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Abstract

We identify several anomalies in the behavior of con-
ventional notions of composition for preferences defined by
strict partial orders. These anomalies can be avoided by
defining a preorder that extends the given partial order, and
using the pair of orders to define order composition.

1. Introduction

Much past work on preferences has been built on a
formalism in which preference is specified via a strict partial
order1 [2, 4, 5, 1]. One writes x � y to describe a
preference for x over y. In order to respond to a user’s
answer preferences (e.g., to return the Pareto-optimal set of
answers), one can use the definition of the partial order to
test whether a dominating element exists.

Example 1.1: [6] Suppose that a user cares about the price
of a car, but not about small differences in price. For
example, the user might wish to state “For any given class of
car, car A is preferred to car B if the price of A is less than
80% of the price of B.” Cars that differ by 20% or less in
price are incomparable. It is easy to verify the antisymmetry
and transitivity of this relation, making it a strict partial
order. It is not complete, i.e., not a total order, because some
pairs of values are incomparable to each other.

Example 1.2: Suppose that a hiring manager is trying to
decide which person to hire for a job. Each person has a set
of qualifications. We might prefer person p to person q if p

possesses every qualification possessed by q in addition to
at least two qualifications not possessed by q. It is relatively
straightforward to verify that this preference relation is a
strict partial order.

Example 1.3: Let G be a directed acyclic graph (DAG).
We might define a preference relation that prefers a node p
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binary relation.

to a node q if there is a path from p to q in G of length at
least 2. Again, it is relatively straightforward to verify that
this preference relation is a strict partial order.

Each of these examples has a common flavor: there is a
“gap” between the preference relation and the equality rela-
tion. In Example 1.1 the gap corresponds to prices that are
better but not more than 20% better. In Example 1.2 the gap
corresponds to pairs of people where one has exactly one
more qualification than the other. In Example 1.3 the gap
corresponds to pairs of nodes where one is an immediate
predecessor of another. These gaps cause semantic difficul-
ties with existing approaches to composing preferences, as
we shall see in Section 2.

Definition 1.1: The indifference relation ∼ for a binary
relation � is defined as

x ∼ y iff x 6� y and y 6� x.

When the indifference relation is transitive, an order
is said to be a strict weak ordering. Note that none of
Examples 1.1, 1.2, or 1.3 is a strict weak ordering. For more
examples and discussion of preference relations whose in-
difference relation is nontransitive, see [2].

2. Composing Preferences

When composing preferences, we will assume that the
entities being compared are tuples (x1, . . . , xn) of values,
where each xi is from a domain having a strict partial order
�i. (The generalization to orders that depend on multiple
values is straightforward.) The prioritized composition [4],
�=�1 & �2, is defined as: (x1, x2) � (y1, y2) iff

x1 �1 y1 or (x1 = y1 and x2 �2 y2)

Prioritized composition gives priority to the first preference
order, and uses the second order only to break ties in the
first order. The Pareto composition [4], �=�1 ⊗ �2, is
defined as: (x1, x2) � (y1, y2)iff

x1 �1 y1 and x2 �2 y2, or
x1 �1 y1 and x2 = y2, or
x1 = y1 and x2 �2 y2.



Pareto composition treats the component orders symmetri-
cally. A record must be strictly better than another accord-
ing to at least one of the orders, and either better or equal
according to the other order.

A potential alternative to these notions of composition is
defined by Chomicki [1]. He defines a different version of
prioritized composition that we will call “triangle composi-
tion” to distinguish it from the previously defined notion of
prioritized composition.

Definition 2.1: Given two binary relations �1 and �2, the
triangle composition � = �1 � �2 is defined as
(x1, x2) � (y1, y2) iff

x1 �1 y1 or (x1 ∼1 y1 and x2 �2 y2)

where ∼1 is the indifference relation for �1.

Both prioritized composition and Pareto composition de-
fine partial orders [4]. indifference relation for the first strict
partial order is transitive, the triangle composition is a strict
partial order [1]. In general, though, triangle composition
does not yield a strict partial order; see Example 2.3 below.

Prioritized composition and Pareto Composition can
sometimes give unintuitive results, as illustrated by Exam-
ples 2.1 and 2.2 below.

