
Constraint Strati�cation in Deductive DatabasesKenneth A. Ross�Columbia Universitykar@cs.columbia.eduAbstractWe propose a syntactic condition on deductive database programs that ensures a two-valued well-founded model. This condition, called constraint strati�cation, is signi�cantly moregeneral than previous syntactic conditions such as strati�cation and local strati�cation. Modularstrati�cation has been proposed as a semantic (i.e., nonsyntactic) condition for ensuring a two-valued well-foundedmodel. While not every modularly strati�ed program is constraint strati�ed,all of the well-known practical examples of modularly strati�ed programs are constraint strati�edunder appropriate natural constraints. In addition, there exist constraint strati�ed programsthat are not modularly strati�ed. We also show how the magic sets optimization technique canbe applied for constraint strati�ed programs.1 IntroductionMuch recent work has concerned de�ning the semantics of negation in deductive databases. The\perfect model semantics" [Prz88] has been generally accepted as natural, and is the basis for severalexperimental deductive database systems. Unfortunately, the perfect model semantics applies onlyto programs that are strati�ed (or locally strati�ed). A strati�ed program is one in which, e�ectively,there is no predicate that depends negatively on itself.Recent work has shown that there are interesting logic programs that are not strati�able butfor which a natural, unambiguous semantics exists. The well-founded semantics [VGRS91] and thestable model semantics [GL88] are two (closely related) proposals for de�ning the semantics of logicprograms, whether strati�ed or not. For strati�ed programs they both coincide with the perfectmodel semantics.The well-founded semantics is a three-valued semantics. Literals may be true, false or unde�ned.The stable model semantics is also a three-valued semantics in the sense that the meaning of theprogram is, in general, determined by a set of (two-valued) models rather than a single model.However, there are many cases where a non-strati�ed program has a total semantics, i.e., a semanticsin which every ground literal is either true or false. Allowing programs that have some literalsunde�ned may not be desirable, since handling this extra truth value places an extra burden onthe query evaluation procedure. In many cases, two truth values su�ce to model the situationunder consideration. So we desire a condition on the program, more general than strati�cation,that ensures that the well-founded semantics is two-valued.In [Ros90] the present author proposed such a class, which was termed the class of modularlystrati�ed programs. For modularly strati�ed programs the well-founded semantics is total (i.e.,makes every ground literal either true or false). The well-founded semantics and the stable model�The research of Kenneth Ross was supported by NSF grants IRI-9209029 and CDA-90-24735, by a grant fromthe AT&T Foundation, by a Sloan Foundation Fellowship, and by a David and Lucile Packard Foundation Fellowshipin Science and Engineering.

semantics coincide for modularly strati�ed programs, a consequence of the fact that the well-foundedmodel is total. Modularly strati�ed programs also allow subgoal-at-a-time evaluation [Ros90]. Aprogram is modularly strati�ed if and only if its mutually recursive components are locally strati�edonce all instantiated rules with a false subgoal that is de�ned in a \lower" component are removed.Unfortunately, the de�nition of modular strati�cation is semantic rather than syntactic. Whethera program is modularly strati�ed depends, in general, on the semantics assigned to its predicates.This contrasts with strati�cation and local strati�cation, which are syntactically de�nable condi-tions. Other conditions such as weak strati�cation [PP90] are also semantic in this sense.In the context of deductive databases, where the rules and schema-level information is smallcompared to the data, it would be undesirable to make the strati�cation condition depend on thedata. We should try to come up with a form of strati�cation that can be de�ned using only theprogram itself and some schema-level information.In this paper we attempt to de�ne a condition that is more general than local strati�cation,but which can be de�ned syntactically, without computing the semantics of the program \alongthe way." In order to do so, we allow the programmer to specify some schema-level constraints onthe EDB predicates. The constraints we allow are monotonicity constraints [BS89]. Monotonicityconstraints specify that one argument of a predicate is less than another according to some partialorder.Our approach can be outlined as follows:� Specify a set of monotonicity constraints on the EDB predicates. Such constraints areoften natural, restricting an EDB relation to be acyclic, for example, when it representsa part/subpart hierarchy.