Constraint Stratification in Deductive Databases

Kenneth A. Ross*
Columbia University
kar@cs.columbia.edu

Abstract

We propose a syntactic condition on deductive database programs that ensures a two-
valued well-founded model. This condition, called constraint stratification, is significantly more
general than previous syntactic conditions such as stratification and local stratification. Modular
stratification has been proposed as a semantic (i.e., nonsyntactic) condition for ensuring a two-
valued well-founded model. While not every modularly stratified program is constraint stratified,
all of the well-known practical examples of modularly stratified programs are constraint stratified
under appropriate natural constraints. In addition, there exist constraint stratified programs
that are not modularly stratified. We also show how the magic sets optimization technique can
be applied for constraint stratified programs.

1 Introduction

Much recent work has concerned defining the semantics of negation in deductive databases. The
“perfect model semantics” [Prz88] has been generally accepted as natural, and is the basis for several
experimental deductive database systems. Unfortunately, the perfect model semantics applies only
to programs that are stratified (or locally stratified). A stratified program is one in which, effectively,
there is no predicate that depends negatively on itself.

Recent work has shown that there are interesting logic programs that are not stratifiable but
for which a natural, unambiguous semantics exists. The well-founded semantics [VGRS91] and the
stable model semantics [GL88] are two (closely related) proposals for defining the semantics of logic
programs, whether stratified or not. For stratified programs they both coincide with the perfect
model semantics.

The well-founded semantics is a three-valued semantics. Literals may be true, false or undefined.
The stable model semantics is also a three-valued semantics in the sense that the meaning of the
program is, in general, determined by a set of (two-valued) models rather than a single model.
However, there are many cases where a non-stratified program has a total semantics, i.e., a semantics
in which every ground literal is either true or false. Allowing programs that have some literals
undefined may not be desirable, since handling this extra truth value places an extra burden on
the query evaluation procedure. In many cases, two truth values suffice to model the situation
under consideration. So we desire a condition on the program, more general than stratification,
that ensures that the well-founded semantics is two-valued.

In [Ros90] the present author proposed such a class, which was termed the class of modularly
stratified programs. For modularly stratified programs the well-founded semantics is total (i.e.,
makes every ground literal either true or false). The well-founded semantics and the stable model

*The research of Kenneth Ross was supported by NSF grants TRI-9209029 and CDA-90-24735, by a grant from
the AT&T Foundation, by a Sloan Foundation Fellowship, and by a David and Lucile Packard Foundation Fellowship
in Science and Engineering.

semantics coincide for modularly stratified programs, a consequence of the fact that the well-founded
model is total. Modularly stratified programs also allow subgoal-at-a-time evaluation [Ros90]. A
program is modularly stratified if and only if its mutually recursive components are locally stratified
once all instantiated rules with a false subgoal that is defined in a “lower” component are removed.

Unfortunately, the definition of modular stratification is semantic rather than syntactic. Whether
a program is modularly stratified depends, in general, on the semantics assigned to its predicates.
This contrasts with stratification and local stratification, which are syntactically definable condi-
tions. Other conditions such as weak stratification [PP90] are also semantic in this sense.

In the context of deductive databases, where the rules and schema-level information is small
compared to the data, it would be undesirable to make the stratification condition depend on the
data. We should try to come up with a form of stratification that can be defined using only the
program itself and some schema-level information.

In this paper we attempt to define a condition that is more general than local stratification,
but which can be defined syntactically, without computing the semantics of the program “along
the way.” In order to do so, we allow the programmer to specify some schema-level constraints on
the EDB predicates. The constraints we allow are monotonicity constraints [BS89]. Monotonicity
constraints specify that one argument of a predicate is less than another according to some partial
order.

Our approach can be outlined as follows:

o Specify a set of monotonicity constraints on the EDB predicates. Such constraints are
often natural, restricting an EDB relation to be acyclic, for example, when it represents
a part/subpart hierarchy.

o Infer new monotonicity constraints on the IDB predicates using a sound inference mechanism.

o Delete from the instantiated program any rules that have a subgoal violating the constraints,
and require that the resulting program be locally stratified.