Example 2.1: As in Example 1.1, consider a preference
�1 on prices defined as preferring one car over another if
the price of the first is less than 80% of the price of the
second. Let �2 represent a preference for red cars over
blue cars. According to both �1 ⊗ �2 and �1 & �2,
(75,red) and (100,red) are preferred to (100,blue), while
(90,red) is not. This artifact appears to violate notions of
monotonicity that are implicit in the application: improving
the price should not cause a previously preferred record to
become not preferred.

Example 2.2: As in Example 1.2, consider a preference
�1 on sets defined as preferring S over T if T ⊆ S and
|S| ≥ |T | + 2. Let �2 represent a preference for a larger
value for a years-of-experience attribute. According to both
�1 ⊗ �2 and �1 & �2, ({a, b, c}, 5) and ({a}, 5) are
preferred to ({a}, 3), while ({a, b}, 5) is not. Again, this
example violates the implicit monotonicity in the applica-
tion: improving the set of qualifications should not cause a
previously preferred record to become not preferred.

Triangle composition can also give problematic results,
as illustrated by Examples 2.3 and 2.4.

Example 2.3: Extend Example 2.1, so that according to
�2, red cars are preferred to blue cars, which are in turn
preferred to green cars. Let � denote �1 � �2. Then
according to the definition of triangle composition, we have

(100, red) � (90, blue) � (75, green) � (100, red).

Thus, there is a cycle of preferences according to triangle
composition.

Example 2.4: Let � denote �1 � �2 for the orders de-
fined in Example 2.2. Then according to the definition of
triangle composition, we have

({a}, 5) � ({a, b}, 4) � ({a, b, c}, 3) � ({a}, 5).

Again, there is a cycle of preferences.

Cycles of preferences present several obvious problems.
The transitive closure of such a relation is not a strict or-
der, and would be considered inconsistent. An evaluation
method that discards a tuple in favor of a preferred tuple
may get stuck in an infinite loop, even in a finite domain.

3. A Solution

We propose that preference relations be specified as a
pair of orders. The first order � is a strict partial order
that expresses the “is better than” relationship, as before.
The second order w is a preorder2 that extends �, and is
intended to better capture when items are comparable.

Definition 3.1: Let R1 and R2 be binary relations. We say
R2 extends R1 if

1. When (x, y) ∈ R1, (x, y) ∈ R2 and (y, x) 6∈ R2.

2. When (x, y) ∈ R1 and (y, z) ∈ R2, (x, z) ∈ R1.

3. When (x, y) ∈ R2 and (y, z) ∈ R1, (x, z) ∈ R1.

Example 3.1: The standard order ≤ on the real numbers
extends the strict order < on the reals, because if x < y we
know both x ≤ y and y 6≤ x, and since x < y ≤ z and
x ≤ y < z each imply x < z.

Example 3.2: Let ⊂ denote the standard proper-subset re-
lation on finite sets, and let < denote the relation that says
S1 < S2 if the cardinality of S1 is less than that of S2.
< does not extend ⊆. Even though the first condition of
Definition 3.1 is satisfied, the other two are not.

Definition 3.2: Given a strict partial order� and a preorder
w that extends �, we write > to denote the pair of orders
(�,w). We call > a paired order. x > y is defined to be
x � y, and x ≥ y is defined to be x w y.

The novel aspect of using pairs of orders is apparent
when we compose orders. We define analogs of prioritized
and Pareto composition for paired orders.

2A preorder is reflexive and transitive, but not necessarily antisymmet-
ric.



Definition 3.3: Let >1 and >2 be paired orders. The prior-
itized composition >1 & >2 is defined as the pair (�,w),
where � is defined on pairs of values by

x1 >1 y1 or (x1 ≥1 y1 and x2 >2 y2)

and w is defined by

x1 >1 y1 or (x1 ≥1 y1 and x2 ≥2 y2)

Lemma 3.1: The prioritized composition (�,w) of two
paired orders >1= (�1,w1) and >2= (�2,w2) is a paired
order.
Proof. We need to verify that � is a strict partial order, that
w is a preorder, and that w extends �.

• � is irreflexive, since x �1 x or (x w1 x and x �2 x)
is false, each �i being irreflexive.