� Infer new monotonicity constraints on the IDB predicates using a sound inference mechanism.� Delete from the instantiated program any rules that have a subgoal violating the constraints,and require that the resulting program be locally strati�ed.We need to infer new monotonicity constraints for programs with negation. Brodsky and Sagivgive an inference method for datalog programs without negation. We can adapt their inferencemethod to programs P with negation by deriving constraints for the envelope of P , i.e., P with allnegative subgoals removed. When the IDB of P function-free, this inference mechanism applies.We prove that it is sound with respect to the well-founded semantics of P .Not every modularly strati�ed program is constraint strati�ed. However, we �nd, perhapssurprisingly, that all of the common examples of modularly strati�ed programs, including all ofthe examples from [Ros90], are constraint strati�ed. Further, there are some constraint strati�edprograms that are not modularly strati�ed.We prove that constraint strati�ed programs have a two-valued well-founded semantics. We alsooutline how magic sets techniques for modularly strati�ed programs can be applied to a versionof constraint strati�cation that ensures freedom from recursive loops through negation using aleft-to-right binding passing strategy.2 TerminologyWe consider normal logic programs with function symbols and negation [Llo87].De�nition 2.1: A term is either a variable, a constant symbol, or a function symbol applied toterms. If p is an n-ary predicate symbol and t1; � � � ; tn are terms then p(t1; � � � ; tn) is an atom. Aliteral is either an atom or a negated atom. When we write an atom p(~X) it is understood that ~Xis a vector of terms, not necessarily variables.

A rule is a sentence of the form A L1; : : : ; Lnwhere A is an atom, and L1; : : : ; Ln are literals. We refer to A as the head of the rule and L1; : : : ; Lnas the body of the rule. Each Li is a subgoal of the rule. All variables are assumed to be universallyquanti�ed at the front of the rule, and the commas in the body denote conjunction. If the body ofa rule is empty then we may refer to the rule as a fact, and omit the \ " symbol. A program is aset of rules. 2Logical variables begin with a capital letter; constants, functions, and predicates begin with alowercase letter. The word ground is used as a synonym for \variable-free."If a predicate is de�ned only by facts, then we say that the predicate is an extensional database(EDB) predicate; otherwise the predicate is an intensional database (IDB) predicate.We shall also make the assumption that programs are range restricted, i.e., every variableoccurring in the head of a rule or in a negative literal in the body also occurs in a positive literalin the body. Such programs have also been called allowed or safe.We assume that a universe U is given. U should contain all ground terms that can appear in allpossible programs and EDB relations. In particular, U will include the Herbrand universe of anyIDB/EDB pair. U will function as the domain under consideration, with terms interpreted freely.When we talk about \instantiated" atoms and rules, we mean that values from U are substitutedfor all variables in the atom or rule.A program is strati�ed if there is an assignment of ordinal levels to predicates such that whenevera predicate appears negatively in the body of a rule, the predicate in the head of that rule is ofstrictly higher level, and whenever a predicate appears positively in the body of a rule, the predicatein the head has at least that level.A program is locally strati�ed if there is an assignment of ordinal levels to ground atoms suchthat whenever a ground atom appears negatively in the body of an instantiated rule, the head ofthat rule is of strictly higher level, and whenever a ground atom appears positively in