We need to infer new monotonicity constraints for programs with negation. Brodsky and Sagiv
give an inference method for datalog programs without negation. We can adapt their inference
method to programs P with negation by deriving constraints for the envelope of P, i.e., P with all
negative subgoals removed. When the IDB of P function-free, this inference mechanism applies.
We prove that it is sound with respect to the well-founded semantics of P.

Not every modularly stratified program is constraint stratified. However, we find, perhaps
surprisingly, that all of the common examples of modularly stratified programs, including all of
the examples from [Ros90], are constraint stratified. Further, there are some constraint stratified
programs that are not modularly stratified.

We prove that constraint stratified programs have a two-valued well-founded semantics. We also
outline how magic sets techniques for modularly stratified programs can be applied to a version
of constraint stratification that ensures freedom from recursive loops through negation using a
left-to-right binding passing strategy.

2 Terminology

We consider normal logic programs with function symbols and negation [L1o87].

Definition 2.1: A ferm is either a variable, a constant symbol, or a function symbol applied to
terms. If p is an n-ary predicate symbol and #1,---,%, are terms then p(t1,---,%,) is an atom. A

literal is either an atom or a negated atom. When we write an atom p(X) it is understood that X
is a vector of terms, not necessarily variables.

A rule is a sentence of the form
A — Ll, Ceey Ln

where A is an atom, and Lq,..., L, are literals. We refer to A as the head of the rule and Lq,..., L,
as the body of the rule. Each L; is a subgoal of the rule. All variables are assumed to be universally
quantified at the front of the rule, and the commas in the body denote conjunction. If the body of
a rule is empty then we may refer to the rule as a fact, and omit the “<” symbol. A program is a
set of rules. O

Logical variables begin with a capital letter; constants, functions, and predicates begin with a
lowercase letter. The word ground is used as a synonym for “variable-free.”

If a predicate is defined only by facts, then we say that the predicate is an extensional database
(EDB) predicate; otherwise the predicate is an intensional database (IDB) predicate.

We shall also make the assumption that programs are range restricted, i.e., every variable
occurring in the head of a rule or in a negative literal in the body also occurs in a positive literal
in the body. Such programs have also been called allowed or safe.

We assume that a universe I is given. I should contain all ground terms that can appear in all
possible programs and EDB relations. In particular, ¢/ will include the Herbrand universe of any
IDB/EDB pair. & will function as the domain under consideration, with terms interpreted freely.
When we talk about “instantiated” atoms and rules, we mean that values from U are substituted
for all variables in the atom or rule.

A program is stratified if there is an assignment of ordinal levels to predicates such that whenever
a predicate appears negatively in the body of a rule, the predicate in the head of that rule is of
strictly higher level, and whenever a predicate appears positively in the body of a rule, the predicate
in the head has at least that level.

A program is locally stratified if there is an assignment of ordinal levels to ground atoms such
that whenever a ground atom appears negatively in the body of an instantiated rule, the head of
that rule is of strictly higher level, and whenever a ground atom appears positively in the body of
an instantiated rule, the atom in the head has at least that level.

We say a predicate p depends upon a predicate q if there is a sequence of rules rg, ..., 7,1 with
predicates pg, ..., p,_1 in the head, respectively, such that

1. p=py and g = p,, and
2. for e =1,...,n, p; appears (positively or negatively) in the body of r;_;.

We say p depends on ¢ through k& negations if exactly k of the appearances of py,ps,...,p, in
T0,- - -5 Tn_1, Tespectively, are negative. We say p depends negatively on ¢ if p depends on ¢ through
at least one negation. A predicate p is mutually recursive with a predicate ¢ if p depends upon ¢
and ¢ depends upon p.

Let F' be a component (i.e., a subset of the rules) of a logic program P. We say F'is a complete
component if for every predicate p appearing in the head of a rule in F,

e all rules in P with head p are in F', and
e if p is mutually recursive with a predicate ¢, then all rules in P with head ¢ are in F'.

If the predicate p appears in the head of a rule in F’ then we say p belongs to F. If the predicate
q appears in the body of a rule in /', but does not belong to F, then we say ¢ is used by F. If an
atom A has predicate p, and p belongs to F, then we may say that A also belongs to F.