• � is transitive. If x �1 y and y �1 z then transi-
tivity follows from the transitivity of �1. If (x w1

y and x �2 y) and (y w1 z and y �2 z) then transi-
tivity follows from the transitivity of both w1 and �2.
The remaining cases follow similarly, using the fact
that w1 extends �1.

• � is antisymmetric. If x � y and y � x then x � x

by transitivity, violating irreflexivity.

• w is reflexive. This is an easy consequence of the
reflexivity of both w1 and w2.

• w is transitive. The argument is similar to that for the
transitivity of �.

• w extends �. The first condition of Definition 3.1
follows from the fact that w2 extends �2. The second
and third conditions follow from w2 extending �2 and
w1 extending �1.

Definition 3.4: Let >1 and >2 be paired orders. The Pareto
composition >1 ⊗ >2 is defined as the pair (�,w), where
� is defined on pairs of values by

(x1 >1 y1 and x2 ≥2 y2) or (x1 ≥1 y1 and x2 >2 y2)

and w is defined by

x1 ≥1 y1 and x2 ≥2 y2

Lemma 3.2: The Pareto composition of two paired orders
is a paired order.
Proof. Similar to the proof of Lemma 3.1.

Conventional prioritized composition and Pareto com-
position are a special cases of Definition 3.3 and Defini-
tion 3.4, respectively, with w1 being the union of �1 and
the equality relation. For transitive indifference relations,
triangle composition is a special case of Definition 3.3, as
shown in the following lemma.

Lemma 3.3: For a strict partial order � with indifference
relation ∼, define w as � ∪ ∼. If ∼ is transitive, then
(�,w) is a paired order, and prioritized composition of such
paired orders according to Definition 3.3 is equivalent to
triangle composition.
Proof sketch. The main idea for both transitivity and for
showing that w extends � is to demonstrate that if x � y

and y ∼ z, then x � z. This is achieved by elimination.
x ∼ z is not possible because then x ∼ y would hold by the
transitivity and symmetry of ∼, violating x � y. z � x is
not possible because transitivity of � would imply z � y,
contradicting y ∼ z.

For cases where ∼ is not transitive, we can address
the deficiencies highlighted in Section 2 by supplying a
suitable preorder w for the given strict partial order, and
using Definition 3.3 to construct a prioritized composition.

Example 3.3: Consider the order of Example 1.1, and de-
fine p1 w1 p2 to be true if price p1 is less than or equal to
p2. It is relatively simple to see that w1 is a preorder that
extends the strict partial order p1 �1 p2 defined by price p1

being less than 80% of p2.
Revisiting Example 2.1, suppose we instead used the

paired order (�,w) = (�1,w1)&(�2,�2 ∪ =) to define
the preferences. Then even though 90 6�1 100, we do have
90 w1 100, and so (90,red) is now preferred to (100,blue)
because blue �2 red. Note that (90,red) is still not preferred
to (100,red).

Our choice also eliminates the problems of Example 2.3
in which triangle composition led to a cycle of preferences.
Because � is a partial order, such cycles do not occur.

Example 3.4: Consider the order of Example 1.2, and de-
fine S1 w1 S2 to be true if S2 ⊆ S1. w1 is a preorder that
extends the strict partial order �1.

Revisiting Example 2.2, suppose we instead used the
paired order (�,w) = (�1,w1)&(�2,�2 ∪ =) to define
the preferences. Then even though {a, b} 6�1 {a}, we do
have {a, b} w1 {a}, and so ({a, b}, 5) is now preferred to
({a}, 3) because 5 �2 3. Note that ({a, b}, 5) is still not
preferred to ({a}, 5).

In Example 2.4, triangle composition led to a cycle of
preferences. Because � is a partial order, such cycles do
not occur.

Example 3.5: Consider a variant of Example 3.3 in which
p1 w1 p2 is true if price p1 is less than 90% of p2 or if
p1 = p2. w1 is a preorder that extends �1, and so (�,w1)
a paired order. There would still be a “gap” between the
prioritized composition and the equality relation, and prob-
lems like those of Example 2.1 would remain.