the body ofan instantiated rule, the atom in the head has at least that level.We say a predicate p depends upon a predicate q if there is a sequence of rules r0; : : : ; rn�1 withpredicates p0; : : : ; pn�1 in the head, respectively, such that1. p = p0 and q = pn, and2. for i = 1; : : : ; n, pi appears (positively or negatively) in the body of ri�1.We say p depends on q through k negations if exactly k of the appearances of p1; p2; : : : ; pn inr0; : : : ; rn�1, respectively, are negative. We say p depends negatively on q if p depends on q throughat least one negation. A predicate p is mutually recursive with a predicate q if p depends upon qand q depends upon p.Let F be a component (i.e., a subset of the rules) of a logic program P . We say F is a completecomponent if for every predicate p appearing in the head of a rule in F ,� all rules in P with head p are in F , and� if p is mutually recursive with a predicate q, then all rules in P with head q are in F .If the predicate p appears in the head of a rule in F then we say p belongs to F . If the predicateq appears in the body of a rule in F , but does not belong to F , then we say q is used by F . If anatom A has predicate p, and p belongs to F , then we may say that A also belongs to F .If we say that predicates are mutually recursive with themselves, then mutual recursiveness is anequivalence relation between predicates. Every predicate has a unique minimal complete component

to which it belongs. A program may be broken up into complete components according to theequivalence classes (called strongly connected components in [Ull89]) induced on the predicates.The minimal complete components have a natural relation associated with them: F1 < F2if some predicate belonging to F1 is used by F2. < must be an acyclic relation, since if F1 <F2 < � � � < Fn < F1 for some n, then none of F1; : : : ; Fn would be complete. We refer to <�, thetransitive closure of <, as the dependency relation between components. <� is a partial order, withthe property that a predicate belonging to a component F is de�ned in terms of predicates thateither belong to F , or belong to a component F 0 where F 0 <� F .In what follows, when we refer to a component of a program, we mean a minimal completecomponent unless otherwise noted. Within this framework, a program is strati�ed if and only ifnone of its components contains a predicate that depends negatively on itself.De�nition 2.2: The envelope of a program P is P with all negative subgoals removed. 22.1 Modular Strati�cationWe now present the concept of modular strati�cation, originally de�ned in [Ros90].De�nition 2.3: (Reduction of a component) Let F be a program component, and let S be theset of predicates used by F . Let M be a two-valued interpretation over the universe U for thepredicates in S.Form IU(F), the instantiation of F with respect to U , by substituting terms from U for allvariables in the rules of F in every possible way. Delete from IU(F) all rules having a subgoal Qwhose predicate in S, but for which Q is false in M . From the remaining rules, delete all (bothpositive and negative) subgoals having predicates in S (these subgoals must be true in M) to leavea set of instantiated rules RM(F). We call RM(F) the reduction of F modulo M . 2De�nition 2.4: (Modular Strati�cation) We say the program P is modularly strati�ed if, for everycomponent F of P ,1. There is a total well-founded model M for the union of all components F 0 <� F , and2. The reduction of F modulo M is locally strati�ed. 2Theorem 2.1: ([Ros90]) Every modularly strati�ed program has a total well-founded model thatis its unique stable model.To see how the well-founded model of a programmay be composed from those of its components,recall that a locally strati�ed program has a unique perfect model [Prz88] and hence a total well-founded model that coincides with the perfect model. The \lowest" components must be locallystrati�ed; compute their perfect model M . The next lowest components are locally strati�ed whenreduced modulo M ; compute the perfect model of the reduced components and take the union withM . We can proceed in this way up the dependency relation between components until we have thewell-founded model for the whole program.2.2 ExamplesWe present a number of examples from [Ros90] of modularly strati�ed programs. Note that noneof these examples is locally strati�ed.