If we say that predicates are mutually recursive with themselves, then mutual recursiveness is an
equivalence relation between predicates. FEvery predicate has a unique minimal complete component

to which it belongs. A program may be broken up into complete components according to the
equivalence classes (called strongly connected components in [UlI89]) induced on the predicates.

The minimal complete components have a natural relation associated with them: I} T Fy
if some predicate belonging to Fy is used by F,. [must be an acyclic relation, since if F; C
F,C---C F, C F for some n, then none of Fy,..., F, would be complete. We refer to C*, the
transitive closure of C, as the dependency relation between components. C* is a partial order, with
the property that a predicate belonging to a component F is defined in terms of predicates that
either belong to F', or belong to a component F’ where F/ C* F.

In what follows, when we refer to a component of a program, we mean a minimal complete
component unless otherwise noted. Within this framework, a program is stratified if and only if
none of its components contains a predicate that depends negatively on itself.

Definition 2.2: The envelope of a program P is P with all negative subgoals removed. O

2.1 Modular Stratification

We now present the concept of modular stratification, originally defined in [Ros90].

Definition 2.3: (Reduction of a component) Let F' be a program component, and let S be the
set of predicates used by F. Let M be a two-valued interpretation over the universe U/ for the
predicates in 5.

Form [(F'), the instantiation of F with respect to U, by substituting terms from I for all
variables in the rules of F'in every possible way. Delete from Ip;(F') all rules having a subgoal @
whose predicate in 9, but for which @ is false in M. From the remaining rules, delete all (both
positive and negative) subgoals having predicates in 5 (these subgoals must be true in M) to leave
a set of instantiated rules Rps(F'). We call Rps(F') the reduction of F modulo M. O

Definition 2.4: (Modular Stratification) We say the program P is modularly stratified if, for every
component F of P,

1. There is a total well-founded model M for the union of all components I C* I, and

2. The reduction of F modulo M is locally stratified. O

Theorem 2.1: ([Ros90]) Every modularly stratified program has a total well-founded model that
is its unique stable model. [

To see how the well-founded model of a program may be composed from those of its components,
recall that a locally stratified program has a unique perfect model [Prz88] and hence a total well-
founded model that coincides with the perfect model. The “lowest” components must be locally
stratified; compute their perfect model M. The next lowest components are locally stratified when
reduced modulo M; compute the perfect model of the reduced components and take the union with
M. We can proceed in this way up the dependency relation between components until we have the
well-founded model for the whole program.

2.2 Examples

We present a number of examples from [Ros90] of modularly stratified programs. Note that none
of these examples is locally stratified.

Example 2.1: Consider the program P consisting of the rule

together with some facts about m. P is a game-playing program [Kol91] in which a position X is
“winning” [w(X)] if there is a move from X to a position Y [m(X,Y)] and Y is a losing position
[=w(Y)].

P is modularly stratified when m is acyclic, i.e., when the game cannot have repeated positions.
O

Example 2.2: This example concerns the operation of a complex mechanism that is constructed
from a number of components, each of which may itself have smaller components. We adopt the
convention that a mechanism is not a component of itself — we are only interested in smaller,
simpler components. The mechanism is known to be working either if it has been (successfully)
tested, or if all its components (assuming it has at least one component) are known to be working.
We may express this in the following component F:

working(X) — tested(X)
working(X') — part(X,Y), =has_suspect_part(X)
has_suspect_part(X) — part(X,Y), ~working(Y)

Let M be the least model of the rules for part and tested. Ry;(F') is locally stratified if and only if
part is acyclic. Acyclicity is a natural constraint, since a mechanism that was a sub-part of itself
would presumably indicate a design error. O

Modular stratification can be extended to aggregation and set-grouping.

