for com-
modity chips and our work shows that databases are able to
utilize a high degree of shared-memory parallelism. There-
fore, architects could look for ways of incorporating some
aspects of the MTA-2 system and programming model into
commodity architectures. Second, this paper presents a new
model of shared-memory parallelism to the database com-
munity. Though not directly applicable to commodity ar-
chitectures, the intent is that this research will inspire new
thinking about database operations from a shared-memory,
parallel perspective, which will be important as the amount
of shared-memory on-chip parallelism increases.

Because the MTA-2 differs greatly from conventional ar-
chitectures, incorporating features from the MTA-2 into com-
modity processors will require practical compromises be-
tween apparently conflicting goals. Optimally, a future ar-
chitecture would feature good serial performance, as well as
high parallel performance that is easy to use. There are sev-
eral key challenges. Foremost is the issue of the cache–a key
feature of conventional hardware that enables good serial
performance. Having a cache in a shared-memory system
requires overhead to ensure cache coherency. The MTA-
2 avoids this overhead by eliminating the cache and using
multithreading to deal with the memory latency issue, at
the expense of serial performance and a sequential physical
address space.

In summary, commodity processors are evolving from a
single core, single thread design to a multicore, multithreaded
design. Previous research has demonstrated ways of improv-
ing the performance of certain aspects of database opera-
tions on commodity processors with, at most, a handful of
threads. This paper used the MTA-2, an existing system,
to demonstrate that database operations can be made to
perform well on massively multithreaded, shared-memory
architectures. It is likely that future architectures will fea-
ture more on-chip parallelism while retaining many serial
optimizations. Therefore, a fusion of existing serial opti-
mizations and new shared-memory parallel techniques will
be necessary to achieve good database performance.

7. ACKNOWLEDGEMENTS
We thank Cray Inc., especially Simon Kahan, for assis-

tance in learning about the MTA-2.

8. REFERENCES
[1] Advanced Micro Devices. AMD multi-core products.

Available at http://multicore.amd.com/en/Products/.

[2] A. Ailamaki et al. DBMSs on a modern processor:
Where does time go? In VLDB, 1999.

[3] W. Anderson et al. Early experience with scientific
programs on the Cray MTA-2. In ACM/IEEE
Conference on Supercomputing, 2003.

[4] S. H. Bokhari and J. R. Sauer. Sequence alignment on
the Cray MTA-2. Concurrency and Computation:
Practice and Experience, 16(9), 2004.

[5] S. Chen et al. Improving index performance through
prefetching. In SIGMOD, 2001.

[6] S. Chen et al. Improving hash join performance
through prefetching. In ICDE, 2004.

[7] J. Cieslewicz et al. Unlocking parallelism in database
operations: Insights from a massively multithreaded
architecture. Technical Report SAND 2005-7065C,
Sandia National Laboratories, 2005.

[8] Cray. Cray MTA-2 system.
http://www.cray.com/products/programs/mta 2/.

[9] D. DeWitt and J. Gray. Parallel database systems:
The future of high performance database systems.
Communications of the ACM, 35(6), 1992.

[10] B. T. Gold et al. Accelerating database operators
using a network processor. In DaMoN, 2005.

[11] Intel. Intel multi-core platforms. Available at
http://www.intel.com/technology/computing/multi-
core/.

[12] Intel Corporation. IA-32 intel architecture
optimization reference manual. Available via
http://developer.intel.com.

[13] J. Kahle et al. Introduction to the cell multiprocessor.
IBM Journal of Research and Development, 49(4/5),
2005.

[14] J. L. Lo et al. An analysis of database workload
performance on simultaneous multithreaded
processors. In ISCA, 1998.

[15] R. MacNicol and B. French. Sybase IQ Multiplex -
designed for analytics. In VLDB, 2004.

[16] S. Manegold et al. What happens during a join?
Dissecting CPU and memory optimization effects. In
VLDB, 2000.

[17] D. T. Marr et al. Hyper-threading technology
architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15, 2002.

[18] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB, 1999.

[19] J. Rao and K. A. Ross. Making B+ trees cache
conscious in main memory. In SIGMOD, 2000.

[20] K. A. Ross. Selection conditions in main memory.
ACM Transactions on Database Systems, 29(1), 2004.

[21] B. Sinharoy et al. POWER5 system microarchitecture.
IBM Journal of Research and Development, 49(4/5),
2005.

[22] M. Stonebraker et al. C-store: A column-oriented
DBMS. In VLDB, 2005.

[23] Sun Microsystems, Inc. Ultrasparc processors.
Available via
http://www.sun.com/processors/index.html.

[24] Sun Microystems, Inc. UltraSPARC T1 supplement to
the UltraSPARC architecture 2005.
http://opensparc.sunsource.net/specs/UST1-
UASuppl-current-draft-P-EXT.pdf.

[25] J. Zhou et al. Improving database performance on
simultaneous multithreading processors. In VLDB,
2005.

[26] J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In SIGMOD,
2002.