Example 2.1: Consider the program P consisting of the rulew(X) m(X; Y);:w(Y)together with some facts about m. P is a game-playing program [Kol91] in which a position X is\winning" [w(X)] if there is a move from X to a position Y [m(X; Y)] and Y is a losing position[:w(Y)].P is modularly strati�ed when m is acyclic, i.e., when the game cannot have repeated positions.2Example 2.2: This example concerns the operation of a complex mechanism that is constructedfrom a number of components, each of which may itself have smaller components. We adopt theconvention that a mechanism is not a component of itself | we are only interested in smaller,simpler components. The mechanism is known to be working either if it has been (successfully)tested, or if all its components (assuming it has at least one component) are known to be working.We may express this in the following component F :working(X) tested(X)working(X) part(X; Y);:has suspect part(X)has suspect part(X) part(X; Y);:working(Y)Let M be the least model of the rules for part and tested. RM(F) is locally strati�ed if and only ifpart is acyclic. Acyclicity is a natural constraint, since a mechanism that was a sub-part of itselfwould presumably indicate a design error. 2Modular strati�cation can be extended to aggregation and set-grouping.Example 2.3: Suppose we have a relation part(X; Y;N) that is true when X has N copies of Yas an immediate subpart. (Again, we adopt the convention that we are only interested in smaller,simpler subparts.) The \parts-explosion" problem is to determine, for an arbitrary pair of parts xand y, how many y's appear in x. For example, if a bicycle has two wheels, and each wheel hasforty-seven spokes, then we would like to infer that a bicycle has ninety-four spokes. We can solvethe parts-explosion problem using the following program.in(X; Y; null;N) part(X; Y;N)in(X; Y; Z;N) part(X;Z; P); contains(Z; Y;M); N = P �Mcontains(X; Y;N) N =PP : in(X; Y; Z;P)(The sum in the third rule is grouped by X and Y ; for each X and Y we sum all correspondingP .) The sum operation here is not strati�ed. contains depends on itself through aggregation,via the predicate in. However, assuming part is acyclic in its �rst two arguments, the summationoperates on successively lower arguments (i.e., smaller subparts), and so there is no looping throughsummation. This is the aggregate analog of modular strati�cation. 22.3 Monotonicity ConstraintsLooking at the examples of Section 2.2, it seems that in each of the examples there is a predicate thatshould be restricted to an acyclic relation for semantic reasons. Thus, for example, asking whetherthe program of Example 2.2 has a two-valued model for all possible values of EDB predicates isclearly the wrong question. The part relation represents a part hierarchy, and therefore can onlybe an acyclic relation. Thus we would like to phrase the question as whether a program has atwo-valued well-founded model for all EDB relations that satisfy some acyclicity constraints. In

this section we present the notion of monotonicity constraints from [BS89] in order to be able tophrase such constraints.We shall also look at the problem of inferring constraints on IDB predicates given constraintson the EDB predicates, extending some results from [BS89].De�nition 2.5: (Monotonicity Constraint) A monotonicity constraint is a statement of the formp : i�mc jwhere p is a predicate name, and i and j are either column positions of p, or constants in thelanguage (i.e., elements of U). The semantics of this construct is that for some partial order,column i (or the constant i) is less than column j (or the constant j) in each tuple of p. If both iand j are constants, then the semantics is that p is empty if the constraint i�mc j is violated. Anequality constraint is a statement of the formp : i=ec jwhere p is a predicate name, and i and j are either column positions of p, or constants in thelanguage. A disjunctive constraint is a disjunction of conjunctions of monotonicity and equalityconstraints on a single predicate. 2Note that �mc does not represent a �xed partial order. We shall �x a partial order < separately,and require predicates to satisfy some disjunctive constraints when �mc is replaced by <. (InSection 5 we discuss allowing a partial order that is not �xed in advance.) If < is a �xed partialorder, then we let C< represent a version of C in which �mc is replaced by <, and =ec is replacedby =.We shall assume in this paper that all partial orders are antireexive and well-ordered, so thatc 6� c for any constant c, and so that there are no in�nite decreasing chains � � � � cn � cn�1 � � � � �c1. We shall use the term \constraint" to mean a disjunctive constraint, unless otherwise noted.Brodsky and Sagiv give a set of axioms and inference rules for inferring monotonicity andequality constraints from a given set S of monotonicity and equality constraints, and show that theaxiom system is sound and complete for consistent sets S. They also provide a sound and completealgorithm for inferring all disjunctive constraints that hold for an IDB predicate in a datalogprogram P given disjunctive constraints for the EDB predicates of P . Finally, they demonstratethat the problem of determining whether a monotonicity constraint on an IDB predicate is impliedby a set of monotonicity constraints on the EDB predicates is complete for exponential time(although polynomial time if the arity of predicates is bounded).Our context is more general than that of [BS89] since we allow negative subgoals.1 WhileBrodsky and Sagiv's method is sound and complete for datalog programs, it may fail to detectmonotonicity constraints for programs likep(X; Y) q(X; Y);:q(X; Y):Even though there are no constraints on relation q, the constraint p : 1�mc 2 is trivially satis�edbecause p must be empty. While one might imagine that inference rules could be added to detectrules of the form above, one can show that the implication problem for monotonicity constraintsin programs with negation is undecidable. (This result will be presented separately.)Nevertheless, Brodsky and Sagiv's algorithm is still sound if we apply it to the envelope of aprogram P . By removing all negative subgoals we can only enlarge the well-founded model (makingatoms that were previously false or unde�ned true).1Negative subgoals alone do not imply any monotonicity or equality constraints, since the complement of anantireexive partial order is not, in general, an antireexive partial order.