Example 2.3: Suppose we have a relation part(X,Y, N) that is true when X has N copies of ¥V
as an immediate subpart. (Again, we adopt the convention that we are only interested in smaller,
simpler subparts.) The “parts-explosion” problem is to determine, for an arbitrary pair of parts «
and y, how many #’s appear in x. For example, if a bicycle has two wheels, and each wheel has
forty-seven spokes, then we would like to infer that a bicycle has ninety-four spokes. We can solve
the parts-explosion problem using the following program.

in(X, Y, null, N) — part(X,Y,N)
i X,Y,Z,N)— part(X, Z, P), containg Z,Y, M), N = P« M
contains(X,Y,N)— N =3 P:in(X,Y,Z,P)

(The sum in the third rule is grouped by X and Y; for each X and Y we sum all corresponding
P.) The sum operation here is not stratified. contains depends on itself through aggregation,
via the predicate in. However, assuming part is acyclic in its first two arguments, the summation
operates on successively lower arguments (i.e., smaller subparts), and so there is no looping through
summation. This is the aggregate analog of modular stratification. O

2.3 Monotonicity Constraints

Looking at the examples of Section 2.2, it seems that in each of the examples there is a predicate that
should be restricted to an acyclic relation for semantic reasons. Thus, for example, asking whether
the program of Example 2.2 has a two-valued model for all possible values of EDB predicates is
clearly the wrong question. The part relation represents a part hierarchy, and therefore can only
be an acyclic relation. Thus we would like to phrase the question as whether a program has a
two-valued well-founded model for all EDB relations that satisfy some acyclicity constraints. In

this section we present the notion of monotonicity constraints from [BS89] in order to be able to
phrase such constraints.

We shall also look at the problem of inferring constraints on IDB predicates given constraints
on the EDB predicates, extending some results from [BS89].

Definition 2.5: (Monotonicity Constraint) A monotonicity constraint is a statement of the form
Pt <me]

where p is a predicate name, and ¢ and j are either column positions of p, or constants in the
language (i.e., elements of U). The semantics of this construct is that for some partial order,
column ¢ (or the constant ¢) is less than column j (or the constant j) in each tuple of p. If both ¢
and j are constants, then the semantics is that p is empty if the constraint ¢ <,,. j is violated. An
equality constraint is a statement of the form

p:i:ecj

where p is a predicate name, and ¢ and j are either column positions of p, or constants in the
language. A disjunctive constraint is a disjunction of conjunctions of monotonicity and equality
constraints on a single predicate. O

Note that <,,. does not represent a fixed partial order. We shall fix a partial order < separately,
and require predicates to satisfy some disjunctive constraints when =,,. is replaced by <. (In
Section 5 we discuss allowing a partial order that is not fixed in advance.) If < is a fixed partial
order, then we let C'. represent a version of ' in which <. is replaced by <, and =, is replaced
by =.

We shall assume in this paper that all partial orders are antireflexive and well-ordered, so that
¢ £ ¢ for any constant ¢, and so that there are no infinite decreasing chains -+ - < ¢, < ¢;,—1 < --- <
c1. We shall use the term “constraint” to mean a disjunctive constraint, unless otherwise noted.

Brodsky and Sagiv give a set of axioms and inference rules for inferring monotonicity and
equality constraints from a given set S of monotonicity and equality constraints, and show that the
axiom system is sound and complete for consistent sets 5. They also provide a sound and complete
algorithm for inferring all disjunctive constraints that hold for an IDB predicate in a datalog
program P given disjunctive constraints for the EDB predicates of P. Finally, they demonstrate
that the problem of determining whether a monotonicity constraint on an IDB predicate is implied
by a set of monotonicity constraints on the EDB predicates is complete for exponential time
(although polynomial time if the arity of predicates is bounded).

Our context is more general than that of [BS89] since we allow negative subgoals.! While
Brodsky and Sagiv’s method is sound and complete for datalog programs, it may fail to detect
monotonicity constraints for programs like

p(va) = ‘Z(va)v _“Z(va)'

Even though there are no constraints on relation ¢, the constraint p : 1 <,,,. 2 is trivially satisfied
because p must be empty. While one might imagine that inference rules could be added to detect
rules of the form above, one can show that the implication problem for monotonicity constraints
in programs with negation is undecidable. (This result will be presented separately.)