As Examples 3.3 and 3.5 show, there may be multiple
preorders that extend a given partial order. (Conventional



prioritized composition represents a third option for the
preorder in this example.) Some of these preorders may
retain the gap between the strict partial order and equality.
The following theorem implies that there is a unique max-
imal preorder that extends any given partial order, and that
therefore minimizes the gap with equality.

Theorem 3.4: Let S be a collection of preorders wi, each
of which extend a strict partial order �. Let w denote the
transitive closure of the union of all wi in S. Then w is a
preorder that extends �.
Proof. The transitivity of w is trivial, and reflexivity follows
from the reflexivity of each wi. To verify the first condition
of Definition 3.1, suppose x � y. Then x w y since x wi y

holds for each i. Suppose that, contrary to Definition 3.1
y w x. Then consider the values of x and y with the shortest
finite sequence y1, . . . , yn having the property that

y wi1 y1 wi2 y2 wi2 . . . win
yn win+1

x

for some values i1, . . . , in+1. If n = 0, we would have
y wi1 x which would contradict the assumption that each
wi extends �. If n > 0, then observe that since x � y and
y wi1 y1, x � y1 because wi1 extends �. Then x and y1

would be values with a shorter sequence of the above form,
contradicting the assumption that we started with a shortest
sequence.

The second and third conditions of Definition 3.1 follow
from the assumption that each component preorder extends
�. For example, if x � y and y w z then for some
y1, . . . , yn and some i1, . . . , in+1,

x � y wi1 y1 wi2 y2 wi2 . . . win
yn win+1

z.

which implies

x � y1 wi2 y2 wi2 . . . win
yn win+1

z.

because wi1 extends �. We can iterate this inference pro-
cess to obtain x � z.

Corollary 3.5: There is a unique maximal preorder that
extends a given partial order.

Theorem 3.6: The preorder w defined in Example 3.3 is
the maximal preorder that extends the � relation of Exam-
ple 1.1 on the real numbers.
Proof. Suppose to the contrary that some preorder R that
extends � properly contains the w relation. Since w con-
tains all pairs (x, y) with x ≤ y, R must contain some pair
(a, b) with a > b. Let c = a+b

2∗0.8
. Then b < 0.8 ∗ c and

so b � c, while a > 0.8 ∗ c meaning that a 6� c. But if R

extends �, then aRb and b � c must imply a � c. This
contradiction implies that no such R can exist.

Theorem 3.7: The preorder w defined in Example 3.4 is
the maximal preorder that extends the � relation of Exam-
ple 1.2, assuming that sets are finite and elements are drawn
from an infinite domain.
Proof. Suppose to the contrary that some preorder R that
extends � properly contains the w relation. Since w con-
tains all pairs (x, y) with x ⊇ y, R must contain some pair
(s1, s2) with s2 − s1 6= ∅. Let s3 = s1 ∪ {a, b}, where
neither a nor b is in s1 ∪ s2. (It is always possible to find
such a and b since the element domain is infinite, and s1∪s2

is finite.) Then s3 � s1 while s3 6� s2. But if R extends
�, then s3 � s1 and s1Rs2 must imply s3 � s2. This
contradiction implies that no such R can exist.

Consider the � relation defined on nodes in a DAG,
requiring one node to be at least two nodes upstream of
the other, as in Example 1.3. One might guess that the
maximal preorder w extending � is the (reflexive) ancestor
relationship, so that n1 w n2 if n1 = n2 or n1 is upstream
of n2. However, this guess is not always correct. For
example, if the DAG has no paths of length 2 or more,
then � is empty and all nodes are related to each other via
the maximal preorder. This example suggests that it would
be unwise to force the user to always select the maximal
preorder w; the user may intend a weaker relation.

4. Conclusions

We have shown how semantic anomalies can be avoided
by defining a preorder that extends the given partial order,
and using the pair of orders to define order composition. In
some preference logics, one also defines a pair of relations:
a strict order � and an explicit indifference relation ≈ such
that ≈ is symmetric and disjoint from � [3]. Our preorders
w are not definable as � ∪ ≈, in general, because w − �
is typically not symmetric.

We propose that in future work, authors using strict par-
tial orders to define preferences also specify an appropriate
partner preorder.
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