Theorem 2.2: Let P be a program and let P 0 be its envelope. Then the least model of P 0 containsall atoms that are either true or unde�ned in the well-founded model of P .Proof : (This proof assumes some familiarity with the notation of [VGRS91].) Since P 0 is negation-free, its well-founded model is two-valued and equal to its least model by results of [VGRS91]. Thenegation-freeness of P 0 also means that the set of false atoms in the well-founded model for P 0 isUP 0(;), where UQ(I) is the greatest unfounded set of program Q with respect to interpretation I .Let MP denote the well-founded model of P , and let neg(I) denote the atoms that are false inI . We show that neg(MP) � UP 0(;).neg(MP) = UP (MP) Since MP is the �xpoint.� UP (;) By the monotonicity of UP .� UP 0(;) Since there are fewer subgoals to satisfy inP 0, and hence fewer possible witnesses of un-usability.Corollary 2.3: All constraints that hold for the envelope of P hold for P .Example 2.4: Let P be the programp(X; Y) e(X; Y)p(X; Y) p(X;Z); f(Z; Y);:p(Z; Y)and let E be the constraint set fe : 2�mc 1; f : 2�mc 1g on the EDB predicates. The envelope ofP is p(X; Y) e(X; Y)p(X; Y) p(X;Z); f(Z;Y)from which p : 2�mc 1 is derivable using the techniques of [BS89]. Thus, p : 2�mc 1 also holds forP . 2De�nition 2.6: Let P be a program, E a constraint set on the EDB predicates of P , and I aconstraint set on the IDB predicates of P . Let < be a �xed antireexive well-ordered partial order.We say C = I [E is sound for (P;<) if� The EDB of P satis�es E<, and� For every atom A violating a constraint in C<, A is false in the well-founded model for P .2 Using Corollary 2.3, we can use Brodsky and Sagiv's inference method to derive a soundconstraint set for any program. We just need to check that the EDB satis�es the constraints.One might argue that checking that a constraint set is sound involves checking the data, notjust the schema. This observation is correct; however, this EDB check would need to be performedby the database integrity subsystem anyway to ensure that the database is consistent, and so doesnot necessarily represent an additional burden. Further, such integrity constraint checks could beperformed incrementally, and so have (incremental) cost signi�cantly smaller than proportional tothe size of the database.

3 Constraint Strati�cation: A Syntactic ConditionIn this section we provide a syntactic strati�cation condition that is general enough to include allof the examples from Section 2.2 originally from [Ros90], while also including some programs thatare not modularly strati�ed.De�nition 3.1: Let < be a �xed antisymmetric partial order with no in�nite descending chains.Let P be a program, and let C be a sound constraint set for (P;<).Let inst(P;C;<) denote the instantiation of program P after all rules with a positive subgoalnot satisfying C< are deleted. We say that P is constraint strati�ed for (C;<) if and only ifinst(P;C;<) is locally strati�ed. 2Example 3.1: Consider the program P of Example 2.1 given byw(X) m(X; Y);:w(Y)m(a; b)m(b; c)Let C = fm : 2�mc 1g be the constraint set, and let < be given by d < c < b < a. inst(P;C;<) isthe program w(a) m(a; b);:w(b)w(a) m(a; c);:w(c)w(a) m(a; d);:w(d)w(b) m(b; c);:w(c)w(b) m(b; d);:w(d)w(c) m(c; d);:w(d)m(a; b)m(b; c)which is locally strati�ed. Hence P is constraint strati�ed for (C;<). 