Nevertheless, Brodsky and Sagiv’s algorithm is still sound if we apply it to the envelope of a
program P. By removing all negative subgoals we can only enlarge the well-founded model (making
atoms that were previously false or undefined true).

! Negative subgoals alone do not imply any monotonicity or equality constraints, since the complement of an
antireflexive partial order is not, in general, an antireflexive partial order.

Theorem 2.2: Let P be a program and let P’ be its envelope. Then the least model of P’ contains
all atoms that are either true or undefined in the well-founded model of P.
Proof: (This proof assumes some familiarity with the notation of [VGRS91].) Since P’ is negation-
free, its well-founded model is two-valued and equal to its least model by results of [VGRS91]. The
negation-freeness of P’ also means that the set of false atoms in the well-founded model for P’ is
Upi(0), where Ug(T) is the greatest unfounded set of program) with respect to interpretation I.
Let Mp denote the well-founded model of P, and let neg([) denote the atoms that are false in
I. We show that neg(Mp) D Up/(0).

neg(Mp) = Up(Mp) Since Mp is the fixpoint.
D Up(0) By the monotonicity of Up.
D Upi() Since there are fewer subgoals to satisfy in
P’, and hence fewer possible witnesses of un-
usability.

Corollary 2.3: All constraints that hold for the envelope of P hold for P. 1

Example 2.4: Let P be the program

p(X,Y) —e(X,Y)
p(va) = p(X, Z),f(Z,Y),—'p(Z,Y)

and let E be the constraint set {e:2 <,,. 1, f:2 <,,. 1} on the EDB predicates. The envelope of
P is

PX,Y) —e(X,Y)

p(X,Y) = p(X.,Z), f(Z,Y)

from which p: 2 <,,. 1 is derivable using the techniques of [BS89]. Thus, p: 2 <,,. 1 also holds for
pP. O

Definition 2.6: Let P be a program, F a constraint set on the EDB predicates of P, and [a
constraint set on the IDB predicates of P. Let < be a fixed antireflexive well-ordered partial order.
We say C'= I U FE is sound for (P, <) if

e The EDB of P satisfies F., and

o For every atom A violating a constraint in C'«, A is false in the well-founded model for P.

Using Corollary 2.3, we can use Brodsky and Sagiv’s inference method to derive a sound
constraint set for any program. We just need to check that the EDB satisfies the constraints.

One might argue that checking that a constraint set is sound involves checking the data, not
just the schema. This observation is correct; however, this EDB check would need to be performed
by the database integrity subsystem anyway to ensure that the database is consistent, and so does
not necessarily represent an additional burden. Further, such integrity constraint checks could be
performed incrementally, and so have (incremental) cost significantly smaller than proportional to
the size of the database.

3 Constraint Stratification: A Syntactic Condition

In this section we provide a syntactic stratification condition that is general enough to include all
of the examples from Section 2.2 originally from [Ros90], while also including some programs that
are not modularly stratified.

Definition 3.1: Let < be a fixed antisymmetric partial order with no infinite descending chains.
Let P be a program, and let C' be a sound constraint set for (P, <).

Let inst(P, C, <) denote the instantiation of program P after all rules with a positive subgoal
not satisfying C« are deleted. We say that P is constraint stratified for (C, <) if and only if
inst(P,C, <) is locally stratified. O

Example 3.1: Consider the program P of Example 2.1 given by

m(a,b)

m(b,c)
Let C = {m :2 <. 1} be the constraint set, and let < be given by d < ¢ < b < a. inst(P,C, <) is
the program

w(a) — m(a,b),~w(b)
w(a) — m(a,c),~w(c)
w(a) — m(a,d), ~w(d)
w(b) — m(b,c),~w(c)
w(b) — m(b,d), ~w(d)
w(c) — m(e,d), ~w(d)
m(a,b)

m(b,c)

which is locally stratified. Hence P is constraint stratified for (C,<). O

Example 3.2: Consider the following program P from Example 2.2 with the constraint set ' =
{part : 2 <. 1}.

working(X) — tested(X)

working(X') — part(X,Y), =has_suspect_part(X)

has_suspect_part(X) — part(X,Y), ~working(Y)

part(a,b)

part(a,c)
Let the ordering < be defined by b < a, ¢ < a, and d < @ with b, ¢ and d incomparable. (Assume
for simplicity that these three constants are the only elements of U.) inst(P,C, <) is the program

working(a) — tested(a)

working(b) — tested(b)
working(c) — tested(c)
working(d) — tested(d)
working(a) — part(a,b), ~has_suspect_part(a)
working(a) — part(a, c), ~has_suspect_part(c)

(a,
working(a) — part(a,d), ~has_suspect_part(d)
has_suspect_part(a) — part(a,b), ~working(b)
has_suspect_part(a) — part(a,c), =working(c)
has_suspect_part(a) — part(a,d), ~working(d)
part(a,b)
part(a,c)

which is locally stratified. Hence P is constraint stratified for (C,<). O

Example 3.3: One can easily generalize the notions above to aggregation if one thinks of recursion
through aggregation in a fashion similar to recursion through negation. Consider the program

in(X, Y, null, N) — part(X,Y,N)

i X,Y,Z,N)— part(X, Z, P), containg Z,Y, M), N = P« M
contains(X,Y,N)— N =3 P:in(X,Y,Z,P)

part(a,b,4)

part(a,c, 1)

part(b, e, 7)

from Example 2.3. For simplicity, assume that the integers are all members of U with stan-
dard semantics for multiplication and sum. Let C be the constraint set {part : 2 <. 1,in :
2 < e 1, contains: 2 <, 1}, and let < be defined by ¢ < b < a with all other elements incomparable.
inst(P, C', <) contains all instances? of the following program with respect to U.

in(b, e, null, Ny — part(b, ¢, N) in(a,b,null, N) — part(a,b, N')
in(a, e,null, N) — part(a,c, N)
in(a,c,b, N) — part(a,b, P), containsb,c, M), N = P« M

contains(b,c, N)— N =5 P :in(b,c, Z, P) part(a,b,4)
contains(a,c, N)— N =% P :in(a,c, Z, P) part(a,c,1)
contains(a,b,N)— N =5 P :in(a,b, Z, P) part(b, e, 7)

Since inst(P,C, <) is locally stratified with respect to aggregation, P is constraint stratified for
(C,<). O

One may wonder how one can derive that C' is a sound constraint set in Example 3.3 above.
That C is sound follows from the semantics of grouping variables in aggregation. One can argue
that the derived constraints for the modified aggregation-free program

in'(X,Y) — part(X,Y, P)
i (X,Y) — part(X, Z, P), containd(Z,Y")
containd(X,Y) — in/(X,Y)

also hold (after translating the column positions) in the original program. The set C' = {part :
2 <me Lyin' + 2 <0 1, containd : 2 <,,. 1} is derivable from the modified program using Brodsky
and Sagiv’s method.

This technique can be applied in general. One can form the aggregate-analog of the program
envelope by projecting out all non-grouping variables from aggregate subgoals, and dropping the
aggregate function. Attributes of other predicates that depend on the aggregated value may also
have to be projected out, as illustrated above.

So far, every constraint stratified program we have seen has been modularly stratified. The
following example is a program that is constraint stratified but not modularly stratified.

Example 3.4: Let P be the program

p(X,Y) — e(X,Y)
pEva)) p(X,Z), f(Z2,Y),~p(Z,Y)
fibe)

?Note that one does not instantiate the non-grouping variables in an aggregate subgoal.

based on that of Example 2.4. Let C' be the constraint set {e : 2 <. 1, f : 2 <. 1,p: 2 <0 1}
Note that p: 2 <. 1 is derivable for P from {e:2 <,,. 1, f : 2 <, 1} as discussed in Example 2.4.
Let < be defined by ¢ < b < a. inst(P,C, <) is

pla,b) — e(a,b)

pla,c) — e(a,c)

p(b,c) — e(b,c)

p(a7 C) = p(av b)7 f(b7 C)v _'p(b7 C)
e(a,b)

f(b,c)

Since inst(P, C, <) is locally stratified, P is constraint stratified for (C, <).
The program is not modularly stratified, since the following rule instance is in the reduction of
p’s component:

p(b, c) = p(b,b), ~p(b, c).
The rule instance above prevents the reduction from being locally stratified. Since the reduction

only looks at lower-component predicates, there is no way to notice that p(b,b) will never be
satisfied. O

There are modularly stratified programs that are not constraint stratified.