2Example 3.2: Consider the following program P from Example 2.2 with the constraint set C =fpart : 2�mc 1g. working(X) tested(X)working(X) part(X; Y);:has suspect part(X)has suspect part(X) part(X; Y);:working(Y)part(a; b)part(a; c)Let the ordering < be de�ned by b < a, c < a, and d < a with b, c and d incomparable. (Assumefor simplicity that these three constants are the only elements of U .) inst(P;C;<) is the programworking(a) tested(a)working(b) tested(b)working(c) tested(c)working(d) tested(d)working(a) part(a; b);:has suspect part(a)working(a) part(a; c);:has suspect part(c)working(a) part(a; d);:has suspect part(d)has suspect part(a) part(a; b);:working(b)has suspect part(a) part(a; c);:working(c)has suspect part(a) part(a; d);:working(d)part(a; b)part(a; c)

which is locally strati�ed. Hence P is constraint strati�ed for (C;<). 2Example 3.3: One can easily generalize the notions above to aggregation if one thinks of recursionthrough aggregation in a fashion similar to recursion through negation. Consider the programin(X; Y; null;N) part(X; Y;N)in(X; Y; Z;N) part(X;Z; P); contains(Z; Y;M); N = P �Mcontains(X; Y;N) N =PP : in(X; Y; Z;P)part(a; b; 4)part(a; c; 1)part(b; c; 7)from Example 2.3. For simplicity, assume that the integers are all members of U with stan-dard semantics for multiplication and sum. Let C be the constraint set fpart : 2�mc 1; in :2�mc 1; contains : 2�mc 1g, and let < be de�ned by c < b < a with all other elements incomparable.inst(P;C;<) contains all instances2 of the following program with respect to U .in(b; c; null;N) part(b; c; N) in(a; b; null;N) part(a; b; N)in(a; c; null;N) part(a; c; N)in(a; c; b;N) part(a; b; P); contains(b; c;M);N = P �Mcontains(b; c; N) N =PP : in(b; c; Z; P) part(a; b; 4)contains(a; c; N) N =PP : in(a; c; Z; P) part(a; c; 1)contains(a; b; N) N =PP : in(a; b; Z;P) part(b; c; 7)Since inst(P;C;<) is locally strati�ed with respect to aggregation, P is constraint strati�ed for(C;<). 2One may wonder how one can derive that C is a sound constraint set in Example 3.3 above.That C is sound follows from the semantics of grouping variables in aggregation. One can arguethat the derived constraints for the modi�ed aggregation-free programin0(X; Y) part(X; Y; P)in0(X; Y) part(X;Z; P); contains0(Z; Y)contains0(X; Y) in0(X; Y)also hold (after translating the column positions) in the original program. The set C = fpart :2�mc 1; in0 : 2�mc 1; contains0 : 2�mc 1g is derivable from the modi�ed program using Brodskyand Sagiv's method.This technique can be applied in general. One can form the aggregate-analog of the programenvelope by projecting out all non-grouping variables from aggregate subgoals, and dropping theaggregate function. Attributes of other predicates that depend on the aggregated value may alsohave to be projected out, as illustrated above.So far, every constraint strati�ed program we have seen has been modularly strati�ed. Thefollowing example is a program that is constraint strati�ed but not modularly strati�ed.Example 3.4: Let P be the programp(X; Y) e(X; Y)p(X; Y) p(X;Z); f(Z; Y);:p(Z; Y)e(a; b)f(b; c)2Note that one does not instantiate the non-grouping variables in an aggregate subgoal.