Example 3.5: Consider the one-rule program
pP—4q 7q,7p.

This program is modularly stratified: Since there are no rules for ¢, ¢ is inferred false and the given
rule does not appear in the reduction of p’s component, thus allowing p to be inferred false. On the
other hand, this program is not constraint stratified since monotonicity constraints “don’t help”
for predicates without arguments, and the rule above is not locally stratified. O

Theorem 3.1: Let €' be a sound set of constraints on a program P, and let < be a partial order.
If P is constraint stratified with respect to (C, <), then P has a two valued well-founded model
whenever the EDB satisfies F.

Proof: By the soundness of the constraints, any instantiated rule with an atom violating C' is false
in the well-founded model. Hence that rule will not contribute to the well-founded model, and
deleting it will give a program that is equivalent under the well-founded semantics. The program
we eventually reach after deleting such rules is locally stratified, by the definition of constraint
stratification, and hence has a two-valued well-founded model. 1

Theorem 3.2: Every locally stratified program is constraint stratified with respect to any set of
constraints.
Proof: Since this fact holds for the empty set of constraints. |

4 Optimization

The fundamental optimization technique for deductive databases is magic sets [BR91, BMSUS86].
Magic sets speeds up bottom-up evaluation by passing binding information from the query into the
rule evaluation so that only information relevant to the query is accessed.

Various authors have looked at the problem of extending the magic sets techniques to larger
classes of programs with negation, be it stratified, modularly stratified, or general negation [Ros90,
RSS92, Mor93, KSS92]. In general, the larger the class of programs allowed, the fewer options

there are for optimization, and so we look for the most specific optimization technique that applies.
As an obvious example, one would not use any of the techniques for magic set with negation on
a program without negation: it would be preferable to use the version defined for negation-free
programs. As another example, techniques for evaluating programs with general recursion through
negation have to deal with an additional truth value, undefined, that can represent a significant
overhead for query evaluation.

Thus we seek an efficient optimization strategy for constraint stratified programs that is poten-
tially better than those that apply to larger classes of programs. One doesn’t have to look very
far. It turns out that we can use techniques developed for modularly stratified programs [Ros90] if
the program satisfies a slightly stronger condition about the way it passes its bindings from left to
right in each rule.

Definition 4.1: Let < be a fixed antisymmetric partial order with no infinite descending chains.
Let P be a program, and let C' be a sound constraint set for (P, <).

Let pref(P,C, <) denote the instantiation of all prefizes of program P after all rule prefixes
with a positive subgoal not satisfying C'. are deleted. We say that P is constraint stratified from
left to right for (C, <) if and only if pref{ P,C, <) is locally stratified. O

The definition of constraint stratification from left to right is analogous to the notion of modular
stratification from left to right [Ros90]. The idea is to make sure that no recursive loops occur
through the initial subgoals of a rule, even if the later subgoals would make the loop unsatisfiable.

Lemma 4.1: Every constraint stratified program can have its rules’ subgoals reordered so that it
is constraint stratified from left to right.

Proof: Call a subgoal “current” if it has a predicate from the same component as the head atom
of the rule. For each rule place subgoals with lower-component predicates to the left of current
subgoals. For negative current subgoals, move them to the right of all positive current subgoals.
Since constraints come only from positive subgoals, all such constraints are applied in any instance
of a rule prefix containing a negative current subgoal. Hence the constraint stratification of the
original program implies the constraint stratification from left to right of the transformed program.

While space restrictions prevent a full description of the magic sets techniques here, one can
show that the techniques of [Ros90] (and, we conjecture, the techniques of [RSS92]) are correct for
function-free programs that are constraint stratified from left to right. This result does not follow
from results in [Ros90] since there exist constraint stratified programs that are not modularly
stratified.

5 Conclusions

We have presented a syntactic condition for a deductive database to have a two-valued well-founded
model. Previous conditions were either too weak to naturally express some programs, or were
semantic in nature, depending on the values of certain relations in the database.

Our condition, called constraint stratification, is shown to be general enough to express all of the
examples from [Ros90] of interesting modularly stratified programs. In addition, we demonstrate
that there are some constraint stratified programs that are not modularly stratified. We can also
show that magic sets optimization techniques developed for modularly stratified programs [Ros90]
also apply to programs that are constraint stratified.

There are several directions for future work. The first problem is that of having to check all
instances of all rules in order to determine constraint stratification. For programs with function

symbols the instantiated program is infinite. Even for function-free programs, checking all rule
instances is likely to be a prohibitively expensive task. In a forthcoming paper [Ros94], we show
that checking all rule instances is not necessary in general for function-free programs. One can
manage just by looking at the original rules themselves in addition to the constraints.

The second problem is that this paper assumes that the partial order < is given in advance.
For some domains, such as the integers, this may be reasonable. For other domains, such as a
part-subpart hierarchy, the order may depend on the database. For example, we know engine <
torque-generator only when the relation representing the hierarchy expresses that an engine is a
direct or indirect subpart of a torque-generator. It is conceivable that in a different hierarchy, a
torque-generator is a subpart of an engine.

In the same forthcoming paper [Ros94], we address this issue by quantifying over all partial
orders that are consistent with the constraints, and requiring constraint stratification with respect
to every such partial order.

Another direction for future work is on defining other sound (but still syntactic) constraint
inference methods. Brodsky and Sagiv’s method can potentially be extended to programs with
negation and programs with function symbols to derive more constraints. Unfortunately, complete-
ness is impossible since the monotonicity constraint implication problem for datalog programs with
negation is undecidable [Ros94].

References

[BMSUS86] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the Fifth ACM Symposium on
Principles of Database Systems, 1986.

[BRO1] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming,
10:255-300, 1991. Preliminary version appeared in the 6th ACM Symposium on
Principles of Database Systems, 1987.

[BSR9] A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Datalog programs.
In Proceedings of the Eighth ACM Symposium on Principles of Database Systems, 1989.

[GL8&S] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. Fifth International Conference and Symposium on Logic Programming, 1988.

[Kol91] P. G. Kolaitis. The expressive power of stratified programs. Information and Compu-
tation, 90:50-66, 1991.

[KSS92] D. Kemp, P. Stuckey, and D. Srivastava. Query restricted bottom-up evaluation of
normal logic programs. In Proc. Joint International Conference and Symposium on
Logic Programming, pages 288-302, 1992.

[L1087] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, 2nd
edition, 1987.

[Mor93] S. Morishita. An alternating fixpoint tailored to magic programs. In Proceedings of
the Twelfth ACM Conference on Principles of Database Systems, 1993. Preliminary
version appeared in the 1992 Proceedings of the Workshop on Deductive Databases,
Joint International Conference and Symposium on Logic Programming.

[PP90] H. Przymusinska and T. C. Przymusinski. Weakly stratified logic programs. Fundamenta
Informaticae, 13:51-65, 1990. Preliminary version appeared in Proc. Fifth International
Conference and Symposium on Logic Programming, 1988.

[Prz88]

[Ros90]

[Ros94]

[RSS92]

[UT189)]

[VGRS91]

T. C. Przymusinski. On the declarative semantics of deductive databases and logic
programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Pro-
gramming, pages 193-216, Los Altos, CA, 1988. Morgan Kaufmann.

K. A. Ross. Modular stratification and magic sets for Datalog programs with negation.
In Proceedings of the Ninth ACM Symposium on Principles of Database Systems, 1990.
Full version to appear in J.ACM.

K. A. Ross. Stratification conditions using constraints. Submitted for publication,
March 1994.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in bottom-
up evaluation. In Proc. Joint International Conference and Symposium on Logic
Programming, pages 273-287, 1992.

J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science
Press, Rockville, MD, 1989. (Two volumes).

A. Van Gelder, K. A. Ross, and J. S. Schlipf. Unfounded sets and well-founded semantics
for general logic programs. JACM, 38(3):620-650, 1991.