based on that of Example 2.4. Let C be the constraint set fe : 2�mc 1; f : 2�mc 1; p : 2�mc 1g.Note that p : 2�mc 1 is derivable for P from fe : 2�mc 1; f : 2�mc 1g as discussed in Example 2.4.Let < be de�ned by c < b < a. inst(P;C;<) isp(a; b) e(a; b)p(a; c) e(a; c)p(b; c) e(b; c)p(a; c) p(a; b); f(b; c);:p(b; c)e(a; b)f(b; c)Since inst(P;C;<) is locally strati�ed, P is constraint strati�ed for (C;<).The program is not modularly strati�ed, since the following rule instance is in the reduction ofp's component: p(b; c) p(b; b);:p(b; c):The rule instance above prevents the reduction from being locally strati�ed. Since the reductiononly looks at lower-component predicates, there is no way to notice that p(b; b) will never besatis�ed. 2There are modularly strati�ed programs that are not constraint strati�ed.Example 3.5: Consider the one-rule programp q;:q;:p:This program is modularly strati�ed: Since there are no rules for q, q is inferred false and the givenrule does not appear in the reduction of p's component, thus allowing p to be inferred false. On theother hand, this program is not constraint strati�ed since monotonicity constraints \don't help"for predicates without arguments, and the rule above is not locally strati�ed. 2Theorem 3.1: Let C be a sound set of constraints on a program P , and let < be a partial order.If P is constraint strati�ed with respect to (C;<), then P has a two valued well-founded modelwhenever the EDB satis�es E.Proof : By the soundness of the constraints, any instantiated rule with an atom violating C is falsein the well-founded model. Hence that rule will not contribute to the well-founded model, anddeleting it will give a program that is equivalent under the well-founded semantics. The programwe eventually reach after deleting such rules is locally strati�ed, by the de�nition of constraintstrati�cation, and hence has a two-valued well-founded model.Theorem 3.2: Every locally strati�ed program is constraint strati�ed with respect to any set ofconstraints.Proof : Since this fact holds for the empty set of constraints.4 OptimizationThe fundamental optimization technique for deductive databases is magic sets [BR91, BMSU86].Magic sets speeds up bottom-up evaluation by passing binding information from the query into therule evaluation so that only information relevant to the query is accessed.Various authors have looked at the problem of extending the magic sets techniques to largerclasses of programs with negation, be it strati�ed, modularly strati�ed, or general negation [Ros90,RSS92, Mor93, KSS92]. In general, the larger the class of programs allowed, the fewer options

there are for optimization, and so we look for the most speci�c optimization technique that applies.As an obvious example, one would not use any of the techniques for magic set with negation ona program without negation: it would be preferable to use the version de�ned for negation-freeprograms. As another example, techniques for evaluating programs with general recursion throughnegation have to deal with an additional truth value, unde�ned, that can represent a signi�cantoverhead for query evaluation.Thus we seek an e�cient optimization strategy for constraint strati�ed programs that is poten-tially better than those that apply to larger classes of programs. One doesn't have to look veryfar. It turns out that we can use techniques developed for modularly strati�ed programs [Ros90] ifthe program satis�es a slightly stronger condition about the way it passes its bindings from left toright in each rule.De�nition 4.1: Let < be a �xed antisymmetric partial order with no in�nite descending chains.Let P be a program, and let C be a sound constraint set for (P;<).Let pref(P;C;<) denote the instantiation of all pre�xes of program P after all rule pre�xeswith a positive subgoal not satisfying C< are deleted. We say that P is constraint strati�ed fromleft to right for (C;<) if and only if pref(P;C;<) is locally strati�ed. 2The de�nition of constraint strati�cation from left to right is analogous to the notion of modularstrati�cation from left to right [Ros90]. The idea is to make sure that no recursive loops occurthrough the initial subgoals of a rule, even if the later subgoals would make the loop unsatis�able.Lemma 4.1: Every constraint strati�ed program can have its rules' subgoals reordered so that itis constraint strati�ed from left to right.Proof : Call a subgoal \current" if it has a predicate from the same component as the head atomof the rule. For each rule place subgoals with lower-component predicates to the left of currentsubgoals. For negative current subgoals, move them to the right of all positive current subgoals.Since constraints come only from positive subgoals, all such constraints are applied in any instanceof a rule pre�x containing a negative current subgoal. Hence the constraint strati�cation of theoriginal program implies the constraint strati�cation from left to right of the transformed program.While space restrictions prevent a full description of the magic sets techniques here, one canshow that the techniques of [Ros90] (and, we conjecture, the techniques of [RSS92]) are correct forfunction-free programs that are constraint strati�ed from left to right. This result does not followfrom results in [Ros90] since there exist constraint strati�ed programs that are not modularlystrati�ed.5 ConclusionsWe have presented a syntactic condition for a deductive database to have a two-valued well-foundedmodel. Previous conditions were either too weak to naturally express some programs, or weresemantic in nature, depending on the values of certain relations in the database.Our condition, called constraint strati�cation, is shown to be general enough to express all of theexamples from [Ros90] of interesting modularly strati�ed programs. In addition, we demonstratethat there are some constraint strati�ed programs that are not modularly strati�ed. We can alsoshow that magic sets optimization techniques developed for modularly strati�ed programs [Ros90]also apply to programs that are constraint strati�ed.There are several directions for future work. The �rst problem is that of having to check allinstances of all rules in order to determine constraint strati�cation. For programs with function

symbols the instantiated program is in�nite. Even for function-free programs, checking all ruleinstances is likely to be a prohibitively expensive task. In a forthcoming paper [Ros94], we showthat checking all rule instances is not necessary in general for function-free programs. One canmanage just by looking at the original rules themselves in addition to the constraints.The second problem is that this paper assumes that the partial order < is given in advance.For some domains, such as the integers, this may be reasonable. For other domains, such as apart-subpart hierarchy, the order may depend on the database. For example, we know engine <torque-generator only when the relation representing the hierarchy expresses that an engine is adirect or indirect subpart of a torque-generator. It is conceivable that in a di�erent hierarchy, atorque-generator is a subpart of an engine.In the same forthcoming paper [Ros94], we address this issue by quantifying over all partialorders that are consistent with the constraints, and requiring constraint strati�cation with respectto every such partial order.Another direction for future work is on de�ning other sound (but still syntactic) constraintinference methods. Brodsky and Sagiv's method can potentially be extended to programs withnegation and programs with function symbols to derive more constraints. Unfortunately, complete-ness is impossible since the monotonicity constraint implication problem for datalog programs withnegation is undecidable [Ros94].References[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strangeways to implement logic programs. In Proceedings of the Fifth ACM Symposium onPrinciples of Database Systems, 1986.[BR91] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming,10:255{300, 1991. Preliminary version appeared in the 6th ACM Symposium onPrinciples of Database Systems, 1987.[BS89] A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalog programs.In Proceedings of the Eighth ACM Symposium on Principles of Database Systems, 1989.[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InProc. Fifth International Conference and Symposium on Logic Programming, 1988.[Kol91] P. G. Kolaitis. The expressive power of strati�ed programs. Information and Compu-tation, 90:50{66, 1991.[KSS92] D. Kemp, P. Stuckey, and D. Srivastava. Query restricted bottom-up evaluation ofnormal logic programs. In Proc. Joint International Conference and Symposium onLogic Programming, pages 288{302, 1992.[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 2ndedition, 1987.[Mor93] S. Morishita. An alternating �xpoint tailored to magic programs. In Proceedings ofthe Twelfth ACM Conference on Principles of Database Systems, 1993. Preliminaryversion appeared in the 1992 Proceedings of the Workshop on Deductive Databases,Joint International Conference and Symposium on Logic Programming.[PP90] H. Przymusinska and T. C. Przymusinski. Weakly strati�ed logic programs. FundamentaInformaticae, 13:51{65, 1990. Preliminary version appeared in Proc. Fifth InternationalConference and Symposium on Logic Programming, 1988.

[Prz88] T. C. Przymusinski. On the declarative semantics of deductive databases and logicprograms. In J. Minker, editor, Foundations of Deductive Databases and Logic Pro-gramming, pages 193{216, Los Altos, CA, 1988. Morgan Kaufmann.[Ros90] K. A. Ross. Modular strati�cation and magic sets for Datalog programs with negation.In Proceedings of the Ninth ACM Symposium on Principles of Database Systems, 1990.Full version to appear in J.ACM.[Ros94] K. A. Ross. Strati�cation conditions using constraints. Submitted for publication,March 1994.[RSS92] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in bottom-up evaluation. In Proc. Joint International Conference and Symposium on LogicProgramming, pages 273{287, 1992.[Ull89] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer SciencePress, Rockville, MD, 1989. (Two volumes).[VGRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-founded semanticsfor general logic programs. JACM, 38(3):620{650, 1991.

